MS-388: James R. Shock Airship Collection

Total Page:16

File Type:pdf, Size:1020Kb

MS-388: James R. Shock Airship Collection MS-388: James R. Shock Airship Collection Collection Number: MS-388 Title: James R. Shock Airship Collection Dates: 1908-2010 (Bulk 1994-1999) Creator: Shock, James R., 1924-2010 Summary/Abstract: The James R. Shock Airship Collection documents the progression of airships from the early experimental prototypes of the late 19th century to the surveillance blimps used by the United States government today. The collection includes numerous photographs of military and civilian airships, blimps, and barrage balloons, along with detailed descriptions of the photographs. Included is Mr. Shock’s research for the airship books and articles he wrote over the years, magazine articles, newspaper clippings, military and civilian regulations, airship calendars, and slide presentations. Quantity/Physical Description: 18 linear feet Language(s): English, limited German and French Repository: Special Collections and Archives, Paul Laurence Dunbar Library, Wright State University, Dayton, OH 45435-0001, (937) 775-2092 Restrictions on Access: There are no restrictions on accessing material in this collection. Restrictions on Use: Copyright restrictions may apply. Unpublished manuscripts are protected by copyright. Permission to publish, quote or reproduce must be secured from the repository and the copyright holder. Preferred Citation: [Description of item, Date, Box #, Folder #], MS-388, James R. Shock Airship Collection, Special Collections and Archives, University Libraries, Wright State University, Dayton, Ohio. Acquisition: James R. Shock donated the collection to Special Collections and Archives, Wright State University Libraries, in September 2007, with additions received in May 2009, June 2010, and October 2010. Separated Material: Airship books and magazines were removed from the collection, cataloged, and are available for viewing in the Special Collections and Archives Reading Room. MS-388: James R. Shock Airship Collection 1 Other Finding Aid: This finding aid is available on the Special Collections and Archives, Wright State University Libraries website at https://libraries.wright.edu/special/collectionguides/files/ms388.pdf. It is also available in the OhioLINK Finding Aid Repository at http://ead.ohiolink.edu/xtf-ead/. Related Material: MS-204, Charles Lewis Aviation Collection MS 99-1, Harold G. Dick Airship Collection, Wichita State University Libraries Lockheed Martin Collection, University of Akron Archival Services, University Libraries, University of Akron, Akron, Ohio. L. Guy Mecklem Collection, Center for Pacific Northwest Studies, Goltz-Murray Building, Western Washington University, Bellingham, WA. Publication Note: Shock, James R., American Airship Bases & Facilities, Edgewater: Atlantis Productions, 1996 Shock, James R., American Airship Bases and Facilities, Edgewater: Atlantis Productions, 2002 Shock, James R., “British Airship Hangars,” edited by John Provan Shock, James R., The U.S. Army Barrage Balloon Program, Bennington: World War II Historical Society Monograph, 1996 Shock, James R., U.S. Army Airships 1908-1942, Edgewater: Atlantis Productions, 2002 Shock, James R., U.S. Navy Airships 1915-1962: A History By Individual Airship, Edgewater: Atlantis Productions, 2001 Shock, James R., U.S. Navy Airships, Edgewater: Atlantis Productions, 2008 Shock, James R., and Smith, David R., Goodyear Airships, Bloomington: Airship International Press, 2002 Processing Information: All of the articles in the collection were organized into six volumes (26-32) where each individual article was assigned a specific number. Unfortunately, the organization did not fit any conventional pattern. The articles in this collection were rearranged on the series level, by topic, and on the folder level, in alphabetical order by title. Processed by: Finding aid written according to DACS standards by Veronica Buchanan, Winter 2009. Additions processed by Ed O’Shaughnessy, August 2017. Rearranged and finding aid updated by John Armstrong, February 2019. Arrangement: The collection is arranged into five series and eight subseries. Series I: Publications, Correspondence and Research, 1934-2006 Series II: Airships, General, 1916-2007 Series III: Airships, Military, 1908-2007 