Seeking Agricultural Produce Free of Pesticide Residues

Total Page:16

File Type:pdf, Size:1020Kb

Seeking Agricultural Produce Free of Pesticide Residues Seeking Agricultural Produce Free of Pesticide Residues Proceedings of an International Workshop held in Yogyakarta, Indonesia, 17–19 February 1998 Editors: I.R. Kennedy, J.H. Skerritt, G.I. Johnson, and E. Highley Sponsored by: Agency for Agricultural Research and Development (AARD), Indonesia Australian Agency for International Development (AusAID) Australian Centre for International Agricultural Research (ACIAR) Australian Centre for International Agricultural Research Canberra 1998 Seeking agricultural produce free of pesticide residues edited by I.R. Kennedy, J.H. Skerritt, G.I. Johnson and E. Highley ACIAR Proceedings No. 85e (printed version published in 1998) The Australian Centre for International Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has a special research competence. Where trade names are used this constitutes neither endorsement of nor dis- crimination against any product by the centre. ACIAR PROCEEDINGS This series of publications includes the full proceedings of research workshops or symposia organised or supported by ACIAR. Numbers in this series are distributed internationally to selected individuals and scientific institutions. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra, ACT 2601. Kennedy, I.R., Skerritt, J.H., Johnson, G.I., and Highley, E., ed., 1998. Seeking Agricul- tural Produce Free of Pesticide Residues. Proceedings of an International Workshop held in Yogyakarta, Indonesia, 17–19 February 1998. ACIAR Proceedings No. 85, 406p. ISBN 1 86320 227 7 Editing and pre-press production by Arawang Communication Group, Canberra, Australia. 2 Seeking agricultural produce free of pesticide residues edited by I.R. Kennedy, J.H. Skerritt, G.I. Johnson and E. Highley ACIAR Proceedings No. 85e (printed version published in 1998) Contents Executive Summary 6 Welcome and Opening Address 9 Dr Faisal Kasryno AARD Director General Achievements in Pesticide Application for Agricultural Use and in Residue Control in Indonesia 11 Kasumbogo Untung Special Adviser, State Ministry of Environment, Indonesia Opening Remarks 17 Soetatwo Hadiwigeno Assistant Director-General and Regional Representative for Asia and the Pacific, Food and Agriculture Organization of the United Nations Defining the Scope of the Problem of Pesticide Residues 21 Pesticides in Perspective: Balancing Their Benefits with the Need for Environmental Protection 23 and Remediation of Their Residues I.R. Kennedy Pesticide Management Policy in Indonesia 31 I. Daryanto Appropriate Analytical Technologies for Monitoring Agrochemicals Residues 37 J.H. Skerritt Agricultural Chemical Use and Residue Management in India 46 P.K. Seth, R.B. Raizada, and R. Kumar Agrochemical Use and Concerns in Pakistan 54 U.K. Baloch and M. Haseeb Pesticide Use and Control in Malaysia 59 S.H. Tan, Nursiah, M.T. Aros, and S. David Pesticide Residues in Food and the Environment in Thailand 64 M.S. Tabucanon, R. Boonyatumanond Pesticide Residues in Food and the Environment in China 74 S-G. Dai, Y-S. Chen, Z-C. Zhang, He Xu, and X-Q. Liu Sources of the Problems—Industry Case Studies of Chemical Use and Residue Dissipation 81 Pesticide Use for Protection of Stored Grains in the Philippines 83 F.M. Caliboso and R.L. Tiongson Integrated Monitoring and Dissipation Studies for the Development of Best Practice Management 88 of Chemicals Used in Cotton Farming I.R. Kennedy, F. Sanchez-Bayo, S.W.L. Kimber, N. Ahmad, H. Beasley, N. Lee, S. Wang, and S. Southan Pesticide Monitoring in Wool and the Environmental Impact of Pesticide Residues 100 P.W. Robinson, H.L. Boul, N.I. Joyce, and T.C. Reid Contamination of Animal Products by Pesticides and Antibiotics 115 T.B. Murdiati, Indraningsih, and S. Bahri Approaches to Risk Assessment of Chemicals in the Environment 122 C.J. Van Leeuwen 3 Seeking agricultural produce free of pesticide residues edited by I.R. Kennedy, J.H. Skerritt, G.I. Johnson and E. Highley ACIAR Proceedings No. 85e (printed version published in 1998) Residues and Dissipation of Selected