How Does the Human Brain Differentiate? —Normal and Abnormal Development—
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mir-124 Regulates Early Neurogenesis in the Optic Vesicle and Forebrain, Targeting Neurod1
Published online 3 December 2010 Nucleic Acids Research, 2011, Vol. 39, No. 7 2869–2879 doi:10.1093/nar/gkq904 MiR-124 regulates early neurogenesis in the optic vesicle and forebrain, targeting NeuroD1 Kaili Liu1,2,3, Ying Liu1,2,*, Weichuan Mo1,3, Rong Qiu1, Xiumei Wang1,2, Jane Y. Wu1,4 and Rongqiao He1,3,5,* 1The State Key Laboratory of Brain and Cognitive Science, 2Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, 3Graduate University of Chinese Academy of Sciences, Beijing 100049, China, 4Department of Neurology, Lurie Comprehensive Cancer Center, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA and 5Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing 100101, China Received April 23, 2010; Revised September 5, 2010; Accepted September 23, 2010 ABSTRACT post-transcriptional mechanisms controlling their expres- sion are poorly understood. In recent years, systematic MicroRNAs (miRNAs) are involved in the fine control studies in zebrafish and mouse have determined specific of cell proliferation and differentiation during the microRNAs (miRNAs) expressed in the developing eye development of the nervous system. MiR-124, a and brain (1,2). MiR-7 and let-7 have been shown to be neural specific miRNA, is expressed from the begin- involved in Drosophila eye development (3,4). In Xenopus, ning of eye development in Xenopus, and has been miR-24a has been reported to play an essential role in shown to repress cell proliferation in the optic cup, repressing apoptosis in the developing neural retina (5). -
Frontal Lobe Anterior Corpora Commissure Quadrigemina Superior Colliculus Optic Chiasm Inferior Colliculus
Chapter 16 The Nervous System The Brain and Cranial Nerves Lecture Presentation by Steven Bassett Southeast Community College © 2015 Pearson Education, Inc. Introduction • The brain is a complex three-dimensional structure that performs a bewildering array of functions • Think of the brain as an organic computer • However, the brain is far more versatile than a computer • The brain is far more complex than the spinal cord • The brain consists of roughly 20 billion neurons © 2015 Pearson Education, Inc. An Introduction to the Organization of the Brain • Embryology of the Brain • The CNS begins as a neural tube • The lumen of the tube (neurocoel) is filled with fluid • The lumen of the tube will expand thus forming the various ventricles of the brain • In the fourth week of development, the cephalic area of the neural tube enlarges to form: • Prosencephalon • Mesencephalon • Rhombencephalon © 2015 Pearson Education, Inc. Table 16.1 Development of the Human Brain © 2015 Pearson Education, Inc. An Introduction to the Organization of the Brain • Embryology of the Brain (continued) • Prosencephalon eventually develops to form: • Telencephalon forms: • Cerebrum • Diencephalon forms: • Epithalamus, thalamus, and hypothalamus. © 2015 Pearson Education, Inc. Table 16.1 Development of the Human Brain © 2015 Pearson Education, Inc. An Introduction to the Organization of the Brain • Embryology of the Brain (continued) • Mesencephalon • Does not subdivide • Becomes the midbrain © 2015 Pearson Education, Inc. Table 16.1 Development of the Human Brain © 2015 Pearson Education, Inc. An Introduction to the Organization of the Brain • Embryology of the Brain (continued) • Rhombencephalon • Eventually develops to form: • Metencephalon: forms the pons and cerebellum • Myelencephalon: forms the medulla oblongata © 2015 Pearson Education, Inc. -
Neuroanatomy Dr
