Heavy-Lift Systems

Total Page:16

File Type:pdf, Size:1020Kb

Heavy-Lift Systems I‘ ’, 1 NASA -! TP 1921 ’ .I I 1:. NASA Technical Paper 1921 c. 1 Vehicle Concepts and Technology Requirements for Buoyant Heavy-Lift Systems Mark D. Ardema SEPTEMBER 1981 TECH LIBRARY KAFB, NM NASA Technical Paper 1921 Vehicle Concepts and Technology Requirements for Buoyant Heavy-Lift Systems Mark D. Ardema Ames Research Center Moffett Field, California National Aeronautics and Space Administration Scientific and Technical Information Branch 1981 VEHICLECONCEPTS AND TECHNOLOGYREQUIREMENTS FOR BUOYANT HEAVY-LIFTSYSTEMS Mark D. Ardema Ames Research Center Several buoyant-vehicle (airship) concepts proposed for short hauls of heavy payloads are described. Numer- ous studies have identified operating cost and payload capacity advantages relative to existing or proposed heavy-lift helicopters for such vehicles. Applications mvolving payloads of from 15 tons up to 800 tons have been identified. The buoyant quad-rotor concept is discussed in detail, including the history of its development, current estimates of performance and economics, currently perceived technology requirements, and recent research and technology development. It is concluded that the buoyant quad-rotor, and possibly other buoyant vehicle concepts, has the potential of satisfying the market for very heavy vertical lift but that additional research and technology development are necessary. Because of uncertainties in analytical prediction methods and small-scale experimental measurements, there is a strong need for large or full-scale experiments in ground test facilities and, ultimately, with a flight research vehicle. INTRODUCTION world vehicles is about 18 tons. Listed in the figure are several payload candidates for airborne vertical lift that are beyond this 18-ton payload weight limit, Feasibility studies of modern airships (refs. 1-18) indicating a marketfor increased lift capability. and other studies (refs. 19-27) have determined that Extension of rotorcraft lift toa 35-ton payload is modern air-buoyant vehicles (airships) could satisfy possible with existing technology (refs. 28, 29), and the need for air transport of heavy or outsized pay- future development of conventional rotorcraft up to loads over short distances. a 75-ton payload appears feasible (ref. 29). With HLA There are two reasons that such aircraft, called concepts, however,payioad capability of up to heavy-lift airships (HLAs), appear attractive for both civil and military heavy-lift applications. First, buoy- ant lift does not lead to inherent limitations on pay- loadcapacity as does dynamiclift. Large conven- INDUSTRIAL EQUIPMENT tional dynamic-lift vehicles, including rotorcraft, tend AND CONSTRUCTION to follow a “square-cubelaw” in that lift increases MAIN BATTLE TANK CRANE, SHOVEL - 40 ton with the square of the vehicle’s principal dimension, while empty weight increases with the cube, notwith- standing the effect of fixed-weight items. This means thatthe vehicle’s structural weight increases faster CONTAINER (8 x 8.5 x 35 ft) than the gross weight as size is increased; thus, as the OGGING (MINIMUM size is increased, the percentage of the total weight available for useful load decreases. On the other hand, buoyant-lift aircraft tend to follow a “cube-cube law” and thus have approximately1990 the same1980 efficiency 1970 at 1960 1950 all sizes. CALENDAR YEAR Figure 1 shows the history of rotorcraft vertical- lift capability. Current maximumpayload of free Figure 1 .- Potential heavy-lift payloads. 200 tons is possible using existing propulsion-system TABLE 1 .- PRINCIPAL HEAVY-LIFT technology or even, if desired,existing rotorcraft AIRSHIP MARKETS propulsion-system hardware. [From refs. 30,311 The second reason airships appear attractivefor Useful Number of heavy lift is cost. Most HLA concepts are projected Market area load, vehicles to offer lower development, manufacturing, mainte- tons required nance, and fuel costs than large rotorcraft with the same payloads; thustotal operating and life-cycle Heavy lift costsmay be lower. The lower developmentcost Logging 25-75 >I 000 arises from extensive use of existingpropulsion- Unloading cargo in systemtechnology or hardware orboth, making congested ports 16-80 200 major new propulsion-systemdevelopment