Conservation of Endangered Buena Vista Lake Shrews

Total Page:16

File Type:pdf, Size:1020Kb

Conservation of Endangered Buena Vista Lake Shrews CONSERVATION OF ENDANGERED BUENA VISTA LAKE SHREWS (SOREX ORNATUS RELICTUS) THROUGH INVESTIGATION OF TAXONOMIC STATUS, DISTRIBUTION, AND USE OF NON-INVASIVE SURVEY METHODS Prepared by: Brian Cypher1, Erin Tennant2, Jesus Maldonado3, Larry Saslaw1, Tory Westall1, Jacklyn Mohay2, Erica Kelly1, and Christine Van Horn Job1 1California State University, Stanislaus Endangered Species Recovery Program 2California Department of Fish and Wildlife Region 4 3Smithsonian Conservation Biology Institute National Zoological Park June 16, 2017 Buena Vista Lake Shrew Conservation CONSERVATION OF ENDANGERED BUENA VISTA LAKE SHREWS (SOREX ORNATUS RELICTUS) THROUGH INVESTIGATION OF TAXONOMIC STATUS, DISTRIBUTION, AND USE OF NON-INVASIVE SURVEY METHODS Prepared by: Brian Cypher, Erin Tennant, Jesus Maldonado, Lawrence Saslaw, Tory Westall, Jacklyn Mohay, Erica Kelly, and Christine Van Horn Job California State University-Stanislaus, Endangered Species Recovery Program California Department of Fish and Wildlife, Region 4 Smithsonian Conservation Biology Institute, National Zoological Park CONTENTS Acknowledgments ......................................................................................................................................... ii Introduction ................................................................................................................................................... 1 Methods .......................................................................................................................................................... 2 Study Area ................................................................................................................................................................... 2 Taxonomic Analysis .................................................................................................................................................... 4 Non-invasive Detection Techniques ............................................................................................................................ 5 Surveys ........................................................................................................................................................................ 8 Results ............................................................................................................................................................ 8 Taxonomic Analysis .................................................................................................................................................... 8 Non-invasive Detection Techniques ............................................................................................................................ 8 Surveys ...................................................................................................................................................................... 11 Discussion..................................................................................................................................................... 14 Taxonomic Analysis .................................................................................................................................................. 14 Non-invasive Detection Techniques .......................................................................................................................... 15 Surveys ...................................................................................................................................................................... 17 Habitat attributes ........................................................................................................................................................ 19 Conclusions ................................................................................................................................................................ 21 Recommendations ....................................................................................................................................... 22 1. Additional surveys ................................................................................................................................................ 22 2. Use of cameras ...................................................................................................................................................... 23 3. Habitat protection .................................................................................................................................................. 23 4. Habitat management ............................................................................................................................................. 23 5. Response to temporal variation ............................................................................................................................. 23 6. Habitat preferences ............................................................................................................................................... 23 7. Habitat enhancement and creation ........................................................................................................................ 23 8. Translocations to suitable, unoccupied habitat ....................................................................................................... 24 9. Demographics and ecology ................................................................................................................................... 24 10. Northern valley shrews ....................................................................................................................................... 24 11. Individual identification via genetics .................................................................................................................. 24 12. Genetic samples .................................................................................................................................................. 24 13. Outreach .............................................................................................................................................................. 24 14. Captive breeding ................................................................................................................................................. 