Pesticides in Paddy Rice Agroecosystems in Malaysia 129 U.B. Cheah and K.Y. Lum Pesticide Use and Dissipation in Paddy Rice in Thailand 136 N. Tayaputch Dissipation of Pesticides in Rice Paddy in the Philippines 140 L.M. Varda and A.W. Tejada Monitoring and Detection 149 Dissipation of Organochlorines into Malaysian River Systems: a Survey 151 G.H. Tan Dissipation of Organochlorines in Northern Indian Soils 156 H. Agarwal and D.K. Singh Pesticide Dynamics in the Tropical Soil-plant Ecosystem—Potential Impacts on Soil and Crop Quality 171 R. Naidu, R.S. Kookana, and S. Baskaran Tracing Aquatic Pesticide Pollution to Its Sources 184 Pham H.V., Trinh L.H., Nguyen V.H., Le V.C., and Nguyen H.M. Assessing Relative Impacts of Pesticides on Groundwater Quality Using a Simple Index 191 R.S. Kookana, R.L.Correll, and R.B. Miller Application of Thin Layer Chromatography for Pesticide Residue Analysis 199 A. Ambrus Enzyme Inhibition and Other Rapid Techniques for Pesticide Residue Detection 223 A.W. Tejada, L.M. Varca, S.M.F. Calumpang, and C.M. Bajet Rapid Colorimetric and Tissue Print Methods for Agrochemicals Including Benzimidazole Fungicides 229 A. Pasha Rapid Biological Pesticides Residue (RBPR) Test for Monitoring Pesticide Residues in Vegetables 235 Tran V.A., Nguyen T., Bui V.T., and Le V.T. Enzyme-linked Immunosorbent Assay (ELISA) for the Determination of Dieldrin and Atrazine 241 Residues in Environmental Samples U. Maqbool, M.J. Qureshi, A. Haq, and M.Z. Iqbal Immunoassays for Detection of Agrochemical Residues in Food and Environmental Matrices 254 J.H. Skerritt, H.L. Beasley, T. Phonghkam, and A.S. Hill Developing Immunoassays in a Developing Nation: Challenges and Successes in India 263 N.G.K. Karanth, A. Pasha, B.E. Amita Rani, M.B. Asha, C.G. Udayakumari, and Y.N. Vijayashankar Application of Competitive Enzyme Immunoassay for Screening DDT and DDE in Food and 270 Environmental Samples: Initial Collaborative Study B. Maestroni, J.H. Skerritt, and I.G. Ferris Development of an Immunoassay for Monitoring Sulfonylurea Herbicide Residues in China 278 Minghong Jia Immunoassays and Other Field Approaches for Environmental and Biological Monitoring 290 of Mycotoxins, with Special Reference to Aflatoxins R. B. Sashidhar Integration of Instrumental and ELISA Methods into Food and Human Exposure Monitoring 296 T. Prapamontal 4 Seeking agricultural produce free of pesticide residues edited by I.R. Kennedy, J.H. Skerritt, G.I. Johnson and E. Highley ACIAR Proceedings No. 85e (printed version published in 1998) Traceback and Treating the Problem 301 Modifying Pesticide Application Practice: Novartis Crop Protection Experiences in Indonesia 303 M. Kusnawiria, P. Djojosumarto, and D. Nordmeyer Reducing Pesticide Residues in Agricultural Produce through Effective Pesticide Application Techniques 308 D. Omar Educating Farmers for Chemical Management in Indonesia 313 S. Mangoendihardjo Reduction of Pesticide Residue Contamination on Vegetables by Agro-extension Work 318 Nguyen T., Bui V.T., and Nguyen D.D. Remediation–Bioremediation and Decontamination of Residues 323 Microbial Bioremediation of Organochlorines in a Rice Cropping System 325 N. Sethunathan, S.K. Sahu, and K. Raghu Bioremediation of Organochlorine-contaminated Soil in South Australia: a Collaborative Venture 334 I. Singleton, N.C. McClure, R. Bentham, P. Xie, D. Kantachote, M. Megharaj, C. Dandie, C.M.M. Franco, J.M.Oades, and R. Naidu The Need for PCB-mineralising Organisms 338 M. Megharaj, R. Blasco, R.-M. Wittich, D.H. Pieper, and K.N. Timmis Bioremediation of Pesticides Using Enzymes 341 R.J. Russell, R.L. Harcourt, and J.G. Oakeshott Remediation of Contaminated Soil and Fluid at Cattle Dip Sites in Australia 349 L. Van Zwieten, M. Ayres, and P. Curran Monitoring and Detection* Pesticides, Trade and the Environment: an Australian Perspective on Sustainable Crop Production 358 P. Rowland Contributed Poster Papers 373 Pesticide Residues on Some Vegetables and Reductions Possible by Integrated Pest Management 375 A.L.H. Dibiyantoro Immunochemical Technology for Analysis of Pesticide Residues 380 U. Maqbool, M.J. Qureshi, A. Haq, and M.Z. Iqbal Analysis