unneces- High-voltage transmis- sary. Low manufacturingand maintenance costs sion tower erection 13-25 10 accrue because buoyant-liftcomponents are less Support of remote expensive to produce and maintain than dynamic-lift drill-rig installations 25-1 50 15 components. Lower fuelcosts follow directly from lower fuel consumption. As fuel prices increase, the Ultraheavy lift high fuel efficiency of HLAs will become increasingly Support of power- important. HLA costs and fuel efficiency will be dis- generating plant cussed in more detail later. construction 80-900 30 Because the market for vertical lift of payloads in Support of oil-gas off- excess of 20 tons is a new one for aerial vehicles, the shore platform size and characteristics of the market are somewhat construction 5 00 3 uncertain. As aresult, several studies have been Other transportation 25-800 10 undertaken. Many of these studies have been pri- vately funded and theirresults we proprietary, but the results of some have been published (refs. 26,27, 30-33). HLA market-study conclusions have been The availability of vertical aerial lift in this payload generally favorable. Table 1 summarizes the results range will make the expensive infrastructure asso- of one of these,the recentlycompleted NASA- ciated with surfacemovements of heavy or bulky sponsored study of civil markets for HLAs (refs. 30, items largely unnecessary. It would also allow more 3 1). freedom in the selection of plant sites by eliminating the restrictions imposed by the necessity for readily The HLA civil market tends to fall into two cate- accessible heavy suface transportation.Further, it gories. The first consists of services that are now or couldsubstantially reduce construction costs of could be performed by helicopters, but perhaps only complex assemblies by allowing more extensive pre- on a very limited basis. Payloads are low to moderate, assembly at manufacturing areas. This application is ranging from about 15 to 80 tons. Specific markets relatively insenstitive to cost of service. include logging, containership offloading (of interest also to the military), transmission-tower erection, and In the remainder of this paper, HLA concepts will support of remote drill rigs. HLAs would be able to be reviewed. The buoyant quad-rotor (BQR), or heli- capture greater shares of these markets than helicop- stat, will be emphasized because it has been the prin- ters because of their projected lower operating costs. cipal subject of technologydevelopment efforts to Most of these applications are relatively sensitive to date. As a result, there is more technical information cost.The largest market in terms of thepotential available about the BQR than other HLA concepts. number of vehicles required is logging. The next section briefly describes free-flying HLA The second HLA market category involves heavy concepts other than the BQR. The following section payloads of 180 to 800 tons - a totally new applica- discusses the BQR in terms of (1) development his- tion of vertical aerial lift. This market is concerned tory, (2) description of the concept, (3) technology primarilywith support of heavy construction proj- needsas currently perceived, and (4) thecurrent ects, especially power-generating plant construction. NASA research and development program. 2 HEAVY-LIFT AIRSHIPCONCEPTS OTHER by Nichols (ref. 20), and by Nichols and Doolittle THANBUOYANT QUAD-ROTOR (ref. 24). References 20 and24, inparticular, describe a wide variety of possible hybrid HLA concepts. The classical fully buoyant airship is unsuitable for Perhaps the simplest and least expensive of the most heavy-lift applications because of poor low- HLA concepts are those which combine the buoyant speed controland ground-handlingcharacteristics. and dynamic-lift elements in discrete fashion without Therefore, almost all HLA concepts that have been majormodification. Examples, takenfrom refer- proposed are “hybrid” aircraft, that is, vehicles that ences 7 and 24, are shown in figure 2. Although such obtain part of their total lift from the displacement systems will obviously require minimal development of air by a lighter gas (buoyant lift) and the remain- of new hardware, there may be serious operational der by dynamic or propulsive forces. Because buoy- problems associated with