Chapter 12 Central Nervous System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Frontal Lobe Anterior Corpora Commissure Quadrigemina Superior Colliculus Optic Chiasm Inferior Colliculus
Chapter 16 The Nervous System The Brain and Cranial Nerves Lecture Presentation by Steven Bassett Southeast Community College © 2015 Pearson Education, Inc. Introduction • The brain is a complex three-dimensional structure that performs a bewildering array of functions • Think of the brain as an organic computer • However, the brain is far more versatile than a computer • The brain is far more complex than the spinal cord • The brain consists of roughly 20 billion neurons © 2015 Pearson Education, Inc. An Introduction to the Organization of the Brain • Embryology of the Brain • The CNS begins as a neural tube • The lumen of the tube (neurocoel) is filled with fluid • The lumen of the tube will expand thus forming the various ventricles of the brain • In the fourth week of development, the cephalic area of the neural tube enlarges to form: • Prosencephalon • Mesencephalon • Rhombencephalon © 2015 Pearson Education, Inc. Table 16.1 Development of the Human Brain © 2015 Pearson Education, Inc. An Introduction to the Organization of the Brain • Embryology of the Brain (continued) • Prosencephalon eventually develops to form: • Telencephalon forms: • Cerebrum • Diencephalon forms: • Epithalamus, thalamus, and hypothalamus. © 2015 Pearson Education, Inc. Table 16.1 Development of the Human Brain © 2015 Pearson Education, Inc. An Introduction to the Organization of the Brain • Embryology of the Brain (continued) • Mesencephalon • Does not subdivide • Becomes the midbrain © 2015 Pearson Education, Inc. Table 16.1 Development of the Human Brain © 2015 Pearson Education, Inc. An Introduction to the Organization of the Brain • Embryology of the Brain (continued) • Rhombencephalon • Eventually develops to form: • Metencephalon: forms the pons and cerebellum • Myelencephalon: forms the medulla oblongata © 2015 Pearson Education, Inc. -
How Does the Human Brain Differentiate? —Normal and Abnormal Development—
Forum Forma, 27, S29–S31, 2012 How does the Human Brain Differentiate? —Normal and Abnormal Development— Yoshihiro Fukui Department of Anatomy and Developmental Neurobiology, University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan E-mail address: [email protected] (Received January 24, 2012; Accepted March 17, 2012) Keywords: Neural Tube, Brain Vesicle, Cerebrospinal Fluid, Hydrocephalus, Anencephaly, Microcephaly 1. Three Primary Brain Vesicles Convert into Five Sec- 2. Development of the Brain Ventricular System ondary Brain Vesicles The expanded primitive ventricles formed by the neural The central nervous system (CNS) appears during the 3rd canal in the secondary brain vesicles give rise to the ven- week as a neural plate growing out from the ectoderm of tricular system of the brain (Fig. 2). The ventricles of the the germ disc. The lateral edges elevate to form the neural brain include the lateral, third, and fourth ventricles. The folds, and finally fuse, forming the neural tube. Neurula- two lateral ventricles communicate through the interven- tion begins on day 22, and the cranial neuropore, which is tricular foramina (of Monro) with the third ventricle. The an opening at anterior end of the embryonic neural canal, third ventricle is connected to the fourth ventricle by the closes on day 24. The future eyes appear as outpouchings cerebral aqueduct (aqueduct of Sylvius). The fourth ven- from the forebrain neural folds by day 22. Before neu- tricle in turn is continuous with the narrow central canal of rulation begins, the primordia of the three primary brain the spinal cord and, through the three foramina in its roof, vesicles are visible as broadenings in the neural plate as with the subarachnoid space. -
Neuroanatomy Dr