Neuroanatomy Dr. Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018 Prof Yousry 10/15/17 A F B K G C H D I M E N J L Ventricular System, The Cerebrospinal Fluid, and the Blood Brain Barrier The lateral ventricle Interventricular foramen It is Y-shaped cavity in the cerebral hemisphere with the following parts: trigone 1) A central part (body): Extends from the interventricular foramen to the splenium of corpus callosum. 2) 3 horns: - Anterior horn: Lies in the frontal lobe in front of the interventricular foramen. - Posterior horn : Lies in the occipital lobe. - Inferior horn : Lies in the temporal lobe. rd It is connected to the 3 ventricle by body interventricular foramen (of Monro). Anterior Trigone (atrium): the part of the body at the horn junction of inferior and posterior horns Contains the glomus (choroid plexus tuft) calcified in adult (x-ray&CT). Interventricular foramen Relations of Body of the lateral ventricle Roof : body of the Corpus callosum Floor: body of Caudate Nucleus and body of the thalamus. Stria terminalis between thalamus and caudate. (connects between amygdala and venteral nucleus of the hypothalmus) Medial wall: Septum Pellucidum Body of the fornix (choroid fissure between fornix and thalamus (choroid plexus) Relations of lateral ventricle body Anterior horn Choroid fissure Relations of Anterior horn of the lateral ventricle Roof : genu of the Corpus callosum Floor: Head of Caudate Nucleus Medial wall: Rostrum of corpus callosum Septum Pellucidum Anterior column of the fornix Relations of Posterior horn of the lateral ventricle •Roof and lateral wall Tapetum of the corpus callosum Optic radiation lying against the tapetum in the lateral wall. -
Redalyc.Magendie and Luschka. Holes in the 4 Th Ventricle
Dementia & Neuropsychologia ISSN: 1980-5764 [email protected] Associação Neurologia Cognitiva e do Comportamento Brasil Engelhardt, Eliasz Magendie and Luschka. Holes in the 4 th ventricle Dementia & Neuropsychologia, vol. 10, núm. 3, julio-septiembre, 2016, pp. 254-258 Associação Neurologia Cognitiva e do Comportamento São Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=339547442015 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Dement Neuropsychol 2016 September;10(3):254-258 History Note Magendie and Luschka Holes in the 4th ventricle Eliasz Engelhardt1 ABSTRACT. Cerebrospinal fluid (CSF) is a complex liquid formed mainly by the choroid plexuses. After filling the ventricular system where it circulates, CSF flows out to the subarachnoid spaces through openings in the 4th ventricle. Following numerous studies on CSF pathways, these openings were first discovered in the 19th century by two notable researchers, François Magendie and Hubert von Luschka, who described the median and lateral openings subsequently named after them. Even after the studies of Axel Key and Gustav Magnus Retzius confirming these openings, their existence was questioned by many anatomists, yet acknowledged by others. Finally gaining the acceptance of all, recognition of the holes endures to the present day. Interest in these openings may be attributed to the several congenital or acquired pathological conditions that may affect them, usually associated with hydrocephalus. We report some historical aspects of these apertures and their discoverers. -
Midterm Exam 2014
9.14_2014 Midterm Exam NAME KEY Class 19 1) Matching: Write the letter of the best match in the space before each name (11 points) A. Pioneer in biopsychology B. Chemical synapses H Fritch and Hitzig C. Neurons in tissue culture G Ramon y Cajal D. Nerve growth factor J Charles Scott Sherrington E. Gap junctions B Otto Loewi F. Induction of CNS development F Hans Spemann G. Prolific neuroanatomist, Golgi method K Bror Rexed H. Electrical stimulation of neocortex C Ross Harrison I. Pharmacological definitions A Karl Lashley J. Spinal reflexes, physiology L Walle Nauta K. Layers of the gray matter D Rita Levi-Montalcini L. Selective stains for degenerating axons N Hans Kuypers M. Tract tracing by MRI N. Descending pathways, motor control 2) Short definitions: (22 points) a) Anterograde degeneration When an axon is transected, the portion of the axon no longer connected to the cell body undergoes “anterograde” degeneration. [When neuronal cell bodies are destroyed, their axons undergo anterograde degeneration.] b) Motor neuron A neuron with an axon that leaves the CNS. It terminates on a muscle cell or on a peripheral ganglion. c) Schwann cell Glial cell found in peripheral nerves. Schwann cells form myelin in the PNS [by wrapping their membranes around axons]. 