Other Mammals Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Other Mammals Table of Contents OTHER MAMMALS D-1 Armadillos Donald W. Hawthorne D-5 Bats Arthur M. Greenhall and Stephen C. Frantz D-25 Deer Scott R. Craven and Scott E. Hygnstrom D-41 Elk David S. deCalesta and Gary W. Witmer D-51 Moles F. Robert Henderson D-59 Opossums Jeffrey J. Jackson D-65 Pigs, Wild Reginald H. Barrett D-71 Pronghorn Antelope Sanford D. Schemnitz D-75 Rabbits, Cottontail Scott R. Craven D-81 Jackrabbits James E. Knight D-87 Shrews Robert H. Schmidt Donald W. Hawthorne Associate Deputy Administrator USDA-APHIS- ARMADILLOS Animal Damage Control Washington, DC 20090-6464 Fig. 1. Armadillo, Dasypus novemcinctus Identification Damage Prevention and Fumigants The armadillo (Dasypus novemcinctus) is Control Methods None are registered. a rather interesting and unusual animal Exclusion Trapping that has a protective armor of “horny” material on its head, body, and tail. Fences or barriers are generally not Live traps (box traps). This bony armor has nine movable practical, but a possible option. Leghold traps (size No. 1 or 2). rings between the shoulder and hip Cultural Methods shield. The head is small with a long, Conibear® 220. narrow, piglike snout. Canine and inci- Clear brush and other cover to reduce Shooting sor teeth are absent. The peglike cheek habitat. One of the most commonly used teeth range in number from seven to Repellents methods. nine on each side of the upper and lower jaw. The long tapering tail is en- None are registered. Other Methods cased in 12 bony rings. The track usu- Toxicants Soil insecticides that remove food ally appears to be three-toed and shows sharp claw marks. The arma- None are registered. sources will discourage armadillos from feeding in an area. dillo is about the size of an opossum, weighing from 8 to 17 pounds (3.5 to 8 kg). PREVENTION AND CONTROL OF WILDLIFE DAMAGE — 1994 Cooperative Extension Division Institute of Agriculture and Natural Resources University of Nebraska - Lincoln United States Department of Agriculture Animal and Plant Health Inspection Service Animal Damage Control D-1 Great Plains Agricultural Council Wildlife Committee Range General Biology, There is evidence that armadillos may Reproduction, and be responsible for the loss of domestic The armadillo ranges from south Texas poultry eggs. This loss can be pre- to the southeastern tip of New Mexico, Behavior vented through proper housing or through Oklahoma, the southeastern fencing of nesting birds. corner of Kansas and the southwestern The armadillo is active primarily from corner of Missouri, most of Arkansas, twilight through early morning hours Disease is a factor associated with this and southwestern Mississippi. The in the summer. In winter it may be species. Armadillos can be infected by range also includes southern Alabama, active only during the day. The arma- the bacterium Mycobacterium leprae, the Georgia, and most of Florida (Fig. 2). dillo usually digs a burrow 7 or 8 causative agent of leprosy. The role inches (18 or 20 cm) in diameter and up that armadillos have in human infec- to 15 feet (4.5 m) in length for shelter tion, however, has not yet been deter- and raising young. Burrows are located mined. They may pose a potential risk in rock piles, around stumps, brush for humans, particularly in the Gulf piles, or terraces around brush or dense Coast region. woodlands. Armadillos often have sev- eral dens in an area to use for escape. Legal Status The young are born in a nest within the Armadillos are unprotected in most burrow. The female produces only one states. litter each year in March or April after a 150-day gestation period. The litter always consists of quadruplets of the Damage Prevention and same sex. The young are identical since Control Methods they are derived from a single egg. Exclusion The armadillo has poor eyesight, but a keen sense of smell. In spite of its cum- Armadillos have the ability to climb Fig. 2. Range of the armadillo in North bersome appearance, the agile arma- and burrow. Fencing or barriers, how- America. dillo can run well when in danger. It is ever, may exclude armadillos under Habitat a good swimmer and is also able to certain conditions. A fence slanted out- walk across the bottom of small ward at a 40o angle, with a portion bur- The armadillo prefers dense, shady streams. ied, can be effective. The cost of cover such as brush, woodlands, for- exclusion should be compared to other ests, and areas adjacent to creeks and Damage and Damage forms of control and the value of the re- rivers. Soil texture is also a factor in the Identification sources being protected. animal’s habitat selection. It prefers Cultural Methods sandy or loam soils