Subseries IIIA: American, 1920-2005 Subseries IIIB: British, French, and Russian, 1908-2007 Subseries IIIC: Manuals, Barrage Balloons and Personnel, 1918-2006 Series IV: Airships, Commercial and Hot Air Balloons, 1909-2006 MS-388: James R. Shock Airship Collection 2 Subseries IVA: Goodyear, 1911-2006 Subseries IVB: Other Commercial Airships, 1909-2005 Series V: Publications and Airship Societies, 1918-2007 Subseries VA: Books and Articles, 1918-2006 Subseries VB: Airship Societies and Associations, 1952-2005 Subseries VC: Calendars, 1976-2007 Biographical/Historical Note According to his personal biographical note, James R. Shock “has been studying, researching, and collecting information on airships virtually all his life.” Born in Sandusky, Ohio, Shock witnessed dozens of airships flying overhead all throughout his childhood. Shock served in the U.S. Army during World War II. Following the war, Shock became a manager of engineering facilities with General Motors, retiring in 1989 after thirty-nine years with the company. Following his retirement from GM, he wrote five books and a plethora of articles on airships, airship facilities, and the U.S. Army Barrage Balloon Program, some of which are included in the collection. Shock personally donated six volumes of his research collection, along with seventeen volumes of Foundation Magazine and copies of his books and monographs. Mr. Shock passed away in 2010. Scope and Content The James R. Shock Airship Collection documents the progression of airships from the early experimental prototypes of the late nineteenth century to the surveillance blimps used by the United States government after September 11, 2001. Much of the collection centers around the United States Navy LTA program in World War II and the ships built by Goodyear for the Navy in the late 1920s, including the USS Akron and the USS Macon. Since Shock has written a book devoted entirely to Goodyear airships, the Goodyear Tire and Rubber Company and both their wartime and commercial efforts constitute a large portion of the commercial series on airships. Series I, Publications, Correspondence and Research (1934-2006), contains draft material and research for several of Mr. Shock’s books, along with personal correspondence to a number of people discussing airship issues. There is an extensive section containing the summary of Lighter-Than-Air (LTA) items in the collection, as well as a summary of magazine and newspaper articles in the collection relating to airships. Of particular note is Herman Van Dyk’s airship drawings and substantial number of folders containing photographs of military airships. Finally, this series contains a list of items that were donated to the Lighter-Than-Air Society and the Akron Airship Historical Society. Series II, Airships, General (1916-2007), contains general information about airships, both in the United States and overseas. Of particular note, this series contains large sections of photographs, including detailed descriptions of each photograph, of United States airship hangars and bases, non-rigid airship support equipment, and mooring masts and towers for rigid airships. Includes in this series is Mr. Shock’s research on handing rigid airships on the ground, the development of mooring and handling devices for airships, and training material for personnel responsible for maintaining airship hangars, landing fields, and mooring devices. The series concludes with material on German hangars and bases, research of other American airship builders, besides the MS-388: James R. Shock Airship Collection 3 U.S. military and Goodyear Tire and Rubber, and contacts with the National Air and Space Museum and the National Archives. Series III, Airships, Military (1908-2007), is divided into three subseries. Subseries IIIA, American (1920-2005), contains extensive material on U. S. Army and U. S. Navy efforts to develop airships, along with support equipment and bases. The subseries begins with a large section containing photographs of US Army airships, along with photographs of US Army airship hangars and bases. The photographs are described as “Books” and include detailed descriptions of the photographs at the beginning of each book. Supporting the photographs is extensive research containing Army Air Corps Manuals, reports on different airship