them. Safety and controlla- ant lift can be scaled up to large sizes at low cost per bilityconsiderations would likely restrict operation pound of lift (as previously described), it is advan- to fair weather.Further, cruise speeds would be tageous from a cost standpoint in hybrid aircraft to extremely low. The concept from reference 24 that is provide as much of the total lift as possible by buoy- shown in figure 2 was rejectedby theauthors of ancy. The fraction of total lift derived by dynamic or reference 24 because of the catastrophic failure which propulsive forces is determined primarily bythe would result from an inadvertentballoon deflation. amount of control powerrequired. Thedynamic An earlyhybrid HLA concept, which has subse- forces therefore provide propulsion andcontrol as quently received a significant amount of study and well as a portion of the total lift. some initial development, is a rotor-and-balloon con- The characteristics of hybrid aircraftand their figuration
Recommended publications
  • MS – 204 Charles Lewis Aviation Collection
    MS – 204 Charles Lewis Aviation Collection Wright State University Special Collections and Archives Container Listing Sub-collection A: Airplanes Series 1: Evolution of the Airplane Box File Description 1 1 Evolution of Aeroplane I 2 Evolution of Aeroplane II 3 Evolution of Aeroplane III 4 Evolution of Aeroplane IV 5 Evolution of Aeroplane V 6 Evolution of Aeroplane VI 7 Evolution of Aeroplane VII 8 Missing Series 2: Pre-1914 Airplanes Sub-series 1: Drawings 9 Aeroplanes 10 The Aerial Postman – Auckland, New Zealand 11 Aeroplane and Storm 12 Airliner of the Future Sub-series 2: Planes and Pilots 13 Wright Aeroplane at LeMans 14 Wright Aeroplane at Rheims 15 Wilbur Wright at the Controls 16 Wright Aeroplane in Flight 17 Missing 18 Farman Airplane 19 Farman Airplane 20 Antoinette Aeroplane 21 Bleriot and His Monoplane 22 Bleriot Crossing the Channel 23 Bleriot Airplane 24 Cody, Deperdussin, and Hanriot Planes 25 Valentine’s Aeroplane 26 Missing 27 Valentine and His Aeroplane 28 Valentine and His Aeroplane 29 Caudron Biplane 30 BE Biplane 31 Latham Monoplane at Sangette Series 3: World War I Sub-series 1: Aerial Combat (Drawings) Box File Description 1 31a Moraine-Saulnier 31b 94th Aero Squadron – Nieuport 28 – 2nd Lt. Alan F. Winslow 31c Fraser Pigeon 31d Nieuports – Various Models – Probably at Issoudoun, France – Training 31e 94th Aero Squadron – Nieuport – Lt. Douglas Campbell 31f Nieuport 27 - Servicing 31g Nieuport 17 After Hit by Anti-Aircraft 31h 95th Aero Squadron – Nieuport 28 – Raoul Lufbery 32 Duel in the Air 33 Allied Aircraft
    [Show full text]
  • Lighter-Than-Air Vehicles for Civilian and Military Applications
    Lighter-than-Air Vehicles for Civilian and Military Applications From the world leaders in the manufacture of aerostats, airships, air cell structures, gas balloons & tethered balloons Aerostats Parachute Training Balloons Airships Nose Docking and PARACHUTE TRAINING BALLOONS Mooring Mast System The airborne Parachute Training Balloon system (PTB) is used to give preliminary training in static line parachute jumping. For this purpose, an Instructor and a number of trainees are carried to the operational height in a balloon car, the winch is stopped, and when certain conditions are satisfied, the trainees are dispatched and make their parachute descent from the balloon car. GA-22 Airship Fully Autonomous AIRSHIPS An airship or dirigible is a type of aerostat or “lighter-than-air aircraft” that can be steered and propelled through the air using rudders and propellers or other thrust mechanisms. Unlike aerodynamic aircraft such as fixed-wing aircraft and helicopters, which produce lift by moving a wing through the air, aerostatic aircraft, and unlike hot air balloons, stay aloft by filling a large cavity with a AEROSTATS lifting gas. The main types of airship are non rigid (blimps), semi-rigid and rigid. Non rigid Aerostats are a cost effective and efficient way to raise a payload to a required altitude. airships use a pressure level in excess of the surrounding air pressure to retain Also known as a blimp or kite aerostat, aerostats have been in use since the early 19th century their shape during flight. Unlike the rigid design, the non-rigid airship’s gas for a variety of observation purposes.