Neuroanatomy Dr. Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018 Prof Yousry 10/15/17 A F B K G C H D I M E N J L Ventricular System, The Cerebrospinal Fluid, and the Blood Brain Barrier The lateral ventricle Interventricular foramen It is Y-shaped cavity in the cerebral hemisphere with the following parts: trigone 1) A central part (body): Extends from the interventricular foramen to the splenium of corpus callosum. 2) 3 horns: - Anterior horn: Lies in the frontal lobe in front of the interventricular foramen. - Posterior horn : Lies in the occipital lobe. - Inferior horn : Lies in the temporal lobe. rd It is connected to the 3 ventricle by body interventricular foramen (of Monro). Anterior Trigone (atrium): the part of the body at the horn junction of inferior and posterior horns Contains the glomus (choroid plexus tuft) calcified in adult (x-ray&CT). Interventricular foramen Relations of Body of the lateral ventricle Roof : body of the Corpus callosum Floor: body of Caudate Nucleus and body of the thalamus. Stria terminalis between thalamus and caudate. (connects between amygdala and venteral nucleus of the hypothalmus) Medial wall: Septum Pellucidum Body of the fornix (choroid fissure between fornix and thalamus (choroid plexus) Relations of lateral ventricle body Anterior horn Choroid fissure Relations of Anterior horn of the lateral ventricle Roof : genu of the Corpus callosum Floor: Head of Caudate Nucleus Medial wall: Rostrum of corpus callosum Septum Pellucidum Anterior column of the fornix Relations of Posterior horn of the lateral ventricle •Roof and lateral wall Tapetum of the corpus callosum Optic radiation lying against the tapetum in the lateral wall. -
Is Composed from Spinal Cord and Brain
doc. MUDr. Adriana Boleková, PhD. MVDr. Natália Hvizdošová, PhD. CENTRAL NERVOUS SYSTEM – is composed from spinal cord and brain SPINAL CORD cranial border: foramen magnum, pyramidal decussation, exit of first pair of spinal nerves caudal border: level of L1 – L2 vertebrae medullary cone – filum terminale (S2) – cauda equina enlargements: cervical enlargement (C5 – Th1): origin of nerves for upper extremity – brachial plexus lumbosacral enlargement (L1 – S2): origin of nerves for lower extremity – lumbosacral plexus external features: anterior median fissure anterolateral sulcus – anterior roots of spinal nn. posterolateral sulcus – posterior roots of spinal nn. posterior median sulcus posterior intermediate sulcus internal features: White matter anterior funiculus (between anterior median fissure and anterolateral sulcus) lateral funiculus (between anterolateral and posterolateral sulci) posterior funiculus (between posterolateral sulcus and posterior median sulcus) fasciculus gracilis fasciculus cuneatus Gray matter anterior (ventral) horn – motor function: Rexed laminae I – VI lateral horn – serves to visceral function: Rexed lamina VII dorsal (posterior) horn – sensory information: Rexed laminae VIII – IX central grey matter – interneurons: around central canal Rexed lamina X Central canal cranially opens into IV. ventricle caudally expands into terminal ventricle vessels of spinal cord: Arteries: spinal brr. from surrounding arteries – anterior radicular aa., posterior radicular aa.: posterior spinal aa. (in posterolateral -
Brachycephaly and Cerebrospinal Fluid Disorders
life Review The Need for Head Space: Brachycephaly and Cerebrospinal Fluid Disorders Clare Rusbridge 1,2,* and Penny Knowler 1 1 Faculty of Health & Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK; [email protected] 2 Fitzpatrick Referrals, Godalming GU7 2QQ, UK * Correspondence: [email protected] Abstract: Brachycephalic dogs remain popular, despite the knowledge that this head conformation is associated with health problems, including airway compromise, ocular disorders, neurological dis- ease, and other co-morbidities. There is increasing evidence that brachycephaly disrupts cerebrospinal fluid movement and absorption, predisposing ventriculomegaly, hydrocephalus, quadrigeminal cistern expansion, Chiari-like malformation, and syringomyelia. In this review, we focus on cere- brospinal fluid physiology and how this is impacted by brachycephaly, airorhynchy, and associated craniosynostosis. Keywords: ventriculomegaly; hydrocephalus; Chiari malformation; syringomyelia; canine; cran- iosynostosis; supracollicular fluid collection; quadrigeminal cistern; lateral