that are loose and Most armadillo damage occurs as a porous. The armadillo will also inhabit Armadillos prefer to have their bur- result of their rooting in lawns, golf areas having cracks, crevices, and rocks rows in areas that have cover, so the re- courses, vegetable gardens, and flower that are suitable for burrows. moval of brush or other such cover will beds. Characteristic signs of armadillo discourage them from becoming estab- activity are shallow holes, 1 to 3 inches lished. Food Habits (2.5 to 7.6 cm) deep and 3 to 5 inches (7.6 to 12.7 cm) wide, which are dug in Repellents More than 90% of the armadillo’s diet search of food. They also uproot flow- is made up of insects and their larvae. None are currently registered or ers and other ornamental plants. Some Armadillos also feed on earthworms, known to be effective. damage has been caused by their bur- scorpions, spiders, and other inverte- rowing under foundations, driveways, Toxicants brates. There is evidence that the spe- and other structures. Some people cies will eat some fruit and vegetable None are currently registered. complain that armadillos keep them matter such as berries and tender roots awake at night by rubbing their shells Fumigants in leaf mold, as well as maggots and against their houses or other structures. pupae in carrion. Vertebrates are eaten None are currently registered; how- to a lesser extent, including skinks, liz- ever, there are some that are effective. ards, small frogs, and snakes, as well as Since state pesticide registrations vary, the eggs of these animals. check with your local extension office D-2 or state wildlife agency for information on pesticides that are legal in your area. Trapping Armadillos can be captured in 10 x 12 x 32-inch (25 x 30.5 x 81-cm) live or box traps, such as Havahart, Tomahawk, or homemade types. The best locations to set traps are along pathways to armadillo burrows and along fences or other barriers where the animals may travel. The best trap is the type that can be opened at both ends. Its effectiveness can be enhanced by using “wings” of 1 x 4-inch (2.5 x 10-cm) or 1 x 6-inch (2.5 x 15-cm) boards about 6 feet (1.8 m) long to funnel the target animal into the trap (Fig. 3). This set does not need Fig. 3. Cage traps for armadillos are more effec- baiting. If bait is desired, use overripe tive when “wings” are added to direct the ar- madillo into the trap. or spoiled fruit. Other suggested baits are fetid meats or mealworms. Other traps that may be used are leghold (No. 1 or 2) or size 220 Conibear® traps. These types should Other Methods For Additional be placed at the entrance of a burrow to Since most of the damage armadillos Information improve selectivity. Care should be cause is a result of their rooting for in- taken when placing leghold traps to sects and other invertebrates in the soil, Burt, W. H., and R. P. Grossenheider. 1976. A avoid areas used by nontarget animals. soil insecticides may be used to remove field guide to the mammals, 3d ed. Houghton Mifflin Co., Boston. 289 pp. Shooting this food source and make areas less at- tractive to armadillos. Chamberlain, P. A. 1980. Armadillos: problems Shooting is an effective and selective and control. Proc. Vertebr. Pest Conf. 9:163- method. The best time to shoot is dur- Economics of Damage 169. ing twilight hours or at night by spot- Galbreath, G. J. 1982. Armadillo. Pages 71-79 in light when armadillos are active. A and Control J. A. Chapman and G. A. Feldhamer, eds. Wild mammals of North America: biology, shotgun (No. 4 to BB-size shot) or rifle There are few studies available on the (.22 or other small caliber) can be used. management and economics. The Johns damage caused by armadillos. The Hopkins Univ. Press, Baltimore. Good judgment must be used in deter- damage they do is localized and is usu- mining where it is safe to shoot. Check Humphrey, S. R. 1974. Zoogeography of the ally more of a nuisance than an eco- nine-banded armadillo (Dasypus local laws and ordinances before using nomic loss. novemcinctus) in the United States. BioSc. shooting as a control method. 24:457-462. Acknowledgments McBee, K., and R. J. Baker. 1982. Dasypus novemcinctus. Mammal. Sp. 162:1-9. Figure 1 from Schwartz and Schwartz (1981), adapted by Emily Oseas Routman. Figure 2 adapted from Burt and Grossenheider Editors (1976) by Jill Sack Johnson. Scott E. Hygnstrom Robert M. Timm Figure 3 by Jill Sack Johnson. Gary E. Larson D-3 D-4 Arthur M. Greenhall Research Associate Department of Mammalogy BATS American Museum of Natural History New York, New York 10024 Stephen C. Frantz Vertebrate Vector Specialist Wadsworth Center for Laboratories and Research New York State Department of Health Albany, New York 12201-0509 Fig.