designs, and list of personnel, including airship pilots. The subseries concludes with extensive research and photographs concerning US Navy efforts to develop airships for use at sea. There are extensive lists of naval airship pilots, photographs of US Navy non-rigid airship hangars and bases, and research into the use of airships by the Navy. Subseries IIIB, British, French, and Russian (1908-2007), contains primarily material concerning British efforts to develop airships and airship bases during WWI. The subseries contains extensive files on British airship bases, by location, during WWI. The subseries contains limited material on the efforts of the French and Russians to develop airships for use by their military. Subseries IIIC, Manuals, Barrage Balloons, and Personnel (1918-2006), begins with photographs of barrage used during WWI and WWII. However, the strength of this subseries is the large number of technical manuals, training manuals, and regulations concerning the airship, observation
Recommended publications
  • MS – 204 Charles Lewis Aviation Collection
    MS – 204 Charles Lewis Aviation Collection Wright State University Special Collections and Archives Container Listing Sub-collection A: Airplanes Series 1: Evolution of the Airplane Box File Description 1 1 Evolution of Aeroplane I 2 Evolution of Aeroplane II 3 Evolution of Aeroplane III 4 Evolution of Aeroplane IV 5 Evolution of Aeroplane V 6 Evolution of Aeroplane VI 7 Evolution of Aeroplane VII 8 Missing Series 2: Pre-1914 Airplanes Sub-series 1: Drawings 9 Aeroplanes 10 The Aerial Postman – Auckland, New Zealand 11 Aeroplane and Storm 12 Airliner of the Future Sub-series 2: Planes and Pilots 13 Wright Aeroplane at LeMans 14 Wright Aeroplane at Rheims 15 Wilbur Wright at the Controls 16 Wright Aeroplane in Flight 17 Missing 18 Farman Airplane 19 Farman Airplane 20 Antoinette Aeroplane 21 Bleriot and His Monoplane 22 Bleriot Crossing the Channel 23 Bleriot Airplane 24 Cody, Deperdussin, and Hanriot Planes 25 Valentine’s Aeroplane 26 Missing 27 Valentine and His Aeroplane 28 Valentine and His Aeroplane 29 Caudron Biplane 30 BE Biplane 31 Latham Monoplane at Sangette Series 3: World War I Sub-series 1: Aerial Combat (Drawings) Box File Description 1 31a Moraine-Saulnier 31b 94th Aero Squadron – Nieuport 28 – 2nd Lt. Alan F. Winslow 31c Fraser Pigeon 31d Nieuports – Various Models – Probably at Issoudoun, France – Training 31e 94th Aero Squadron – Nieuport – Lt. Douglas Campbell 31f Nieuport 27 - Servicing 31g Nieuport 17 After Hit by Anti-Aircraft 31h 95th Aero Squadron – Nieuport 28 – Raoul Lufbery 32 Duel in the Air 33 Allied Aircraft
    [Show full text]
  • Lighter-Than-Air Vehicles for Civilian and Military Applications
    Lighter-than-Air Vehicles for Civilian and Military Applications From the world leaders in the manufacture of aerostats, airships, air cell structures, gas balloons & tethered balloons Aerostats Parachute Training Balloons Airships Nose Docking and PARACHUTE TRAINING BALLOONS Mooring Mast System The airborne Parachute Training Balloon system (PTB) is used to give preliminary training in static line parachute jumping. For this purpose, an Instructor and a number of trainees are carried to the operational height in a balloon car, the winch is stopped, and when certain conditions are satisfied, the trainees are dispatched and make their parachute descent from the balloon car. GA-22 Airship Fully Autonomous AIRSHIPS An airship or dirigible is a type of aerostat or “lighter-than-air aircraft” that can be steered and propelled through the air using rudders and propellers or other thrust mechanisms. Unlike aerodynamic aircraft such as fixed-wing aircraft and helicopters, which produce lift by moving a wing through the air, aerostatic aircraft, and unlike hot air balloons, stay aloft by filling a large cavity with a AEROSTATS lifting gas. The main types of airship are non rigid (blimps), semi-rigid and rigid. Non rigid Aerostats are a cost effective and efficient way to raise a payload to a required altitude. airships use a pressure level in excess of the surrounding air pressure to retain Also known as a blimp or kite aerostat, aerostats have been in use since the early 19th century their shape during flight. Unlike the rigid design, the non-rigid airship’s gas for a variety of observation purposes.