aperture; sleep disordered breathing; brachycephalic obstructive airway disease 1. Introduction Brachycephalic dogs and cats have proved to be increasingly popular since they Citation: Rusbridge, C.; Knowler, P. were introduced to Europe in Victorian times. This rising popularity defies a high preva- The Need for Head Space: lence of conformation-related morbidity, including breathing, ocular, and neurological Brachycephaly and Cerebrospinal disorders [1,2]. Brachycephaly in domestic pets is a consequence of selecting for juvenile Fluid Disorders. Life 2021, 11, 139. characteristics of a flattened face and a rounded head [3]. Calvarial doming associated https://doi.org/10.3390/life11020139 with wide zygomatic arches and a wide, flattened, or convex palate is compensation for premature closure of skull-base sutures, including the basispheno-presphenoid syn- Academic Editor: Edgar Lehr chondrosis and spheno-occipital synchondrosis [4,5]. -
Redalyc.Magendie and Luschka. Holes in the 4 Th Ventricle
Dementia & Neuropsychologia ISSN: 1980-5764 [email protected] Associação Neurologia Cognitiva e do Comportamento Brasil Engelhardt, Eliasz Magendie and Luschka. Holes in the 4 th ventricle Dementia & Neuropsychologia, vol. 10, núm. 3, julio-septiembre, 2016, pp. 254-258 Associação Neurologia Cognitiva e do Comportamento São Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=339547442015 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Dement Neuropsychol 2016 September;10(3):254-258 History Note Magendie and Luschka Holes in the 4th ventricle Eliasz Engelhardt1 ABSTRACT. Cerebrospinal fluid (CSF) is a complex liquid formed mainly by the choroid plexuses. After filling the ventricular system where it circulates, CSF flows out to the subarachnoid spaces through openings in the 4th ventricle. Following numerous studies on CSF pathways, these openings were first discovered in the 19th century by two notable researchers, François Magendie and Hubert von Luschka, who described the median and lateral openings subsequently named after them. Even after the studies of Axel Key and Gustav Magnus Retzius confirming these openings, their existence was questioned by many anatomists, yet acknowledged by others. Finally gaining the acceptance of all, recognition of the holes endures to the present day. Interest in these openings may be attributed to the several congenital or acquired pathological conditions that may affect them, usually associated with hydrocephalus. We report some historical aspects of these apertures and their discoverers. -
Brain Stem Consists: - Medulla Oblongata - Pons - Midbrain (Mesencephalon)
Brain Stem Consists: - Medulla oblongata - Pons - Midbrain (Mesencephalon) Lies upon the basal portion of occipital bone (clivus) and is connected to cerebellum rostral : diencephalon caudal : spinal cord Contains numerous ascending and descending fibre tracts Brain stem nuclei receive fibres from or sent fibres into cranial nerves (III-XII) attach to the surface of the brain stem cranial nerve nuclei Ascenden and Descenden Pathway of Brain Stem Ascenden Descenden Lemniscus medialis Traktus corticospinalis Tractus spinothalamicus Tractus corticonuclearis Lemniscus trigeminalis Corticopontine fibres Lemniscus lateralis Tractus rubrospinalis Reticularis fibres system Tractus tectospinalis Fasciculus longitudinalis medialis Fasciculuc longitudinal medialis Pedunculus cerebellaris superior Tractus vestibulospinalis Pedunculus cerebellaris inferior Tractus reticulospinalis Secondary vestibularis fibres Tractus tegmentalis centralis Secondary gustatorius fibres Tractus descenden N.V Brain Stem Contains a complex and heterogeneous matrix of neurones reticular formation functions : - control over the level of consciousness - the perception of pain - regulation of the cardiovascular and respiratory systems It also has extensive connections with cranial nerve nuclei, cerebellum, brain stem and spinal motor mechanisms movement, posture and muscle tone Dorsal Surface (External Feature) Peduncles Dorsal median sulcus Dorsal columns (fasciculi gracilis and cuneatus) Gracile and cuneate tubercles (nuclei gracilis and cuneatus) Fossa rhomboidea -