Recommended publications
  • Mammals of the California Desert
    MAMMALS OF THE CALIFORNIA DESERT William F. Laudenslayer, Jr. Karen Boyer Buckingham Theodore A. Rado INTRODUCTION I ,+! The desert lands of southern California (Figure 1) support a rich variety of wildlife, of which mammals comprise an important element. Of the 19 living orders of mammals known in the world i- *- loday, nine are represented in the California desert15. Ninety-seven mammal species are known to t ':i he in this area. The southwestern United States has a larger number of mammal subspecies than my other continental area of comparable size (Hall 1981). This high degree of subspeciation, which f I;, ; leads to the development of new species, seems to be due to the great variation in topography, , , elevation, temperature, soils, and isolation caused by natural barriers. The order Rodentia may be k., 2:' , considered the most successful of the mammalian taxa in the desert; it is represented by 48 species Lc - occupying a wide variety of habitats. Bats comprise the second largest contingent of species. Of the 97 mammal species, 48 are found throughout the desert; the remaining 49 occur peripherally, with many restricted to the bordering mountain ranges or the Colorado River Valley. Four of the 97 I ?$ are non-native, having been introduced into the California desert. These are the Virginia opossum, ' >% Rocky Mountain mule deer, horse, and burro. Table 1 lists the desert mammals and their range 1 ;>?-axurrence as well as their current status of endangerment as determined by the U.S. fish and $' Wildlife Service (USWS 1989, 1990) and the California Department of Fish and Game (Calif.
    [Show full text]
  • Conservation of Endangered Buena Vista Lake Shrews
    CONSERVATION OF ENDANGERED BUENA VISTA LAKE SHREWS (SOREX ORNATUS RELICTUS) THROUGH INVESTIGATION OF TAXONOMIC STATUS, DISTRIBUTION, AND USE OF NON-INVASIVE SURVEY METHODS Prepared by: Brian Cypher1, Erin Tennant2, Jesus Maldonado3, Larry Saslaw1, Tory Westall1, Jacklyn Mohay2, Erica Kelly1, and Christine Van Horn Job1 1California State University, Stanislaus Endangered Species Recovery Program 2California Department of Fish and Wildlife Region 4 3Smithsonian Conservation Biology Institute National Zoological Park June 16, 2017 Buena Vista Lake Shrew Conservation CONSERVATION OF ENDANGERED BUENA VISTA LAKE SHREWS (SOREX ORNATUS RELICTUS) THROUGH INVESTIGATION OF TAXONOMIC STATUS, DISTRIBUTION, AND USE OF NON-INVASIVE SURVEY METHODS Prepared by: Brian Cypher, Erin Tennant, Jesus Maldonado, Lawrence Saslaw, Tory Westall, Jacklyn Mohay, Erica Kelly, and Christine Van Horn Job California State University-Stanislaus, Endangered Species Recovery Program California Department of Fish and Wildlife, Region 4 Smithsonian Conservation Biology Institute, National Zoological Park CONTENTS Acknowledgments ......................................................................................................................................... ii Introduction ................................................................................................................................................... 1 Methods .........................................................................................................................................................
    [Show full text]
  • Pacific Water Shrew Sorex Bendirii
    COSEWIC Assessment and Update Status Report on the Pacific Water Shrew Sorex bendirii in Canada ENDANGERED 2006 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION ENDANGERED WILDLIFE DES ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC 2006. COSEWIC assessment and update status report on the Pacific watershrew Sorex bendirii in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 28 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report: Galindo-Leal, C. and J.B. Runciman. 1994. COSEWIC status report on the Pacific water shrew Sorex bendirii in Canada. Committee on the Status of Endangered Wildlife in Canada. 1-33 pp. Production note: COSEWIC would like to acknowledge David Nagorsen for writing the update status report on the Pacific water shrew Sorex bendirii, prepared under contract with Environment Canada, and overseen and edited by Mark Brigham, Co-chair (Terrestrial Mammals), COSEWIC Terrestrial Mammals Species Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Évaluation et Rapport de situation du COSEPAC sur la musaraigne de Bendire (Sorex bendirii) au Canada – Mise à jour. Cover illustration: Pacific water shrew – by Ron Altig. ©Her Majesty the Queen in Right of Canada 2006 Catalogue No.