25 Literature Cited........................................................................................................................................... 26 Appendix A. Form used to assess habitat attributes on sites surveyed for Buena Vista Lake shrews.28 Appendix B. Levels of genetic structure of ornate shrews in the San Joaquin Valley and surrounding localities based on additional sampling from intensive survey efforts.................................................... 31 i Buena Vista Lake Shrew Conservation TABLES Table 1. Results of comparisons of techniques for detecting Buena Vista Lake shrews at three sites in the San Joaquin Valley, California. .................................................................................................................................................... 12 Table 2. Subspecies, sampling locality and sample size used in the mtDNA and microsatellite analyses for S. ornatus from the Central-Southern San Joaquin Valley and representative populations from other subspecies located outside the San Joaquin Valley. Locality names correspond to localities in Figure 2. Highlighted in yellow are sample sizes indicating localities where the 2014 surveys yielded additional shrews for genetic analysis. .............. 4 Table 3. List of samples with locality, collection date, type of sample (T=tail clip, W= whole specimen, B= blood) geographic coordinates, plot number, and haplotype obtained by ESRP and CDFW for genetic analysis. Note that the last 12 samples highlighted in yellow are the newly added samples to the genetic analysis. ............................. 14 FIGURES Figure 1. Locations where shrews have been detected and from where genetic samples have been collected previously in the San Joaquin Valley, California, ......................................................................................................................... 3 Figure 2. Locations where shrews have been detected and from where genetic samples have been collected previously in the San Joaquin Valley, California, ......................................................................................................................... 4 Figure 3. Track tube (left) with 15-cm ruler for scale, and wooden block with felt ink pad in entrance (right). .............. 5 Figure 4. Scat tube (left) with 15-cm ruler for scale, and entrance to scat tube (right) with paper to collect Buena Vista Lake shrew scats. .................................................................................................................................................... 6 Figure 5. Automated camera station for detecting Buena Vista Lake shrews................................................................... 7 Figure 6. Buena Vista Lake shrew detection test station consisting of an automated camera, a Sherman live-trap, and a scat tube. ................................................................................................................................................................. 7 Figure 7. Obtaining known tracks from a Buena Vista Lake shrew (left), and tracks from the front feet of
Recommended publications
  • 4.3 Water Resources 4.3 Water Resources
    4.3 WATER RESOURCES 4.3 WATER RESOURCES This section describes the existing hydrological setting for the County, including a discussion of water quality, based on published and unpublished reports and data compiled by regional agencies. Agencies contacted include the United States Geological Survey, the California Department of Water Resources, and the Central Valley Regional Water Quality Control Board. This section also identifies impacts that may result from the project. SETTING CLIMATE The local climate is considered warm desert receiving approximately six to eight inches of rainfall per year (U.S. Department of Agriculture, 1986). Rainfall occurs primarily in the winter months, with lesser amounts falling in late summer and fall. Kings County would also be considered a dry climate since evaporation greatly exceeds precipitation.1 A common characteristic of dry climates, other than relatively small amounts of precipitation, is that the amount of precipitation received each year is highly variable. Generally, the lower the mean annual rainfall, the greater the year-to-year variability (Lutgens and Tarbuck, 1979). SURFACE WATER HYDROLOGY The County is part of a hydrologic system referred to as the Tulare Lake Basin (Figure 4.3- 1). The management of water resources within the Tulare Lake Basin is a complex activity and is critical to the region’s agricultural operations. The County can be divided into three main hydrologic subareas: the northern alluvial fan and basin area (in the vicinity of the Kings, Kaweah, and Tule rivers and their distributaries), the Tulare Lake Zone, and the southwestern uplands (including the areas west of the California Aqueduct and Highway 5) (Figure 4.3-2).
    [Show full text]
  • Fish and Wildlife Service Re-Thinks Protection for Buena Vista Lake Shrew
    u)pr hyhyyrivrvrpryhr vps4D92 ""&$ Fish and Wildlife Service re-thinks protection for Buena Vista Lake Shrew WASHINGTON, D.C. October 20, 2009 9:27am • Re-proposes 4,649 acres of critical habitat in Kern County • Would reverse earlier decision In another reversal of decisions made during the administration of former President George W. Bush, the U.S. Fish and Wildlife Service is proposing new protections for the Buena Lake shrew, a tiny mammal that lives in a small area of Kern County in the Central Valley. The FWS says it wants 4,649 acres in Kern County declared as critical habitat for the endangered animal, exactly the same acreage that it had first proposed in 2004. The announcement opens a 60-day public comment period. Earlier this month the Fish and Wildlife Service reversed itself on the economic impact of protecting the California habitat of the red-legged frog. It now says it is less than had been calculated. The new report on the frog strips out what some saw as political bias in the earlier estimates prepared for the George W. Bush administration. The new shrew proposal conforms to terms of a legal settlement resolving a challenge to the FWS’s final action on the earlier proposal, when it designated only 84 acres as critical habitat. In its settlement with the Center for Biological Diversity, announced last July, the FWS agreed to re-propose the same areas it had proposed in 2004. In its 2005 final critical habitat rule the FWS excluded four areas it had initially proposed, determining at the time that commitments by landowners would provide significantly better protection for the shrew.