of the Distribution of DDT Residues in Soils of the Macintyre and Gwydir Valleys 386 of New South Wales, Australia Using ELISA H.M. Shivaramaiah, I.O. Odeh, I.R. Kennedy, and J.H. Skerritt Concentrations of Pesticides and α/γ HCH Ratio in Gas and Particle Phases in the Air in Alsace, 393 Eastern France A.A. Sanusi, M. Millet, and H. Wortham Participants 399 * A late paper for this earlier section 5 Seeking agricultural produce free of pesticide residues edited by I.R. Kennedy, J.H. Skerritt, G.I. Johnson and E. Highley ACIAR Proceedings No. 85e (printed version published in 1998) 6 Seeking agricultural produce free of pesticide residues edited by I.R. Kennedy, J.H. Skerritt, G.I. Johnson and E. Highley ACIAR Proceedings No. 85e (printed version published in 1998) Executive Summary THIS workshop was supported by the Australian Centre for International Agricultural Research (ACIAR), the Australian Agency for International Development (AusAID), the Agency for Agricultural Research and Development (AARD) Indonesia and the Food and Agriculture Organization of the United Nations (FAO). Some 70 participants from 12
Recommended publications
  • Chapter 6: Additional WPS Training Topics for Handlers
    ADDITIONAL WPS TRAINING TOPICS FOR HANDLERS CHAPTER Pesticide Labels 6-1 Contents 6-1: Reading and Understanding the Pesticide Label ............................70 The Parts of the Pesticide Label .......................................................................71 Brand Name ...................................................................................................74 Pesticide Manufacturer ................................................................................74 Pesticide Type ................................................................................................75 Active Ingredient ...........................................................................................75 Inert or Other Ingredients .............................................................................75 Pesticide Formulation ....................................................................................76 Table 6.1: Examples of Different Types of Pesticide Formulations ............76 EPA Registration Number ..............................................................................76 Signal Word ....................................................................................................77 First Aid ...........................................................................................................77 Personal Protective Equipment (PPE) ..........................................................78 Precautionary Statements ............................................................................78 Environmental
    [Show full text]
  • Alternative Herbicides in Turfgrass and Organic Agriculture
    1 Volume XXXII, Number 5/6, May/June 2010 Alternative Herbicides in Turfgrass and Organic Agriculture By William Quarles Photo courtesy of Marrone Bio Innovations number of alternative herbi- cides have been developed A and are now either commer- cially available, or waiting for EPA approval. Major markets for these herbicides include the turfgrass industry and organic agriculture. Demand for “green” herbicides in turfgrass is being driven both by environmental concerns and regula- tory action. For instance, a number of provinces in Canada have banned cosmetic application of chemical pesticides such as 2,4-D for broadleaf weed control on lawns. Cultural methods can relieve some weed pressures, but alternative herbicides can make weed manage- ment less labor intensive (Abu- Dieyeh and Watson 2009; Hashman 2011; Bailey et al. 2010; Boyetchko et al. 2009). In organic agriculture, weeds are Alternative herbicides can be effective. Pictured here is an irrigation chan- the number one pest management nel that has been treated with GreenMatch®, a reduced risk herbicide con- problem and conventional synthetic taining d-limonene. herbicides cannot be used. Current organic options include hand weed- commonly used lawn herbicides— weeds is to ignore or tolerate them. ing, cultivation, mulching and flam- 2,4-D, dicamba, and MCPP. About Some “weeds” are even aesthetically ing (Quarles 2004; Sivesind et al. 77% of the Canadian population is pleasing and break up the monoto- 2009). Alternative herbicides can benefiting from reduced exposure to ny of a “perfect” lawn. When lawn reduce or eliminate costs of hand synthetic lawn and garden pesti- weeds reach levels where they can- weeding (Evans and Bellinder 2009; cides (Ottawa 2010).