    [Show full text]
  • Walls and Fences: a Journey Through History and Economics
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Vernon, Victoria; Zimmermann, Klaus F. Working Paper Walls and Fences: A Journey Through History and Economics GLO Discussion Paper, No. 330 Provided in Cooperation with: Global Labor Organization (GLO) Suggested Citation: Vernon, Victoria; Zimmermann, Klaus F. (2019) : Walls and Fences: A Journey Through History and Economics, GLO Discussion Paper, No. 330, Global Labor Organization (GLO), Essen This Version is available at: http://hdl.handle.net/10419/193640 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Walls and Fences: A Journey Through History and Economics* Victoria Vernon State University of New York and GLO; [email protected] Klaus F. Zimmermann UNU-MERIT, CEPR and GLO; [email protected] March 2019 Abstract Throughout history, border walls and fences have been built for defense, to claim land, to signal power, and to control migration.
    [Show full text]
  • Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
    Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2.
    [Show full text]
  • Introduction to Risk Assessments for Methods Used in Wildlife Damage Management
    Human Health and Ecological Risk Assessment for the Use of Wildlife Damage Management Methods by USDA-APHIS-Wildlife Services Chapter I Introduction to Risk Assessments for Methods Used in Wildlife Damage Management MAY 2017 Introduction to Risk Assessments for Methods Used in Wildlife Damage Management EXECUTIVE SUMMARY The USDA-APHIS-Wildlife Services (WS) Program completed Risk Assessments for methods used in wildlife damage management in 1992 (USDA 1997). While those Risk Assessments are still valid, for the most part, the WS Program has expanded programs into different areas of wildlife management and wildlife damage management (WDM) such as work on airports, with feral swine and management of other invasive species, disease surveillance and control. Inherently, these programs have expanded the methods being used. Additionally, research has improved the effectiveness and selectiveness of methods being used and made new tools available. Thus, new methods and strategies will be analyzed in these risk assessments to cover the latest methods being used. The risk assements are being completed in Chapters and will be made available on a website, which can be regularly updated. Similar methods are combined into single risk assessments for efficiency; for example Chapter IV contains all foothold traps being used including standard foothold traps, pole traps, and foot cuffs. The Introduction to Risk Assessments is Chapter I and was completed to give an overall summary of the national WS Program. The methods being used and risks to target and nontarget species, people, pets, and the environment, and the issue of humanenss are discussed in this Chapter. From FY11 to FY15, WS had work tasks associated with 53 different methods being used.
    [Show full text]
  • Tidal Marsh Recovery Plan Habitat Creation Or Enhancement Project Within 5 Miles of OAK
    U.S. Fish & Wildlife Service Recovery Plan for Tidal Marsh Ecosystems of Northern and Central California California clapper rail Suaeda californica Cirsium hydrophilum Chloropyron molle Salt marsh harvest mouse (Rallus longirostris (California sea-blite) var. hydrophilum ssp. molle (Reithrodontomys obsoletus) (Suisun thistle) (soft bird’s-beak) raviventris) Volume II Appendices Tidal marsh at China Camp State Park. VII. APPENDICES Appendix A Species referred to in this recovery plan……………....…………………….3 Appendix B Recovery Priority Ranking System for Endangered and Threatened Species..........................................................................................................11 Appendix C Species of Concern or Regional Conservation Significance in Tidal Marsh Ecosystems of Northern and Central California….......................................13 Appendix D Agencies, organizations, and websites involved with tidal marsh Recovery.................................................................................................... 189 Appendix E Environmental contaminants in San Francisco Bay...................................193 Appendix F Population Persistence Modeling for Recovery Plan for Tidal Marsh Ecosystems of Northern and Central California with Intial Application to California clapper rail …............................................................................209 Appendix G Glossary……………......................................................................………229 Appendix H Summary of Major Public Comments and Service