    [Show full text]
  • Cargo Airships: an International Status Report
    CARGO AIRSHIPS: AN INTERNATIONAL STATUS REPORT Dr. Barry E. Prentice, Professor University of Manitoba and Robert Knotts BA MBA M Phil (Engineering), Chairman Airship Association Giant airships were built and operated primarily by the German Zeppelin company, from 1909 to 1940. The Imperial Airship Scheme of the British Government, the military airships of the U.S. Army and the Italian airships of Forlanini and Nobile also furthered airship technology. A negative perception of airship exists because of accidents that cloud the important achievements of this period. The giant Zeppelins could cruise at 80 miles per hour and carry useful loads of 70 tons on scheduled flights across the oceans. Of particular note is the Graf Zeppelin that made over 150 Atlantic crossings and circumnavigated the globe. These records were established without sophisticated communication equipment or navigation facilities. The ability to adapt this technology for cargo transport is recognized and has created interest internationally. Small inflatables (blimps) and semi-rigid airships are available for research, advertising or surveillance purposes. But, no heavy-lift airships exist currently. Over the past 15 years, new strategies have been developed to overcome the drawbacks of airship for cargo applications. The competition for the dominant cargo airship design is worldwide. This paper reviews the status of cargo airship developments on three Type: Regular 1 Prentice & Knotts 1 Prentice/Knotts continents. The technological approaches are compared and examined for the emergence of a dominant design. Search for the Dominant Design The last large airship capable of commercial cargo haulage was built before the invention of the strain gauge in 1938.
    [Show full text]
  • Airborne Arctic Weather Ships Is Almost Certain to Be Controversial
    J. Gordon Vaeth airborne Arctic National Weather Satellite Center U. S. Weather Bureau weather ships Washington, D. C. Historical background In the mid-1920's Norway's Fridtjof Nansen organized an international association called Aeroarctic. As its name implies, its purpose was the scientific exploration of the north polar regions by aircraft, particularly by airship. When Nansen died in 1930 Dr. Hugo Eckener of Luftschiffbau-Zeppelin Company suc- ceeded him to the Aeroarctic presidency. He placed his airship, the Graf Zeppelin, at the disposal of the organization and the following year carried out a three-day flight over and along the shores of the Arctic Ocean. The roster of scientists who made this 1931 flight, which originated in Leningrad, in- cluded meteorologists and geographers from the United States, the Soviet Union, Sweden, and, of course, Germany. One of them was Professor Moltschanoff who would launch three of his early radiosondes from the dirigible before the expedition was over. During a trip which was completed without incident and which included a water land- ing off Franz Josef Land to rendezvous with the Soviet icebreaker Malygin, considerable new information on Arctic weather and geography was obtained. Means for Arctic More than thirty years have since elapsed. Overflight of Arctic waters is no longer his- weather observations toric or even newsworthy. Yet weather in the Polar Basin remains fragmentarily ob- served, known, and understood. To remedy this situation, the following are being actively proposed for widespread Arctic use: Automatic observing and reporting stations, similar to the isotopic-powered U. S. Weather Bureau station located in the Canadian Arctic.