    [Show full text]
  • Standard Practices for Pesticide Applicators
    Standard Practices for Pesticide Applicators 10/09 Printed in Canada BK35 About WorkSafeBC WorkSafeBC (the Workers’ Compensation Board) is an independent provincial statutory agency governed by a Board of Directors. It is funded by insurance premiums paid by registered employers and by investment returns. In administering the Workers Compensation Act, WorkSafeBC remains separate and distinct from government; however, it is accountable to the public through government in its role of protecting and maintaining the overall well-being of the workers’ compensation system. WorkSafeBC was born out of a compromise between B.C.’s workers and employers in 1917 where workers gave up the right to sue their employers or fellow workers for injuries on the job in return for a no-fault insurance program fully paid for by employers. WorkSafeBC is committed to a safe and healthy workplace, and to providing return-to-work rehabilitation and legislated compensation benefits to workers injured as a result of their employment. WorkSafeBC Prevention Information Line The WorkSafeBC Prevention Information Line can answer your questions about workplace health and safety, worker and employer responsibilities, and reporting a workplace accident or incident. The Prevention Information Line accepts anonymous calls. Phone 604 276-3100 in the Lower Mainland, or call 1 888 621-7233 (621-SAFE) toll-free in British Columbia. To report after-hours and weekend accidents and emergencies, call 604 273-7711 in the Lower Mainland, or call 1 866 922-4357 (WCB-HELP) toll-free in British Columbia. Standard Practices for Pesticide Applicators WorkSafeBC Publications Many publications are available on the WorkSafeBC web site.
    [Show full text]
  • OGC Revisions Final Draft IPM Guidelines 4 19 21
    EAST BAY MUNICIPAL UTILITY DISTRICT INTEGRATED PEST MANAGEMENT PROGRAM GUIDELINES April 2021 INTRODUCTION The East Bay Municipal Utility District (District) is responsible for implementing pest control management practices across approximately 57,000 acres of watershed lands and reservoirs in the East Bay and Sierra foothills. This includes multiple recreation areas, over 100 miles of rights-of-way along our aqueducts, facility grounds at hundreds of sites in five counties and other areas located throughout the District’s water source and service areas. Pests may include a wide range of both plant and animal species capable of creating a nuisance; however, the predominant pest addressed by the District is invasive vegetation. Within the District’s footprint, pests are managed for a number of reasons including but not limited to human health and safety, protection of infrastructure, regulatory requirements, fire risk reduction and preservation of habitat and biodiversity. The District is committed to using the most environmentally safe practices for pest control to ensure the health and safety of the public and District employees, and to protect potable water quality, natural resources and public and private property. The District established an Integrated Pest Management (IPM) program in the 1990s to develop a consistent approach toward pest management throughout the District using a combination of physical, biological and cultural controls and includes the use and monitoring of pesticides, which predominantly consist of herbicides. The IPM program provides written guidance for determining the most appropriate pest control methods for a particular situation. Ever evolving IPM procedures and practices are developed with input from industry and academic experts and staff having pest management responsibilities to ensure they are implementable and effective.