    [Show full text]
  • Petition to List Mountain Lion As Threatened Or Endangered Species
    BEFORE THE CALIFORNIA FISH AND GAME COMMISSION A Petition to List the Southern California/Central Coast Evolutionarily Significant Unit (ESU) of Mountain Lions as Threatened under the California Endangered Species Act (CESA) A Mountain Lion in the Verdugo Mountains with Glendale and Los Angeles in the background. Photo: NPS Center for Biological Diversity and the Mountain Lion Foundation June 25, 2019 Notice of Petition For action pursuant to Section 670.1, Title 14, California Code of Regulations (CCR) and Division 3, Chapter 1.5, Article 2 of the California Fish and Game Code (Sections 2070 et seq.) relating to listing and delisting endangered and threatened species of plants and animals. I. SPECIES BEING PETITIONED: Species Name: Mountain Lion (Puma concolor). Southern California/Central Coast Evolutionarily Significant Unit (ESU) II. RECOMMENDED ACTION: Listing as Threatened or Endangered The Center for Biological Diversity and the Mountain Lion Foundation submit this petition to list mountain lions (Puma concolor) in Southern and Central California as Threatened or Endangered pursuant to the California Endangered Species Act (California Fish and Game Code §§ 2050 et seq., “CESA”). This petition demonstrates that Southern and Central California mountain lions are eligible for and warrant listing under CESA based on the factors specified in the statute and implementing regulations. Specifically, petitioners request listing as Threatened an Evolutionarily Significant Unit (ESU) comprised of the following recognized mountain lion subpopulations:
    [Show full text]
  • Mammals of the California Desert
    MAMMALS OF THE CALIFORNIA DESERT William F. Laudenslayer, Jr. Karen Boyer Buckingham Theodore A. Rado INTRODUCTION I ,+! The desert lands of southern California (Figure 1) support a rich variety of wildlife, of which mammals comprise an important element. Of the 19 living orders of mammals known in the world i- *- loday, nine are represented in the California desert15. Ninety-seven mammal species are known to t ':i he in this area. The southwestern United States has a larger number of mammal subspecies than my other continental area of comparable size (Hall 1981). This high degree of subspeciation, which f I;, ; leads to the development of new species, seems to be due to the great variation in topography, , , elevation, temperature, soils, and isolation caused by natural barriers. The order Rodentia may be k., 2:' , considered the most successful of the mammalian taxa in the desert; it is represented by 48 species Lc - occupying a wide variety of habitats. Bats comprise the second largest contingent of species. Of the 97 mammal species, 48 are found throughout the desert; the remaining 49 occur peripherally, with many restricted to the bordering mountain ranges or the Colorado River Valley. Four of the 97 I ?$ are non-native, having been introduced into the California desert. These are the Virginia opossum, ' >% Rocky Mountain mule deer, horse, and burro. Table 1 lists the desert mammals and their range 1 ;>?-axurrence as well as their current status of endangerment as determined by the U.S. fish and $' Wildlife Service (USWS 1989, 1990) and the California Department of Fish and Game (Calif.
    [Show full text]
  • Black Oaks Ranch Tehachapi California This Private Ranch Represents a Truly Unique Opportunity to Own a Spectacular 7,000-Acre Property in Southern California
    Black Oaks Ranch Tehachapi California This private ranch represents a truly unique opportunity to own a spectacular 7,000-acre property in Southern California. This property is located in the Tehachapi mountains, elevated above the south east- ern portion of the San Joaquin valley. There are spectacular views in all directions, from the snow covered Mt Whitney, 100 miles NNE, to the Costal Range Mountains, just across the narrow San Joaquin Valley . Black Oaks butts up to Bear Valley Springs, one of southern California's most successful mountain commu- nities. Bear Valley offers Four Island Lake and Cub lake for water recreation, tennis courts, golf course, RC airport, community swimming pool, recreation center with training equipment and basket ball court and much more. Black Oaks Ranch currently supports a profitable cattle operation and hunt club. Abundance of wildlife, deer, bobcat, elk, wild pig, mountain lion, quail, rabbit and much more, abound this spectacular land. The abundance water makes this premier property a strong candidate for future development. Ranch Roads The remote areas of the ranch are accessible trough a network of seasonally maintained roads. The more remote areas are worth the exploring, as they reveal the beauty of this magnificent mountain property. Many of these roads parallel ancient native American Indian trails. The many grindstones throughout the ranch is evidence of the Indigenous tribes that lived here. Research reveals the tribes were mainly hunter gatherers that thrived in the Tehachapi mountains for hundreds of years. The main gates to this enormous property are accessible through Bear Valley Springs and Stallion Springs.