    [Show full text]
  • Keck Study Airships; a New Horizon for Science”
    Keck Study Airships; A New Horizon for Science” Scott Hoffman Northrop Grumman Aerospace Systems May 1, 2013 Military Aircraft Systems (MAS) Melbourne FL 321-951-5930 Does not Contrail ITAR Controlled Data Airship “Lighter than Air” Definition Airplanes are heavier than air and fly because of the aerodynamic force generated by the flow of air over the lifting surfaces. Balloons and airships are lighter-than-air (LTA), and fly because they are buoyant, which is to say that the total weight of the aircraft is less than the weight of the air it displaces.1 The Greek philosopher Archimedes (287 BC – 212 B.C.) first established the basic principle of buoyancy. While the principles of aerodynamics do have some application to balloons and airships, LTA craft operate principally as a result of aerostatic principles relating to the pressure, temperature and volume of gases. A balloon is an unpowered aerostat, or LTA craft. An airship is a powered LTA craft able to maneuver against the wind. 1 NASA Web site U.S. Centennial of Flight Commission http://www.centennialofflight.gov/index2.cfm Does not Contain ITAR Controlled Data Atmospheric Airship Terminology • Dirigible – Lighter-than-air, Engine Driven, Steerable Craft • Airship –Typically any Type of Dirigible – Rigid –Hindenburg, USS Macon, USS Akron USS Macon 700 ft X 250 ft – Semi-Rigid – Has a Keel for Carriage and Engines • NT-07 Zeppelin Rigid – Non-Rigid – Undercarriage and Engines Support by the Hull • Cylindrical Class-C – “Blimp” – Goodyear, Navy AZ-3, Met Life Blimp, Blue Devil Simi-Rigid
    [Show full text]
  • Manufacturing Techniques of a Hybrid Airship Prototype
    UNIVERSIDADE DA BEIRA INTERIOR Engenharia Manufacturing Techniques of a Hybrid Airship Prototype Sara Emília Cruz Claro Dissertação para obtenção do Grau de Mestre em Engenharia Aeronáutica (Ciclo de estudos integrado) Orientador: Prof. Doutor Jorge Miguel Reis Silva, PhD Co-orientador: Prof. Doutor Pedro Vieira Gamboa, PhD Covilhã, outubro de 2015 ii AVISO A presente dissertação foi realizada no âmbito de um projeto de investigação desenvolvido em colaboração entre o Instituto Superior Técnico e a Universidade da Beira Interior e designado genericamente por URBLOG - Dirigível para Logística Urbana. Este projeto produziu novos conceitos aplicáveis a dirigíveis, os quais foram submetidos a processo de proteção de invenção através de um pedido de registo de patente. A equipa de inventores é constituída pelos seguintes elementos: Rosário Macário, Instituto Superior Técnico; Vasco Reis, Instituto Superior Técnico; Jorge Silva, Universidade da Beira Interior; Pedro Gamboa, Universidade da Beira Interior; João Neves, Universidade da Beira Interior. As partes da presente dissertação relevantes para efeitos do processo de proteção de invenção estão devidamente assinaladas através de chamadas de pé de página. As demais partes são da autoria do candidato, as quais foram discutidas e trabalhadas com os orientadores e o grupo de investigadores e inventores supracitados. Assim, o candidato não poderá posteriormente reclamar individualmente a autoria de qualquer das partes. Covilhã e UBI, 1 de Outubro de 2015 _______________________________ (Sara Emília Cruz Claro) iii iv Dedicator I want to dedicate this work to my family who always supported me. To my parents, for all the love, patience and strength that gave me during these five years. To my brother who never stopped believing in me, and has always been my support and my mentor.
    [Show full text]
  • Advanced Airship Design [Pdf]
    Modern Airship Design Using CAD and Historical Case Studies A project present to The Faculty of the Department of Aerospace Engineering San Jose State University in partial fulfillment of the requirements for the degree Master of Science in Aerospace Engineering By Istiaq Madmud May 2015 approved by Dr. Nikos Mourtos Faculty Advisor AEROSPACE ENGINEERING Modern Airship Design MSAE Project Report By Istiaq Mahmud Signature Date Project Advisor: ____________________ ______________ Professor Dr. Nikos Mourtos Project Co-Advisor: ____________________ ______________ Graduate Coordinator: ____________________ ______________ Department of Aerospace Engineering San Jose State University San Jose, CA 95192-0084 Istiaq Mahmud 009293011 Milpitas, (408) 384-1063, [email protected] Istiaq Mahmud Modern Airship Design 2 AEROSPACE ENGINEERING Istiaq Mahmud Modern Airship Design 3 AEROSPACE ENGINEERING Non‐Exclusive Distribution License for Submissions to the SJSU Institutional Repository By submitting this license, you (the author(s) or copyright owner) grant to San Jose State University (SJSU) the nonexclusive right to reproduce, convert (as defined below), and/or distribute your submission (including the abstract) worldwide in print and electronic format and in any medium, including but not limited to audio or video. You agree that SJSU may, without changing the content, convert the submission to any medium or format for the purpose of preservation. You also agree that SJSU may keep more than one copy of this submission for purposes of security, back‐up and preservation. You represent that the submission is your original work, and that you have the right to grant the rights contained in this license. You also represent that your submission does not, to the best of your knowledge, infringe upon anyone's copyright.