    [Show full text]
  • Managing Pesticide Drift1 F
    PI232 Managing Pesticide Drift1 F. M. Fishel and J. A. Ferrell2 Introduction may drift and whether it is harmful depends on interrelated factors that can be complex. The drift of spray from pesticide applications can expose people, plants and animals, and the environment to Drift is a significant legal concern in Florida. During pesticide residues that can cause health and environmental 2009–2010, the Florida Department of Agriculture and effects and property damage. Agricultural practices are Consumer Services (FDACS), which is the state pesticide poorly understood by the public, which causes anxiety and regulatory agency, initiated 39 investigations in response sometimes overreaction to a situation. Even the application to allegations of drift. Where significant drift does occur, of fertilizers or biological pesticides, like Bt or pheromones, it can damage or contaminate sensitive crops, poison bees, can be perceived as a danger to the general public. Drift pose health risks to humans and animals, and contaminate can lead to litigation, financially damaging court costs, soil and water in adjacent areas (Figure 1). Applicators are and appeals to restrict or ban the use of crop protection legally responsible for the damages resulting from the off- materials. Urbanization has led to much of Florida’s agri- target movement of pesticides. It is impossible to eliminate cultural production being in areas of close proximity to the drift totally, but it is possible to reduce it to a legal level. general public, including residential subdivisions, assisted The purpose of this guide is to discuss factors influencing living facilities, hospitals, and schools. Such sensitive sites drift and provide common-sense solutions for minimizing heighten the need for drift mitigation measures to be taken potential drift problems.
    [Show full text]
  • Sound Management of Pesticides and Diagnosis and Treatment Of
    * Revision of the“IPCS - Multilevel Course on the Safe Use of Pesticides and on the Diagnosis and Treatment of Presticide Poisoning, 1994” © World Health Organization 2006 All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. CONTENTS Preface Acknowledgement Part I. Overview 1. Introduction 1.1 Background 1.2 Objectives 2. Overview of the resource tool 2.1 Moduledescription 2.2 Training levels 2.3 Visual aids 2.4 Informationsources 3. Using the resource tool 3.1 Introduction 3.2 Training trainers 3.2.1 Organizational aspects 3.2.2 Coordinator’s preparation 3.2.3 Selection of participants 3.2.4 Before training trainers 3.2.5 Specimen module 3.3 Trainers 3.3.1 Trainer preparation 3.3.2 Selection of participants 3.3.3 Organizational aspects 3.3.4 Before a course 4.
    [Show full text]
  • Pesticide Formulations
    CHAPTER 4 PESTICIDE FORMULATIONS LEARNING OBJECTIVES After studying this chapter, you should: • Understand what a pesticide formulation is. • Know how to interpret common abbreviations used to describe formulations (e.g., WP, DF, EC, RTU, S, G, ULV). • Know how to identify advantages and disadvantages of common formulation types (e.g., dusts, granules, wettable powders, dry flowables, microencapsulated, aerosols). • Know how to explain the role of adjuvants (e.g., buffers, stickers, spreaders) during pesticide application. Pesticide chemicals in their “raw” • Other ingredients, such as stabi- or unformulated state are not usually lizers, dyes, and chemicals that suitable for pest control. These concen- improve or enhance pesticidal trated chemicals (active ingredients) activity. may not mix well with water, may be Usually you need to mix a formu- chemically unstable, and may be dif- lated product with water or oil for final ficult to handle and transport. For application. Baits, granules, gels, and these reasons, manufacturers add inert dusts, however, are ready for use without substances such as clays and solvents additional dilution. Manufacturers to improve application effectiveness, package many specialized pesticides, Inert safety, handling, and storage. such as products for households, in ingredients do not possess pesticidal ready-to-use formulations. activity and are added to serve as a A single active ingredient often is carrier for the active ingredient. The sold in several kinds of formulations. mixture of active and inert ingredients Abbreviations are often used to describe is called a pesticide formulation. This the formulation (e.g., WP for wettable formulation may consist of: powders); how the pesticide is used • The pesticide active ingredient (e.g., TC for termiticide concentrate); that controls the target pest.