    [Show full text]
  • 2020 Annual Report
    2020 ANNUAL REPORT THE GOODYEAR TIRE & RUBBER COMPANY Goodyear is one of the world’s leading tire companies, with one of the most recognizable brand names. It develops, manufactures, markets and distributes tires for most applications and manufactures and markets rubber-related chemicals for various uses. The company also has established itself as a leader in providing services, tools, analytics and products for evolving modes of transportation, including electric vehicles, autonomous vehicles and fleets of shared and connected consumer vehicles. Goodyear was the first major tire manufacturer to offer direct-to-consumer tire sales on-line and offers a proprietary service and maintenance platform for fleets of shared passenger vehicles. Within its global retail presence, Goodyear operates approximately 1,000 company-owned outlets around the world where it offers its products for sale to consumer and commercial customers and provides repair and other services. It is one of the world’s largest operators of commercial truck service and tire retreading centers and offers a leading service and maintenance platform for commercial fleets. Goodyear is annually recognized as a top place to work and is guided by its corporate responsibility framework, Goodyear Better Future, which articulates the company’s commitment to sustainability. The company manufactures its products in 46 facilities in 21 countries and has operations in most regions of the world. Its two Innovation Centers in Akron, Ohio, and Colmar-Berg, Luxembourg, strive to develop state-of-the-art products and services that set the technology and performance standard for the industry. THE GOODYEAR TIRE & RUBBER COMPANY 200 Innovation Way Akron, Ohio 44316-0001 www.goodyear.com ON THE COVER Top: In 2020, Goodyear became the first tire manufacturer to install a dynamic driving simulator.
    [Show full text]
  • Hindenburg: Last of The1 2 Gtaihi
    www.PDHcenter.com www.PDHonline.org Table of Contents Slide/s Part Description 1N/ATitle 2 N/A Table of Contents 3~96 1 Exceeding the Grasp 97~184 2 Biggest Birds That Ever Flew 185~281 3 Triumph and Tragedy 282~354 4 Made in America 355~444 5 The Future is Now 445~541 6 LZ-129 542~594 7 Flight Operations 595~646 8 Magic Carpet Ride 647~759 9 Oh, The Humanity! 760~800 10 Back to the Future Hindenburg: Last of the1 2 GtAihi Part 1 “Ah, but a man’s reach should exceed his grasp, or what’s a heaven for?”for? Robert Browning, Poet Exceeding the Grasp 3 4 “...as by certain mechanical art and power to fly; The Dreams of Inventors so nicely was it balanced by weights and put in motion by hidden and enclosed air” Archytas of Tarentura, 400 B.C. 5 6 © J.M. Syken 1 www.PDHcenter.com www.PDHonline.org “…Then we are told of a monk who attempted a flight with wings from the top of a tower in Spain. He broke his legs, and wasafterwardburnedasasorcerer. Another similar trial was made from St. Mark’s steeple in Venice; another in Nuremberg;andsoonԝ - legs or arms were usually broken, occasionally a neck. In the sixteenth century we read of a certain Italian who went to the court of James IV of Scotland, and attempted to fly from the walls of Sterling Castle to France. His thig h was bkbroken; btbut,asareasonfor the failure, he asserted that some of the feathers used in constructing his wings “…Many other trials have there been of the same character.
    [Show full text]
  • Meeting Minutes
    City of Miami City Hall 3500 Pan American Drive Miami, FL 33133 www.miamigov.com Meeting Minutes Friday, September 4, 2009 10:00 AM SPECIAL MEETING City Hall Commission Chambers City Commission Manuel A. Diaz, Mayor Joe Sanchez, Chair Michelle Spence-Jones, Vice-Chair Angel González, Commissioner District One Marc David Sarnoff, Commissioner District Two Tomas Regalado, Commissioner District Four Pedro G. Hernandez, City Manager Julie O Bru, City Attorney Priscilla A. Thompson, City Clerk City Commission Meeting Minutes September 4, 2009 10:00 A.M. INVOCATION AND PLEDGE OF ALLEGIANCE Present: Commissioner González, Commissioner Sarnoff, Chair Sanchez, Commissioner Regalado and Vice Chair Spence-Jones On the 4th day of September 2009, the City Commission of the City of Miami, Florida, met at its regular meeting place in City Hall, 3500 Pan American Drive, Miami, Florida, in special session. The meeting was called to order by Chair Sanchez at 10:38 a.m., recessed at 1:11 p.m., reconvened at 2:24 p.m., and adjourned at 6:18 p.m. Note for the Record: Commissioner Gonzalez entered the Commission chambers at 10:46 a.m. Note for the Record: Vice Chair Spence-Jones entered the Commission chambers at 2:37 p.m. ALSO PRESENT: Pedro G. Hernandez, City Manager Julie O. Bru, City Attorney Priscilla A. Thompson, City Clerk Order of the Day SP.1 06-02095 ORDINANCE First Reading AN ORDINANCE OF THE MIAMI CITY COMMISSION, WITH ATTACHMENT(S), AMENDING THE CODE OF ORDINANCES OF THE CITY OF MIAMI TO ADOPT A NEW ZONING CODE TO BE KNOWN AS THE "MIAMI 21 CODE", INCLUDING DEFINITIONS, GENERAL PROVISIONS WHICH ALSO INCLUDE THE ADOPTION OF THE MIAMI 21 ATLAS FOR THE ENTIRE CITY OF MIAMI, REGULATIONS GENERAL TO ZONES, STANDARDS AND TABLES, REGULATIONS SPECIFIC TO ZONES, SUPPLEMENTAL REGULATIONS, PROCEDURES AND NONCONFORMITIES, AND THOROUGHFARE GUIDELINES; REPEALING ORDINANCE NO.