9.14, March 19, 2014 Page 1 9.14_2014 Midterm Exam NAME KEY Class 19 d) Sensory placode A thickening of a region of the ectodermal layer of the embryo in which some of the cells become primary sensory neurons. e) Rhombic lip A transient neural proliferative zone located in the alar plate of the rostral hindbrain. -
Embryology Team
Embryology team Development of cerebrum and cerebellum Team members 1- Lama Alhwairikh 1-Nawaf Modahi 2- Norah AlRefayi 2- Abdulrahman Ahmed Al-Kadhaib 3- Sara Alkhelb 3- Khalid Al-Own 4-Abdulrahman Al-Khelaif Student Guide: 1- The notes, which are written by the team, are in Blue . 2- Everything written in Red is important. • By the beginning of the 3rd week of development, three germ cell layers become established, 1 ectoderm, mesoderm and endoderm. • During the middle of the 3rd week, the dorsal midline ectoderm undergoes thickening to form the 2 neural plate. • The margins of the plate become elevated, forming 3 neural folds. • A longitudinal, midline depression, called the 4 neural groove is formed. • The 2 neural folds then fuse together, to form 5 the neural tube. • Formation of the neural tube is completed by 6 the middle of the fourth week of development. The brain vesicle grows and gives 3 dilatations named as: • Prosencephalon • Mesencephalon • Rhombencephalon Telencephalon cerebral hemispheres Forebrain prosencephalon Diencephalon Thalami Midbrain mesencephalon Mesencephalon Midbrain Metencephalon Pones & cerebellum Hindbrain rhombencephalon Myelencephalon Medulla By the end of 4th week the 3 primary vesicles develop (3 vesicles stage) By the 5th week 5 secondary vesicles develop (5 vesicles stage) By 4th week: By the 4th week: The neural tube grows rapidly and bends ventrally with the head fold, producing two flexures: Midbrain (cephalic) flexure: In the region of midbrain. Cervical flexure: between the hind brain & the spinal cord. Later Pontine flexure appears in the hindbrain, in the opposite direction of the cephalic & cervical flexures, resulting in stretching and thinning of the roof of the hindbrain. -
Median Aperture of the Fourth Ventricle Revisited
Folia Morphol. Vol. 70, No. 2, pp. 84–90 Copyright © 2011 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl Median aperture of the fourth ventricle revisited M. Ciołkowski1, 2, M. Sharifi1, 3, S. Tarka4, B. Ciszek1, 5 1Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Poland 2Department of Neurosurgery, Bielanski Hospital, Warsaw, Poland 3Department of Paediatric Otolaryngology, Medical University of Warsaw, Poland 4Department of Forensic Medicine, Medical University of Warsaw, Poland 5Department of Neurosurgery, Prof. Bogdanowicz Children’s Hospital, Warsaw, Poland [Received 22 March 2011; Accepted 5 April 2011] Background: The median aperture of Magendie is the largest of three open- ings of the fourth ventricle and thus it forms the main path for the outflow of the cerebrospinal fluid from the ventricle. The Magendie aperture connects the fourth ventricle with the cisterna magna and makes a natural corridor for neu- rosurgical approach and inspection of the ventricle and its floor. The purpose of this study was to give a contemporary anatomical view of this structure in the context of historical data. Material and methods: The Magendie foramen was studied in 30 fixed spe- cimens of human brainstems with cerebella. The microdissection technique was used. Measurements were taken with a microscope ocular ruler. Results: The aperture is limited by the following structures: obex and gracile tubercles inferiorly, and tela choroidea with choroid plexus superolaterally. Obex tubercles usually have the form of a piece of neural tissue bridging two halves of the brainstem above the entrance to the central canal. -