    [Show full text]
  • Ballooning Collection, the Cuthbert-Hodgson Collection, Which Is Probably One of the fi Nest of Its Kind in the World
    SOCIETY NEWS qÜÉ=pçÅáÉíóÛë=iáÄê~êó b~êäó=_~ääççåáåÖ iáíÜçÖê~éÜë=~åÇ=mêáåíë ÜÉ=oçó~ä=^Éêçå~ìíáÅ~ä=pçÅáÉíó áãéçêí~åí=îáëì~ä=êÉÅçêÇ=çÑ=ã~åÛë qiáÄê~êó= ÜçìëÉë= çåÉ= çÑ= íÜÉ É~êäó= ~ëÅÉåíë= áåíç= íÜÉ= ~áê= ~í= íÜÉ ïçêäÇÛë=ÑáåÉëí=ÅçääÉÅíáçåë=çÑ=É~êäó îÉêó= Ç~ïå= çÑ= ~îá~íáçå= ~ë Ä~ääççåáåÖ= ã~íÉêá~ä= EÄççâëI éçêíê~óÉÇ= Äó= áääìëíê~íçêë= ~åÇ é~ãéÜäÉíëI= åÉïëé~éÉê= ÅìííáåÖëI ÉåÖê~îÉêë=çÑ=íÜÉ=íáãÉK éêáåíë= ~åÇ= äáíÜçÖê~éÜë= ~åÇ qÜÉ= Ä~ääççå= ï~ë= Äçêå= áå ÅçããÉãçê~íáîÉ= ãÉÇ~äëF= ïÜáÅÜ cê~åÅÉ= áå= NTUP= ÇìêáåÖ= íÜÉ= ä~íÉJ Ü~ë= ÄÉÉå= ìëÉÇ= Äó= êÉëÉ~êÅÜÉêë NUíÜ= ÅÉåíìêó= båäáÖÜíÉåãÉåí Ñêçã= dÉêã~åóI= cê~åÅÉ= ~åÇ= íÜÉ éìêëìáí= çÑ= ëÅáÉåíáÑáÅ= âåçïäÉÇÖÉX råáíÉÇ=pí~íÉëK íÜÉ=~Äáäáíó=íç=íê~îÉä=íÜêçìÖÜ=íÜÉ `çãéäÉãÉåíáåÖ= íÜÉ= ÑáåÉ ~áê=çéÉåÉÇ=ìé=éÉçéäÉëÛ=ãáåÇë=íç ÅçääÉÅíáçå= çÑ= É~êäó= Ä~ääççåáåÖ íÜÉ= éçëëáÄáäáíáÉë= çÑ= ~Éêá~ä ~åÇ= ~Éêçå~ìíáÅ~ä= Äççâë= áë= ~ å~îáÖ~íáçå=~åÇ=åÉïë=çÑ=íÜÉ=É~êäó ã~àçê= ÅçääÉÅíáçå= çÑ= ~êçìåÇ= TMM ~ëÅÉåíë= ï~ë= íê~åëãáííÉÇ= ê~éáÇäó É~êäó= Ä~ääççåáåÖ= äáíÜçÖê~éÜëL ~Åêçëë= bìêçéÉK= ^= é~êí= çÑ= íÜáë éêáåíëLéçëíÉêëK= qÜáë= ÅçääÉÅíáçå= Ô éêçÅÉëë= ï~ë= íÜÉ= éêçÇìÅíáçå= çÑ ïÜáÅÜ= áë= Ä~ëÉÇ= ã~áåäó= çå= íÜÉ åìãÉêçìë= äáíÜçÖê~éÜëLéêáåíë ÜçäÇáåÖë= çÑ= íÜÉ= `ìíÜÄÉêíJ ÅçããÉãçê~íáåÖ= é~êíáÅìä~ê eçÇÖëçå= `çääÉÅíáçå= EïÜáÅÜ= ï~ë ~ëÅÉåíë= çê= ~Éêá~ä= îçó~ÖÉëI= ~åÇ áå=NVQT=éìêÅÜ~ëÉÇ=áå=áíë=ÉåíáêÉíó íÜÉ= iáÄê~êó= ÜçäÇë= Éñ~ãéäÉë= çÑ Äó= páê= cêÉÇÉêáÅâ= e~åÇäÉó= m~ÖÉ ã~åó= îáÉïë= çÑ= ~ëÅÉåíë= ~Åêçëë o^Ép=iáÄê~êó=éÜçíçëK ~åÇ= éêÉëÉåíÉÇ= íç= íÜÉ= pçÅáÉíóI _êáí~áåI= cê~åÅÉ= ~åÇ= çíÜÉê dÉçêÖÉ=`êìáÅâëÜ~åâ=Úq~ñá=_~ääççåëÛ=Ô Ú^=ëÅÉåÉ=áå=íÜÉ=c~êÅÉ=çÑ=içÑíó
    [Show full text]
  • Hybrid Buoyant Aircraft: Future STOL Aircraft for Interconnectivity of the Malaysian Islands