    [Show full text]
  • Media Contact: Abby Mayo [email protected] | 617.488.2803
    Media Contact: Abby Mayo [email protected] | 617.488.2803 FOR IMMEDIATE RELEASE Hanover Hanover residents Mike and Mary Lawlor fly in the Goodyear Blimp as Sullivan Tire and Auto Service contest winners. Sullivan Tire and Auto Service took to the skies to celebrate 64 years of business as they offered guests a ride on a Goodyear Blimp. On September 18th and 19th, Goodyear’s Wingfoot Two flew over Plymouth Harbor carrying lucky Sullivan Tire contest winners. Sullivan Tire, who has been a Goodyear Tire dealer for more than 40 years, is also offering a Goodyear sale through the end of September. “As a partner of Goodyear for over 40 years, we are thrilled to be celebrating our anniversary on the Goodyear Blimp above Plymouth Harbor and to bring along some of our customers who have been with us over these 64 years,” said Paul Sullivan, Vice President of Marketing for Sullivan Tire. Wingfoot Two, a Zeppelin NT model blimp, can carry 14 passengers and is the only airship in Goodyear’s fleet that has been stationed at all three of the company’s U.S. bases. It had made four cross-country transits between Ohio and California, and has appeared at the NBA Finals, the Oscars, the College Football Playoffs, numerous PGA Tour events, and the Rose Parade. About Sullivan Tire and Auto Service: Headquartered in Norwell, MA, Sullivan Tire and Auto Service is New England's home for automotive and commercial truck care with 73 retail locations; 15 commercial truck centers; 13 wholesale, 3 tire retread, and 2 LiftWorks facilities; and 2 distribution centers.
    [Show full text]
  • 197604-1910 Zeppelin Airships.Pdf
    An early flight of LZ-7, the first Deutschland. before the name was painted on. This first commercial zeppelin had a short, nine-day life. Open cars or gondolas were for the crew, and the enclosed passenger cabin was amidships. '8sterdaJ's WingS Early ZEPPELIN Cruises dodo The first flight from that city, by PETER M. BOWERS / AOPA 54408 on June 28, was a press flight with 23 •• From 1910 until the outbreak of invited aboard for what was planned to World War I, German zeppelins were be a representative three-hour pleasure the only consistently successful, com• flight, complete with an in-flight cham• mercial passenger-carrying aircraft in pagne breakfast. the world. While there were no sched• Unforeseen troubles developed, how• uled airline operations, regular sight• ever. Because of poor planning, Deutsch• seeing and other pleasure flights were land got caught a long way downwind set up by an organization that owned of its base and encountered a violent and operated zeppelins commercially. storm because no one had checked the This was DELAG, an acronym for the weather in that area. Finally, it lost one German name of the German Airship of its engines. The short pleasure flight Transportation Co., founded in Novem• had turned into a nine-hour ordeal that ber 1909. ended with a crash landing in the trees In June 1910, DELAG acquired its of the Teutobura Forest. There was no first zeppelin, appropriately named fire, fortunately, and only one minor ,. Deutschland. This ship was also known injury. Nevertheless, Deutschland was by its factory number, LZ-7, that indi• a total loss.