Midterm Exam 2014
9.14_2014 Midterm Exam NAME KEY Class 19 1) Matching: Write the letter of the best match in the space before each name (11 points) A. Pioneer in biopsychology B. Chemical synapses H Fritch and Hitzig C. Neurons in tissue culture G Ramon y Cajal D. Nerve growth factor J Charles Scott Sherrington E. Gap junctions B Otto Loewi F. Induction of CNS development F Hans Spemann G. Prolific neuroanatomist, Golgi method K Bror Rexed H. Electrical stimulation of neocortex C Ross Harrison I. Pharmacological definitions A Karl Lashley J. Spinal reflexes, physiology L Walle Nauta K. Layers of the gray matter D Rita Levi-Montalcini L. Selective stains for degenerating axons N Hans Kuypers M. Tract tracing by MRI N. Descending pathways, motor control 2) Short definitions: (22 points) a) Anterograde degeneration When an axon is transected, the portion of the axon no longer connected to the cell body undergoes “anterograde” degeneration. [When neuronal cell bodies are destroyed, their axons undergo anterograde degeneration.] b) Motor neuron A neuron with an axon that leaves the CNS. It terminates on a muscle cell or on a peripheral ganglion. c) Schwann cell Glial cell found in peripheral nerves. Schwann cells form myelin in the PNS [by wrapping their membranes around axons]. 9.14, March 19, 2014 Page 1 9.14_2014 Midterm Exam NAME KEY Class 19 d) Sensory placode A thickening of a region of the ectodermal layer of the embryo in which some of the cells become primary sensory neurons. e) Rhombic lip A transient neural proliferative zone located in the alar plate of the rostral hindbrain. -
CENTRAL NERVOUS SYSTEM Composed from Spinal Cord and Brain
CENTRAL NERVOUS SYSTEM composed from spinal cord and brain SPINAL CORD − is developmentally the oldest part of CNS − is long about 45 cm in adult − fills upper 2/3 of vertebral canal cranial border at level of: foramen magnum, pyramidal decussation, exit of first pair of spinal nerves caudal border: level of L1 vertebra – medullary cone – filum terminale made by pia mater (ends at level of S2 vertebra) – spinal roots below L1 vertebra form cauda equina two enlargements: • cervical enlargement (CV – ThI): origin of nerves for upper extremity – brachial plexus • lumbosacral enlargement (LI – SII): origin of nerves for lower extremity – lumbosacral plexus Spinal segment is part of spinal cord where 1 pair of spinal n. exits. Spinal cord consists of 31 spinal segments and 31 pairs of spinal nn.: 8 cervical, 12 thoracic, 5 lumbar, 1 coccygeal. Spinal nn. leave spinal cord through íntervertebral foramens. Denticulate ligg. attach spinal segments to vertebral canal. Dermatome is part of skin innervated by 1 spinal nerve. external features: • anterior median fissure • anterolateral sulcus – exits of anterior roots of spinal nn. (laterally to anterior median fissure) • posterolateral sulcus – exits of posterior roots of spinal nn. • posterior median sulcus • posterior intermediate sulcus internal features: White matter • anterior funiculus (between anterior median fissure and anterolateral sulcus) • lateral funiculus (between anterolateral and posterolateral sulci) • posterior funiculus (between posterolateral sulcus and posterior median sulcus) is divided by posterior intermediate sulcus to: − gracile fasciculus – medial one − cuneate fasciculus – lateral one, both for sensory tracts of fine sensation White matter of spinal cord contains fibres of ascending and descending nerve tracts. -
Median Aperture of the Fourth Ventricle Revisited