    [Show full text]
  • AP-42, CH 9.2.2: Pesticide Application
    9.2.2PesticideApplication 9.2.2.1General1-2 Pesticidesaresubstancesormixturesusedtocontrolplantandanimallifeforthepurposesof increasingandimprovingagriculturalproduction,protectingpublichealthfrompest-bornediseaseand discomfort,reducingpropertydamagecausedbypests,andimprovingtheaestheticqualityofoutdoor orindoorsurroundings.Pesticidesareusedwidelyinagriculture,byhomeowners,byindustry,andby governmentagencies.Thelargestusageofchemicalswithpesticidalactivity,byweightof"active ingredient"(AI),isinagriculture.Agriculturalpesticidesareusedforcost-effectivecontrolofweeds, insects,mites,fungi,nematodes,andotherthreatstotheyield,quality,orsafetyoffood.Theannual U.S.usageofpesticideAIs(i.e.,insecticides,herbicides,andfungicides)isover800millionpounds. AiremissionsfrompesticideusearisebecauseofthevolatilenatureofmanyAIs,solvents, andotheradditivesusedinformulations,andofthedustynatureofsomeformulations.Mostmodern pesticidesareorganiccompounds.EmissionscanresultdirectlyduringapplicationorastheAIor solventvolatilizesovertimefromsoilandvegetation.Thisdiscussionwillfocusonemissionfactors forvolatilization.Thereareinsufficientdataavailableonparticulateemissionstopermitemission factordevelopment. 9.2.2.2ProcessDescription3-6 ApplicationMethods- Pesticideapplicationmethodsvaryaccordingtothetargetpestandtothecroporothervalue tobeprotected.Insomecases,thepesticideisapplieddirectlytothepest,andinotherstothehost plant.Instillothers,itisusedonthesoilorinanenclosedairspace.Pesticidemanufacturershave developedvariousformulationsofAIstomeetboththepestcontrolneedsandthepreferred
    [Show full text]
  • Use of Pesticide Products Containing Toxic Inert Ingredients
    Inert Ingredients in Pesticide Products Inert Ingredients in Pesticide Products; Policy Statement OPP-36140; FRL-3190-1 AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: This notice announces certain policies designed to reduce the potential for adverse effects from the use of pesticide products containing toxic inert ingredients. The Agency is encouraging the use of the least toxic inert ingredient available and requiring the development of data necessary to determine the conditions of safe use of products containing toxic inert ingredients. In support of these policies, the Agency has categorized inert ingredients according to toxicity. The Agency will (1) require data and labeling for inert ingredients which have been demonstrated to cause toxic effects; (2) in selected cases pursue hearings to determine whether such inert ingredients should continue to be permitted in pesticide products; (3) require data on inert ingredients which are similar in chemical structure to chemicals with demonstrated toxic properties or which have suggestive, but incomplete data on toxicity; and (4) subject all new inert ingredients, both for food and non-food uses, to a minimal data set and scientific review. The Agency is soliciting comments on these policies. EFFECTIVE DATE: This policy is effective on April 22, 1987, subject to revision if comments received warrant such revision. ADDRESSES: Three copies of written comments bearing the document control number [OPP-36140] should be submitted, by mail, to: Information Services Section, Program Management and Support Division (TS-757C), Office of Pesticide Programs, Environmental Protection Agency, 401 M St. SW., Washington, DC 20460. In person deliver comments to: Rm. 236, CM #2, 1921 Jefferson Davis Highway, Arlington, VA.