    [Show full text]
  • Mendota Pool Bypass and Reach 2B Improvement Project Draft EIS/R
    Draft Mendota Pool Bypass and Reach 2B Improvements Project Environmental Impact Statement/ Environmental Impact Report SCH # 2009072044 June 2015 The San Joaquin River Restoration Program is a comprehensive long-term effort to restore flows to the San Joaquin River from Friant Dam to the confluence of Merced River and restore a self-sustaining Chinook salmon fishery in the river while reducing or avoiding adverse water supply impacts from Interim and Restoration flows. Mission Statements The mission of the Bureau of Reclamation is to manage, develop and protect water and related resources in an environmentally and economically sound manner in the interest of the American Public. The California State Lands Commission serves the people of California by providing stewardship of the lands, waterways, and resources entrusted to its care through economic development, protection, preservation, and restoration. Executive Summary INTRODUCTIONAND BACKGROUND Introduction and Background The Mendota Pool Bypass and Reach 2B Improvements Project (Project) includes the construction, operation, and maintenance of the Mendota Pool Bypass and improvements in the San Joaquin River channel in Reach 2B (Figure S-1). The Project consists of a floodplain width that conveys at least 4,500 cubic feet per second (cfs), a method Mendota Pool to bypass Restoration Flows around Mendota Pool, and a method to deliver water to Mendota Pool. The Project footprint and vicinity (Figure S-2) extend from approximately 0.3 mile above the Chowchilla Bifurcation Structure to approximately 1.0 mile below the Mendota Dam. The Project footprint comprises the area that could be directly affected by the Project. The Project study area or “Project area” includes areas directly and indirectly affected by the Project.
    [Show full text]
  • Scale, Pattern and Process in Biological Invasions
    SCALE, PATTERN, AND PROCESS IN BIOLOGICAL INVASIONS By CRAIG R. ALLEN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1997 Copyright 1997 by Craig R. Allen ACKNOWLEDGEMENTS The work presented in this dissertation would not have been possible without the cooperation and encouragement of many. Foremost is the understanding of my immediate family, that is my wife Patty and now three-year-old son, Reece. Reece, while generally confused about what I was doing, nonetheless supported my effort to "write a book" in order to become a "doctor." Conflicts arose only when he needed my computer for dinosaur games. My co-advisors, W. M. Kitchens and C. S. Holling, encouraged my investigations and provided me with intellectual support and opportunity. For the same reasons, I extend my appreciation to my committee members, S. Humphrey, M. Moulton and D. Wojcik. Numerous friends and colleagues provided me with intellectual support and acted as a sounding board for ideas. Foremost are E. A. Forys, G. Peterson M. P. Moulton and J. Sendzemir as well as the entire "gang" of the Arthur Marshal Ecology Laboratory. I wish to thank all for their support and friendship. II! TABLE OF CONTENTS page ACKNOWLEDGEMENTS iii ABSTRACT viii INTRODUCTION 1 CHAPTERS 1. TRADITIONAL HYPOTHESES: INVASIONS AND EXTINCTIONS IN THE EVERGLADES ECOREGION 5 Introduction 5 Body-mass difference hypothesis 6 Diet difference hypothesis 7 Species replacement hypothesis 7 Phylogenetic hypothesis 8 Methods 8 Results 11 Discussion 14 2. LUMPY PATTERNS OF BODY MASS PREDICT INVASIONS AND EXTINCTIONS IN TRANSFORMING LANDSCAPES 18 Introduction 18 Methods and analysis 21 Species lists 21 Analysis 22 Results 26 Discussion 31 3.