    Available online at http://docs.lib.purdue.edu/jate Journal of Aviation Technology and Engineering 6:2 (2017) 80–88 Hybrid Buoyant Aircraft: Future STOL Aircraft for Interconnectivity of the Malaysian Islands Anwar ul Haque International Islamic University Malaysia (IIUM) Waqar Asrar Department of Mechanical Engineering, International Islamic University Malaysia (IIUM) Ashraf Ali Omar Department of Aeronautical Engineering, University of Tripoli Erwin Sulaeman Department of Mechanical Engineering, International Islamic University Malaysia (IIUM) Jaffar Syed Mohamed Ali Department of Mechanical Engineering, International Islamic University Malaysia (IIUM) Abstract Hybrid buoyant aircraft are new to the arena of air travel. They have the potential to boost the industry by leveraging new emerging lighter-than-air (LTA) and heavier-than-air (HTA) technologies. Hybrid buoyant aircraft are possible substitutes for jet and turbo- propeller aircraft currently utilized in aviation, and this manuscript is a country-specific (Malaysia) analysis to determine their potential market, assessing the tourism, business, agricultural, and airport transfer needs of such vehicles. A political, economic, social, and tech- nological factors (PEST) analysis was also conducted to determine the impact of PEST parameters on the development of buoyant aircraft and to assess all existing problems of short takeoff and landing (STOL) aircraft. Hybrid buoyant aircraft will not only result in reduction of transportation costs, but will also improve the economic conditions of the region. New airworthiness regulations can lead to greater levels of competition in the development of hybrid buoyant aircraft. Keywords: hybrid buoyant aircraft, green energy, PEST analysis http://dx.doi.org/10.7771/2159-6670.1138 A. ul Haque et al.