    [Show full text]
  • Pesticides and Toxic Substances
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON D.C., 20460 OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES MEMORANDUM DATE: July 31, 2006 SUBJECT: Finalization of Interim Reregistration Eligibility Decisions (IREDs) and Interim Tolerance Reassessment and Risk Management Decisions (TREDs) for the Organophosphate Pesticides, and Completion of the Tolerance Reassessment and Reregistration Eligibility Process for the Organophosphate Pesticides FROM: Debra Edwards, Director Special Review and Reregistration Division Office of Pesticide Programs TO: Jim Jones, Director Office of Pesticide Programs As you know, EPA has completed its assessment of the cumulative risks from the organophosphate (OP) class of pesticides as required by the Food Quality Protection Act of 1996. In addition, the individual OPs have also been subject to review through the individual- chemical review process. The Agency’s review of individual OPs has resulted in the issuance of Interim Reregistration Eligibility Decisions (IREDs) for 22 OPs, interim Tolerance Reassessment and Risk Management Decisions (TREDs) for 8 OPs, and a Reregistration Eligibility Decision (RED) for one OP, malathion.1 These 31 OPs are listed in Appendix A. EPA has concluded, after completing its assessment of the cumulative risks associated with exposures to all of the OPs, that: (1) the pesticides covered by the IREDs that were pending the results of the OP cumulative assessment (listed in Attachment A) are indeed eligible for reregistration; and 1 Malathion is included in the OP cumulative assessment. However, the Agency has issued a RED for malathion, rather than an IRED, because the decision was signed on the same day as the completion of the OP cumulative assessment.
    [Show full text]
  • Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 Theinternational Programme on Chemical Safety (IPCS) Was Established in 1980
    The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 cation Hazard of Pesticides by and Guidelines to Classi The WHO Recommended Classi The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 TheInternational Programme on Chemical Safety (IPCS) was established in 1980. The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase international coordination in the field of chemical safety. The Participating Organizations are: FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the Participating Organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment. WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition ISBN 978-92-4-000566-2 (electronic version) ISBN 978-92-4-000567-9 (print version) ISSN 1684-1042 © World Health Organization 2020 Some rights reserved.
    [Show full text]
  • Toxicity and Hazard of Pesticides
    Pesticide Toxicity and Hazard April, 2017 Introduction Pesticide applicators should understand the hazards and risks associated with the pesticides they use. Pesticides vary greatly in toxicity. Toxicity depends on the chemical and physical properties of a substance, and may be defined as the quality of being poisonous or harmful to animals or plants. Pesticides have many different modes of action, but in general cause biochemical changes which interfere with normal cell functions. The toxicity of any compound is related to the dose. A highly toxic substance causes severe symptoms of poisoning with small doses. A substance with a low toxicity generally requires large doses to produce mild symptoms. Even common substances like coffee or salt become poisons if large amounts are consumed. Toxicity can be either acute or chronic. Acute toxicity is the ability of a substance to cause harmful effects which develop rapidly following exposure, i.e. a few hours or a day. Chronic toxicity is the ability of a substance to cause adverse health effects resulting from long-term exposure to a substance. There is a great range in the toxicity of pesticides to humans. The relative hazard of a pesticide is dependent upon the toxicity of the pesticide, the dose and the length of time exposed. The hazard in using a pesticide is related to the likelihood of exposure to harmful amounts of the pesticide. The toxicity of a pesticide can’t be changed but the risk of exposure can be reduced with the use of proper personal protective equipment (PPE), proper handling and application procedures. Pesticide Toxicity Some pesticides are dangerous after one large dose (acute toxicity).
    [Show full text]