Folia Morphol. Vol. 70, No. 2, pp. 84–90 Copyright © 2011 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl Median aperture of the fourth ventricle revisited M. Ciołkowski1, 2, M. Sharifi1, 3, S. Tarka4, B. Ciszek1, 5 1Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Poland 2Department of Neurosurgery, Bielanski Hospital, Warsaw, Poland 3Department of Paediatric Otolaryngology, Medical University of Warsaw, Poland 4Department of Forensic Medicine, Medical University of Warsaw, Poland 5Department of Neurosurgery, Prof. Bogdanowicz Children’s Hospital, Warsaw, Poland [Received 22 March 2011; Accepted 5 April 2011] Background: The median aperture of Magendie is the largest of three open- ings of the fourth ventricle and thus it forms the main path for the outflow of the cerebrospinal fluid from the ventricle. The Magendie aperture connects the fourth ventricle with the cisterna magna and makes a natural corridor for neu- rosurgical approach and inspection of the ventricle and its floor. The purpose of this study was to give a contemporary anatomical view of this structure in the context of historical data. Material and methods: The Magendie foramen was studied in 30 fixed spe- cimens of human brainstems with cerebella. The microdissection technique was used. Measurements were taken with a microscope ocular ruler. Results: The aperture is limited by the following structures: obex and gracile tubercles inferiorly, and tela choroidea with choroid plexus superolaterally. Obex tubercles usually have the form of a piece of neural tissue bridging two halves of the brainstem above the entrance to the central canal. -
Meninges,Cerebrospinal Fluid, and the Spinal Cord
The Nervous System MENINGES CSF Introduction Protection of the brain Bone (skull) Membranes (meninges) Watery cushion (cerebrospinal fluid) Blood-brain barrier (astrocytes) The Meninges Series of membranes Cover and protect the CNS Anchor and cushion the brain Contain cerebrospinal fluid (CSF) The Meninges Three layers Dura mater Arachnoid mater Pia mater Skin of scalp Periosteum Bone of skull Periosteal Dura Meningeal mater Superior Arachnoid mater sagittal sinus Pia mater Subdural Arachnoid villus space Blood vessel Subarachnoid Falx cerebri space (in longitudinal fissure only) Figure 12.24 The Meninges Dura mater Strongest meninx Fibrous connective tissue Limit excessive movement of the brain Superior sagittal sinus Falx cerebri Straight sinus Crista galli of the Tentorium ethmoid cerebelli bone Falx Pituitary cerebelli gland (a) Dural septa Figure 12.25a The Meninges Arachnoid mater Middle layer with weblike extensions Separated from the dura mater by the subdural space Subarachnoid space contains CSF and blood vessels The Meninges Pia mater Layer of delicate vascularized connective tissue Clings tightly to the brain Meningitis Inflammation of meninges May be bacterial or viral Diagnosed by obtaining CSF sample via lumbar tap T12 Ligamentum flavum L5 Lumbar puncture needle entering subarachnoid space L4 Supra- spinous ligament L5 Filum terminale S1 Inter- Cauda equina vertebral Arachnoid Dura in subarachnoid disc matter mater space Figure 12.30 Cerebrospinal Fluid (CSF) Composition Watery solution Modified -
Chapter 14 Lecture Outline
Chapter 14 Lecture Outline See separate PowerPoint slides for all figures and tables pre- inserted into PowerPoint without notes. Copyright © McGraw-Hill Education. Permission required for reproduction or display. 1 Introduction • Evolution of human central nervous system shows that spinal cord has changed very little, while brain has changed a great deal – Greatest growth in areas of vision, memory, and motor control of the prehensile hand 14-2 Major Landmarks • Three major portions of the brain – Cerebrum is 83% of brain volume; cerebral hemispheres, gyri and sulci, longitudinal fissure, corpus callosum – Cerebellum contains 50% of the neurons; second largest brain region, located in posterior cranial fossa – Brainstem is the portion of the brain that remains if the cerebrum and cerebellum are Figure 14.1b removed; diencephalon, midbrain, pons, and medulla oblongata 14-3 Major Landmarks Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. • Longitudinal fissure—deep Cerebral hemispheres groove that separates cerebral hemispheres • Gyri—thick folds Frontal lobe Central sulcus • Sulci—shallow grooves Parietal lobe • Corpus callosum—thick nerve bundle at bottom of Occipital lobe longitudinal fissure that Longitudinal fissure connects hemispheres (a) Superior view Figure 14.1a 14-4 Major Landmarks Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Central sulcus Parietal lobe Cingulate gyrus Corpus callosum Parieto–occipital sulcus Frontal lobe Occipital lobe