    [Show full text]
  • Prusaprinters
    LZ-129 Hindenburg - scale 1/1000 vandragon_de VIEW IN BROWSER updated 14. 2. 2019 | published 14. 2. 2019 Summary famous Air Ship In my model series in 1:1000, the largest airship should not be missing. History: LZ 129 Hindenburg was a large German commercial passenger-carrying rigid airship, the lead ship of the Hindenburg class, the longest class of flying machine and the largest airship by envelope volume. It was designed and built by the Zeppelin Company (Luftschiffbau Zeppelin GmbH) on the shores of Lake Constance in Friedrichshafen and was operated by the German Zeppelin Airline Company .The airship flew from March, 1936 until it was destroyed by fire 14 months later on May 6, 1937 while attempting to land at Lakehurst Naval Air Station in Manchester Township, New Jersey at the end of the first North American transatlantic journey of its second season of service with the loss of 36 lives. This was the last of the great airship disasters; it was preceded by the crashes of the British R38 in 1921 (44 dead), the US airship Roma in 1922 (34 dead), the French Dixmude in 1923 (52 dead), the British R101 in 1930 (48 dead), and the US Akron in 1933 (73 dead). (Source Wikipedia) f k h d 7 hrs 6 pcs 0.15 mm 0.40 mm PLA 70 g MK3/S Toys & Games > Vehicles airship famous friedrichshafen hindenburg lakehurst lz129 model scale zeppelin luftship large However, it should even reach 4-5% infill The assembly is quite simple. You should only pay attention to the exact course of the lines.
    [Show full text]
  • Goodyear – Civilian Blimps
    Goodyear – civilian blimps Peter Lobner, 24 August 2021 1. Introduction Goodyear Tire & Rubber Company began their involvement with lighter-than-air (LTA) vehicles in 1912, when the company developed a fabric envelope suitable for use in airships and aerostats. The first blimps manufactured by the Goodyear Tire & Rubber Company were B-Type blimps ordered by the US Navy in 1917 for convoy escort duty. Goodyear (envelope supplier) and Curtiss Aeroplane (gondola supplier) produced 9 of the 17 B-Type blimps ordered. Goodyear also supplied the envelopes for some of the Navy’s 10 C-Type patrol blimps, which were delivered in 1918, after the end of WW I. Both the B- and C-Type blimps used hydrogen as the lift gas. In 1923, Goodyear teamed with German firm Luftschiffbau Zeppelin and created a new subsidiary, Goodyear Zeppelin Corporation. In June 1925, their Type AD Pilgrim (NC-9A) made its first flight and became Goodyear’s first blimp to use helium lift gas. Pilgrim was certified later in 1925, becoming the first US commercial airship. Goodyear Zeppelin Corporation filed a patent application for a nonrigid airship in September 1929, describing the objectives of their invention as follows: “This invention relates to non-rigid airships, and it has particular relation to the suspension of pilot cars or gondolas from the envelopes of non-rigid airships. The principal object of the invention is to provide a non-rigid airship in which the envelope and the pilot car or engine car are so constructed as to offer the minimum air resistance. Another object of the invention is to provide connections between the envelope and pilot car that are not exposed to the airstream for sustaining the weight of the pilot car, as well as stabilizing it against lateral or longitudinal movement.” 1 In patent Figure 1, the pressurized lift gas envelope (10) contains an air ballonet (12, for adjusting airship buoyancy) and a load suspension system for carrying and distributing the weight of the gondola (11) affixed under the envelope and the thrust loads from the with attached engines.