    [Show full text]
  • Applications of Scientific Ballooning Technology to High Altitude Airships
    Applications of Scientific Ballooning Technology to High Altitude Airships Michael S. Smith*, Raven Industries, Inc, Sulphur Springs, Texas, USA Edward Lee Rainwater , Raven Industries, Inc, Sulphur Springs, Texas, USA ABSTRACT been undertaken which attempted to solve the general problem by using tethered aerostats at very high In recent years, the potential use of High Altitude altitudes. Most of these programs were thwarted by Airships (HAA) as a platform for surveillance or problems associated with tether dynamics. communications operations has attracted growing interest. Many technical obstacles exist with regard to High Platform the successful launch, flight, and recovery of such systems. In the late 1960’s, Raven Industries was contracted to build a small stratospheric airship as a technology Many decades of technological innovation in the field demonstrator.1 The High Platform II vehicle was of scientific ballooning have resulted in a number of designed for a small payload of five pounds and a technologies that are directly applicable towards the cruising altitude of 67,000 feet. Since it was designed success of the HAA platform. Among these are as a technology demonstrator, the vehicle was advances in materials, design, and launch methods. programmed to track the sun during the flight. The Discussed herein are potential applications of these demonstration flight was considered a success by flying technologies towards the development of a viable High for two hours under power. It also did not carry any Altitude Airship system. batteries, so it could not operate at night. This is quite possibly the only airship ever to fly under power in the HISTORICAL BACKGROUND stratosphere.
    [Show full text]
  • Federal Aviation Administration, DOT § 91.113
    Federal Aviation Administration, DOT § 91.113 (3) The instructor is current and (c) No person may operate an air- qualified to serve as pilot in command craft, carrying passengers for hire, in of the airplane, meets the requirements formation flight. of § 61.195(b), and has logged at least 25 hours of pilot-in-command flight time § 91.113 Right-of-way rules: Except in the make and model of airplane; and water operations. (4) The pilot in command and the in- (a) Inapplicability. This section does structor have determined the flight can not apply to the operation of an air- be conducted safely. craft on water. (c) No person may operate a civil air- (b) General. When weather conditions craft in simulated instrument flight permit, regardless of whether an oper- unless— ation is conducted under instrument (1) The other control seat is occupied flight rules or visual flight rules, vigi- by a safety pilot who possesses at least lance shall be maintained by each per- a private pilot certificate with cat- son operating an aircraft so as to see egory and class ratings appropriate to and avoid other aircraft. When a rule of the aircraft being flown. this section gives another aircraft the (2) The safety pilot has adequate vi- right-of-way, the pilot shall give way sion forward and to each side of the to that aircraft and may not pass over, aircraft, or a competent observer in the under, or ahead of it unless well clear. aircraft adequately supplements the vi- (c) In distress. An aircraft in distress sion of the safety pilot; and has the right-of-way over all other air (3) Except in the case of lighter-than- traffic.
    [Show full text]
  • The Airship's Potential for Intertheater and Intratheater Airlift
    ii DISCLAIMER This thesis was produced in the Department of Defense school environment in the interest of academic freedom and the advancement of national defense-related concepts. The views expressed in this publication are those of the author and do not reflect the official policy or position of the Department of Defense or the United States Air Force. iii TABLE OF CONTENTS Chapter Page Logistics Flow During The Gulf War 1 Introduction 1 Strategic lift Phasing 4 Transportation/Support Modes 8 Mobility Studies 16 Summary 19 Conclusion 23 Notes 24 Filling The Gap: The Airship 28 Prologue 28 Introduction 31 The Airship in History 32 Airship Technology 42 Potential Military Roles 53 Conclusion 68 Epilogue 69 Notes 72 Selected Bibliography 77 iv ABSTRACT This paper asserts there exists a dangerous GAP in US strategic intertheater transportation capabilities, propounds a model describing the GAP, and proposes a solution to the problem. Logistics requirements fall into three broad, overlapping categories: Immediate, Mid- Term, and Sustainment requirements. These categories commence and terminate at different times depending on the theater of operations, with Immediate being the most time sensitive and Sustainment the least. They are: 1. Immediate: War materiel needed as soon as combat forces are inserted into a theater of operations in order to enable them to attain a credible defensive posture. 2. Mid-Term: War materiel, which strengthens in-place forces and permits expansion to higher force levels. 3. Sustainment: War materiel needed to maintain combat operations at the desired tempo. US strategic transport systems divide into two categories: airlift and sealift.
    [Show full text]