    [Show full text]
  • MAMMALS of WASHINGTON Order DIDELPHIMORPHIA
    MAMMALS OF WASHINGTON If there is no mention of regions, the species occurs throughout the state. Order DIDELPHIMORPHIA (New World opossums) DIDELPHIDAE (New World opossums) Didelphis virginiana, Virginia Opossum. Wooded habitats. Widespread in W lowlands, very local E; introduced from E U.S. Order INSECTIVORA (insectivores) SORICIDAE (shrews) Sorex cinereus, Masked Shrew. Moist forested habitats. Olympic Peninsula, Cascades, and NE corner. Sorex preblei, Preble's Shrew. Conifer forest. Blue Mountains in Garfield Co.; rare. Sorex vagrans, Vagrant Shrew. Marshes, meadows, and moist forest. Sorex monticolus, Montane Shrew. Forests. Cascades to coast, NE corner, and Blue Mountains. Sorex palustris, Water Shrew. Mountain streams and pools. Olympics, Cascades, NE corner, and Blue Mountains. Sorex bendirii, Pacific Water Shrew. Marshes and stream banks. W of Cascades. Sorex trowbridgii, Trowbridge's Shrew. Forests. Cascades to coast. Sorex merriami, Merriam's Shrew. Shrub steppe and grasslands. Columbia basin and foothills of Blue Mountains. Sorex hoyi, Pygmy Shrew. Many habitats. NE corner (known only from S Stevens Co.), rare. TALPIDAE (moles) Neurotrichus gibbsii, Shrew-mole. Moist forests. Cascades to coast. Scapanus townsendii, Townsend's Mole. Meadows. W lowlands. Scapanus orarius, Coast Mole. Most habitats. W lowlands, central E Cascades slopes, and Blue Mountains foothills. Order CHIROPTERA (bats) VESPERTILIONIDAE (vespertilionid bats) Myotis lucifugus, Little Brown Myotis. Roosts in buildings and caves. Myotis yumanensis, Yuma Myotis. All habitats near water, roosting in trees, buildings, and caves. Myotis keenii, Keen's Myotis. Forests, roosting in tree cavities and cliff crevices. Olympic Peninsula. Myotis evotis, Long-eared Myotis. Conifer forests, roosting in tree cavities, caves and buildings; also watercourses in arid regions.
    [Show full text]
  • Suncus Lixus – Greater Dwarf Shrew
    Suncus lixus – Greater Dwarf Shrew transformed landscapes. It occurs in a number of protected areas and can be locally common in suitable habitat, such as riverine woodland, sandveld and moist grasslands. There is no evidence to suggest a net population decline. However, we caution that molecular data, coupled with further field surveys to delimit Photograph distribution more accurately, are needed to determine whether the highveld grassland and subtropical wanted grasslands subpopulations comprise separate species. If so, both species will need to be reassessed as high rates of grassland habitat loss in both regions may qualify one or both species for a threatened status. Key interventions include protected area expansion of moist grassland and riverine woodland habitats, as well as providing incentives for landowners to sustain natural Regional Red List status (2016) Least Concern* vegetation around wetlands and keep livestock or wildlife at ecological carrying capacity. National Red List status (2004) Data Deficient Regional population effects: There is a disjunct Reasons for change Non-genuine change: distribution between populations in the assessment region Change in risk and the rest of its range. This species is also a poor tolerance disperser. Thus there is not suspected to be a significant Global Red List status (2008) Least Concern rescue effect. TOPS listing (NEMBA) None CITES listing None Distribution Throughout the global range of the Greater Dwarf Shrew Endemic No there are only a few scattered records (Skinner & *Watch-list Data Chimimba 2005). However, it is a widespread species that ranges through East Africa, Central Africa and southern As the colloquial name indicates, although this is Africa.