    [Show full text]
  • Airship Hangars in Canada
    FWS Group Building Large Airship Hangars in Canada Engineering Considerations FWS Group History of Hangar Structures • In 1909, a French airplane pilot crash landed and rolled into a farmer’s cattle pen • He decided to set up shop in this unused shed, later ordering a number of these sheds for further use • The word hangar comes from a northern French dialect, and means "cattle pen" Zeppelin ZR3 approaching Hangar (Naval Air Station, Lakehurst, N.J) FWS Group History of Hangar Structures • A limited number of the over 100 airship hangars built in 19 countries survive today and documentation related to their construction is scarce • With the reinvention of the airship, the hangar needs to follow suit • Borrowing cues from the past and taking advantage of contemporary design and construction techniques FWS Group History of Hangar Structures • One of the first zeppelin sheds in Germany (1909) was a 600 ft x 150 ft x 66 ft steel-lattice structure with light cladding • 1920s saw the construction of parabolic reinforced concrete hangars • Designed by the pioneer of prestressed concrete, Eugene Freyssinet Construction of Former Hangar at Former Hangar at Orly, France Orly, France FWS Group Airship Hangars • “Hangar One” in California is a famous North American hangar that survives today • Over 1000 ft long and 308 ft wide Hangar One , NASA Ames Research Center USS Macon inside “Hangar One” circa 1933 Moffett Field, California FWS Group Airship Hangars • Another famous group of hangars in California are at Tustin • Over 1000 ft long, 300 ft wide and 178 ft high • All-wood design… war time rationing.
    [Show full text]
  • Airborne Arctic Weather Ships Is Almost Certain to Be Controversial
    J. Gordon Vaeth airborne Arctic National Weather Satellite Center U. S. Weather Bureau weather ships Washington, D. C. Historical background In the mid-1920's Norway's Fridtjof Nansen organized an international association called Aeroarctic. As its name implies, its purpose was the scientific exploration of the north polar regions by aircraft, particularly by airship. When Nansen died in 1930 Dr. Hugo Eckener of Luftschiffbau-Zeppelin Company suc- ceeded him to the Aeroarctic presidency. He placed his airship, the Graf Zeppelin, at the disposal of the organization and the following year carried out a three-day flight over and along the shores of the Arctic Ocean. The roster of scientists who made this 1931 flight, which originated in Leningrad, in- cluded meteorologists and geographers from the United States, the Soviet Union, Sweden, and, of course, Germany. One of them was Professor Moltschanoff who would launch three of his early radiosondes from the dirigible before the expedition was over. During a trip which was completed without incident and which included a water land- ing off Franz Josef Land to rendezvous with the Soviet icebreaker Malygin, considerable new information on Arctic weather and geography was obtained. Means for Arctic More than thirty years have since elapsed. Overflight of Arctic waters is no longer his- weather observations toric or even newsworthy. Yet weather in the Polar Basin remains fragmentarily ob- served, known, and understood. To remedy this situation, the following are being actively proposed for widespread Arctic use: Automatic observing and reporting stations, similar to the isotopic-powered U. S. Weather Bureau station located in the Canadian Arctic.
    [Show full text]
  • Keck Study Airships; a New Horizon for Science”
    Keck Study Airships; A New Horizon for Science” Scott Hoffman Northrop Grumman Aerospace Systems May 1, 2013 Military Aircraft Systems (MAS) Melbourne FL 321-951-5930 Does not Contrail ITAR Controlled Data Airship “Lighter than Air” Definition Airplanes are heavier than air and fly because of the aerodynamic force generated by the flow of air over the lifting surfaces. Balloons and airships are lighter-than-air (LTA), and fly because they are buoyant, which is to say that the total weight of the aircraft is less than the weight of the air it displaces.1 The Greek philosopher Archimedes (287 BC – 212 B.C.) first established the basic principle of buoyancy. While the principles of aerodynamics do have some application to balloons and airships, LTA craft operate principally as a result of aerostatic principles relating to the pressure, temperature and volume of gases. A balloon is an unpowered aerostat, or LTA craft. An airship is a powered LTA craft able to maneuver against the wind. 1 NASA Web site U.S. Centennial of Flight Commission http://www.centennialofflight.gov/index2.cfm Does not Contain ITAR Controlled Data Atmospheric Airship Terminology • Dirigible – Lighter-than-air, Engine Driven, Steerable Craft • Airship –Typically any Type of Dirigible – Rigid –Hindenburg, USS Macon, USS Akron USS Macon 700 ft X 250 ft – Semi-Rigid – Has a Keel for Carriage and Engines • NT-07 Zeppelin Rigid – Non-Rigid – Undercarriage and Engines Support by the Hull • Cylindrical Class-C – “Blimp” – Goodyear, Navy AZ-3, Met Life Blimp, Blue Devil Simi-Rigid
    [Show full text]