    [Show full text]
  • For Los Angeles County 2019
    SUSTAINABLEFOR LA LOS GRAND ANGELES CHALLENGE COUNTY ENVIRONMENTAL REPORT CARD FOR LOS ANGELES COUNTY 2019 AUTHORS | EDITORS: FELICIA FEDERICO ANNE YOUNGDAHL SAGARIKA SUBRAMANIAN CASANDRA RAUSER MARK GOLD CONTRIBUTING AUTHORS: SONALI ABRAHAM MELANIE GARCIA JAMIE LIU STEPHANIE MANZO MARK NGUYEN 2019 SUSTAINABLE LA ENVIRONMENTAL REPORT CARD FOR LOS ANGELES COUNTY WATER UCLA Sustainable LA Grand Challenge TABLE OF CONTENTS 05 EXECUTIVE SUMMARY 09 INTRODUCTION 10 METHODOLOGY CATEGORIES 1 1 WATER SUPPLY AND CONSUMPTION 32 DRINKING WATER QUALITY 43 LOCAL WATER INFRASTRUCTURE 60 GROUNDWATER 11 75 SURFACE WATER QUALITY 86 INDUSTRIAL AND SEWAGE TREATMENT PLANT DISCHARGES 99 WATER-ENERGY NEXUS 107 BEACH WATER QUALITY 1 UCLA SUSTAINABLE LA GRAND CHALLENGE • 2019 ENVIRONMENTAL REPORT CARD FOR LOS ANGELES COUNTY OVERALL CONCLUSIONS 115 ABOUT THE UCLA SUSTAINABLE LA GRAND CHALLENGE 117 ACKNOWLEDGMENTS 118 INDEX OF FIGURES, TABLES, AND MAPS 119 REFERENCES 122 Report Design by Miré Molnar Funding for the development of this report was generously provided from the Anthony and Jeanne Pritzker Family Foundation and the UCLA Office of the Vice Chancellor for Research. 2019 ENVIRONMENTAL REPORT CARD FOR LOS ANGELES COUNTY • UCLA SUSTAINABLE LA GRAND CHALLENGE 2 EXECUTIVE SUMMARY LOCAL WATER SUMMARY OF INFRASTRUCTURE INDICATORS • DISTRIBUTION SYSTEM WATER GRADES LOSS AUDITS • LARGE-SCALE STORMWATER CAPTURE • IRWMP INVESTMENTS IN LOCAL WATER SUPPLY & WATER INFRASTRUCTURE CONSUMPTION • SEWAGE SPILLS INDICATORS • WATER SOURCES HIGHLIGHT • WASTE WATER REUSE •
    [Show full text]
  • A Watershed Perspective on Water Quality Impairments
    WORKING DRAFT REPORT A Watershed Perspective on Water Quality Impairments December 2009 December 2009 www.epa.gov WORKING DRAFT REPORT A Watershed Perspective on Water Quality Impairments Abt Associates, Inc. Cambridge, MA 02138 Contract No. EP-W-06-044 Task Order Nos. 28 and 41 Project Officers Daniel Kaiser Melissa G. Kramer Sector Strategies Division Office of Cross-Media Programs Office of Policy, Economics, and Innovation Office of Policy, Economics, and Innovation Office of the Administrator U.S. Environmental Protection Agency Washington, DC 20460 NOTICE The U.S. Environmental Protection Agency through its Office of Policy, Economics, and Innovation, Office of Cross-Media Programs, Sector Strategies Division funded the research described here under contract no. EP-W-06-044, Task Order nos. 28 and 41, with Abt Associates, Inc. This document is a preliminary draft. It has not been formally released by the U.S. Environmental Protection Agency, should not at this stage be construed to represent Agency policy, and no official endorsement should be inferred. ii Table of Contents Acronyms ii 1. Introduction 1-1 2. Tulare-Buena Vista Lakes Watershed 2-1 3. Wisconsin and Minnesota River Watersheds 3-1 4. Elkhorn River Watershed 4-1 5. Chesapeake Bay Watershed 5-1 6. Neuse River Watershed 6-1 7. Illinois River Watershed 7-1 References 8-1 iii Acronyms ATTAINS Assessment Total Maximum Daily Load (TMDL) Tracking and Implementation System BMP Best Management Practice CALSWAMP California Surface Water Monitoring Program EPA U.S. Environmental
    [Show full text]
  • When Beremendiin Shrews Disappeared in East Asia, Or How We Can Estimate Fossil Redeposition
    Historical Biology An International Journal of Paleobiology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ghbi20 When beremendiin shrews disappeared in East Asia, or how we can estimate fossil redeposition Leonid L. Voyta , Valeriya E. Omelko , Mikhail P. Tiunov & Maria A. Vinokurova To cite this article: Leonid L. Voyta , Valeriya E. Omelko , Mikhail P. Tiunov & Maria A. Vinokurova (2020): When beremendiin shrews disappeared in East Asia, or how we can estimate fossil redeposition, Historical Biology, DOI: 10.1080/08912963.2020.1822354 To link to this article: https://doi.org/10.1080/08912963.2020.1822354 Published online: 22 Sep 2020. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ghbi20 HISTORICAL BIOLOGY https://doi.org/10.1080/08912963.2020.1822354 ARTICLE When beremendiin shrews disappeared in East Asia, or how we can estimate fossil redeposition Leonid L. Voyta a, Valeriya E. Omelko b, Mikhail P. Tiunovb and Maria A. Vinokurova b aLaboratory of Theriology, Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia; bFederal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia ABSTRACT ARTICLE HISTORY The current paper first time describes a small Beremendia from the late Pleistocene deposits in the Received 24 July 2020 Koridornaya Cave locality (Russian Far East), which associated with the extinct Beremendia minor. The Accepted 8 September 2020 paper is the first attempt to use a comparative analytical method to evaluate a possible case of redeposition KEYWORDS of fossil remains of this shrew.
    [Show full text]
  • Comparative Demography and Habitat Use of Western Pond Turtles in Northern California: the Effects of Damming and Related Alterations
    Comparative Demography and Habitat Use of Western Pond Turtles in Northern California: The Effects of Damming and Related Alterations by Devin Andrews Reese B.A. (Harvard University) 1986 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the GRADUATE DIVISION of the UNIVERSITY of CALIFORNIA at BERKELEY Committee in charge: Professor Harry W. Greene, Chair Professor Mary E. Power Professor Reginald Barrett 1996 The dissertation of Devin Andrews Reese is approved by: University of California at Berkeley 1996 Comparative Demography and Habitat Use of Western Pond Turtles in Northern California: The Effects of Damming and Related Alterations Copyright © 1996 by Devin Andrews Reese 1 Abstract Comparative Demography and Habitat Use of Western Pond Turtles in Northern California: The Effects of Damming and Related Alterations by Devin Andrews Reese Doctor of Philosophy in Integrative Biology University of California at Berkeley Professor Harry W. Greene, Chair Despite their tenure in California for more than two million years, a period including extreme changes in the landscape, western pond turtles (Clemmys marmorata) are now declining. Survival and viability of populations are impacted by a range of factors, including damming, residential development, agricultural practices, introduced predators, and direct harvest. Some of the few remaining large populations occur in the Klamath River hydrographic basin. From 1991-1995, I examined demography and habitat associations of western pond turtles on a dammed tributary (mainstem Trinity River) and an undammed tributary (south fork Trinity) using mark-recapture techniques and radiotelemetry. In addition, radiotracking of turtles in a set of agricultural ponds in Santa Rosa provided an assessment of movements in a fragmented aquatic landscape.
    [Show full text]
  • Westlands Water District – Warren Act Contract for Conveyance of Kings River Flood Flows in the San Luis Canal
    Final Environmental Assessment Westlands Water District – Warren Act Contract for Conveyance of Kings River Flood Flows in the San Luis Canal EA-11-002 U.S. Department of the Interior Bureau of Reclamation Mid-Pacific Region South-Central California Area Office Fresno, California January 2012 Mission Statements The mission of the Department of the Interior is to protect and provide access to our Nation’s natural and cultural heritage and honor our trust responsibilities to Indian Tribes and our commitments to island communities. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Table of Contents Page Section 1 Purpose and Need for Action ....................................................... 1 1.1 Background ........................................................................................... 1 1.2 Purpose and Need ................................................................................. 1 1.3 Scope ..................................................................................................... 1 1.4 Reclamation’s Legal and Statutory Authorities and Jurisdiction Relevant to the Proposed Federal Action.............................................. 2 1.5 Potential Issues...................................................................................... 3 Section 2 Alternatives Including the Proposed Action............................... 5 2.1 No Action Alternative ..........................................................................
    [Show full text]