    [Show full text]
  • 1994 IUCN Red List of Threatened Animals
    The lUCN Species Survival Commission 1994 lUCN Red List of Threatened Animals Compiled by the World Conservation Monitoring Centre PADU - MGs COPY DO NOT REMOVE lUCN The World Conservation Union lo-^2^ 1994 lUCN Red List of Threatened Animals lUCN WORLD CONSERVATION Tile World Conservation Union species susvival commission monitoring centre WWF i Suftanate of Oman 1NYZ5 TTieWlLDUFE CONSERVATION SOCIET'' PEOPLE'S TRISr BirdLife 9h: KX ENIUNGMEDSPEaES INTERNATIONAL fdreningen Chicago Zoulog k.J SnuicTy lUCN - The World Conservation Union lUCN - The World Conservation Union brings together States, government agencies and a diverse range of non-governmental organisations in a unique world partnership: some 770 members in all, spread across 123 countries. - As a union, I UCN exists to serve its members to represent their views on the world stage and to provide them with the concepts, strategies and technical support they need to achieve their goals. Through its six Commissions, lUCN draws together over 5000 expert volunteers in project teams and action groups. A central secretariat coordinates the lUCN Programme and leads initiatives on the conservation and sustainable use of the world's biological diversity and the management of habitats and natural resources, as well as providing a range of services. The Union has helped many countries to prepare National Conservation Strategies, and demonstrates the application of its knowledge through the field projects it supervises. Operations are increasingly decentralised and are carried forward by an expanding network of regional and country offices, located principally in developing countries. I UCN - The World Conservation Union seeks above all to work with its members to achieve development that is sustainable and that provides a lasting Improvement in the quality of life for people all over the world.
    [Show full text]
  • Downloaded 17 July 2016
    THE AUSTRALIAN WATER BUFFALO MANUAL Barry Lemcke Department of Primary Industry and Resources Northern Territory Government FOREWORD The Australian Water Buffalo Manual is a technical manual for the buffalo farming industry in Australia. Its author, Barry Lemcke, is a Northern Australian livestock scientist with over 42 years of experience, including a career focus on buffalo management research. The Manual reflects the extent of Barry’s knowledge and experience gained over his long career and is written in a style that makes the information accessible for all readers. It includes findings from research undertaken at Beatrice Hill Farm, Australia’s only buffalo research and development facility as well as from Barry’s travels related to the buffalo industry in numerous countries. The success of the dual purpose NT Riverine Buffalo derived from Beatrice Hill Farm, which now have progeny Australia-wide, can be largely attributed to Barry’s knowledge, dedication and persistence. John Harvey Managing Director Rural Industries Research and Development Corporation ACRONYMS AND ABBREVIATIONS USED AACo Australian Agricultural Company ABARES Australian Bureau of Agricultural and Resource Economics and Sciences AI Artificial Insemination AMIEU Australasian Meat Industry Employees Union BEF Bovine Ephemeral Fever BHF Beatrice Hill Farm (Northern Territory Government Buffalo Research Facility) BTEC National Brucellosis and Tuberculosis Eradication Campaign (Australia) cv Cultivar DM Dry Matter EEC European Economic Community ESCAS Exporter Supply
    [Show full text]
  • Coccidia (Apicomplexa: Eimeriidae) of the Mammalian Order Insectivora
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 2000 Coccidia (Apicomplexa: Eimeriidae) of the Mammalian Order Insectivora Donald W. Duszynski University of New Mexico, [email protected] Steve J. Upton Kansas State University Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Duszynski, Donald W. and Upton, Steve J., "Coccidia (Apicomplexa: Eimeriidae) of the Mammalian Order Insectivora" (2000). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 196. https://digitalcommons.unl.edu/parasitologyfacpubs/196 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SPECIAL PUBLICATION THE MUSEUM OF SOUTHWESTERN BIOLOGY NUMBER 4, pp. 1-67 30 OCTOBER 2000 Coccidia (Apicomplexa: Eimeriidae) of the Mammalian Order Insectivora DONALD W. DUSZYNSKI AND STEVE J. UPTON TABLE OF CONTENTS Introduction 1 Materials and Methods 2 Results 3 Family Erinaceidae Erinaceus Eimeria ostertagi 3 E. perardi 4 Isospora erinacei 4 I. rastegaievae 5 I. schmaltzi 6 Hemiechinus E. auriti 7 E. bijlikuli 7 Hylomys E. bentongi 7 I. hylomysis 8 Family Soricidae Crocidura E. firestonei 8 E. leucodontis 9 E. milleri 9 E. ropotamae 10 Suncus E. darjeelingensis 10 E. murinus...................................................................................................................... 11 E. suncus 12 Blarina E. blarinae 13 E. brevicauda 13 I. brevicauda 14 Cryptotis E.
    [Show full text]