Meninges,Cerebrospinal Fluid, and the Spinal Cord
The Nervous System MENINGES CSF Introduction Protection of the brain Bone (skull) Membranes (meninges) Watery cushion (cerebrospinal fluid) Blood-brain barrier (astrocytes) The Meninges Series of membranes Cover and protect the CNS Anchor and cushion the brain Contain cerebrospinal fluid (CSF) The Meninges Three layers Dura mater Arachnoid mater Pia mater Skin of scalp Periosteum Bone of skull Periosteal Dura Meningeal mater Superior Arachnoid mater sagittal sinus Pia mater Subdural Arachnoid villus space Blood vessel Subarachnoid Falx cerebri space (in longitudinal fissure only) Figure 12.24 The Meninges Dura mater Strongest meninx Fibrous connective tissue Limit excessive movement of the brain Superior sagittal sinus Falx cerebri Straight sinus Crista galli of the Tentorium ethmoid cerebelli bone Falx Pituitary cerebelli gland (a) Dural septa Figure 12.25a The Meninges Arachnoid mater Middle layer with weblike extensions Separated from the dura mater by the subdural space Subarachnoid space contains CSF and blood vessels The Meninges Pia mater Layer of delicate vascularized connective tissue Clings tightly to the brain Meningitis Inflammation of meninges May be bacterial or viral Diagnosed by obtaining CSF sample via lumbar tap T12 Ligamentum flavum L5 Lumbar puncture needle entering subarachnoid space L4 Supra- spinous ligament L5 Filum terminale S1 Inter- Cauda equina vertebral Arachnoid Dura in subarachnoid disc matter mater space Figure 12.30 Cerebrospinal Fluid (CSF) Composition Watery solution Modified -
Reduced H3k27me3 Suppresses Wnt/Β-Catenin Signaling by S-Adenosylmethionine De Ciency in Neural Tube Development
Reduced H3K27me3 Suppresses Wnt/β-catenin Signaling by S-adenosylmethionine Deciency in Neural Tube Development Li Zhang Shanxi Medical University Xiuwei Wang Capital Institute of Pediatrics Rui Cao Shanxi Medical University Dandan Li Shanxi Medical University Yufei Wang Shanxi Medical University Ajab Khan Shanxi Medical University Keke Wang First Hospital of Shanxi Medical University Zhizhen Liu Shanxi Medical University Bo Niu ( [email protected] ) Shanxi Medical University Jun Xu First Hospital of Shanxi Medical University Jun Xie Shanxi Medical University Research Article Keywords: Neural tube defects, S-adenosylmethionine, Wnt/β-catenin signaling, H3K27me3, differentiation Posted Date: June 2nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-562510/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/21 Abstract Background: S-adenosylmethionine as a major methyl donor play a key role in methylation modication in vivo, and its disorder was closely related to neural tube defects. However, the underlying mechanism between SAM deciency and NTDs remained unclear. Methods: we investigated the association between histone methylation modication and Wnt/β-catenin signaling pathway in NTDs induced by SAM deciency. The levels of SAM and SAH were determined by enzyme linked immunosorbent assay. The expressions of H3K27me3 and Wnt/β-catenin signaling pathway specic markers were demonstrated by western blotting, reverse transcription, and quantitative PCR and immunouorescence in ethionine induced E11.5 mouse NTDs and NSCs models. Results: we found that the incidence rate of NTDs induced by ethionine were 46.2%, post treatment of ethionine combined with SAM, the incidence rate of NTDs was reduced to 26.2%. -
Roles of PDGF for Neural Stem Cells
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1348 Roles of PDGF for Neural Stem Cells BY MIA ENARSSON ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2004 !! !"# $ % & $ $ '% % () $ *+ ,% - .-%+ / + !!+ 0 $ '1) $ 2 . + 3 + 45+ 6! + + 7.2 8##8##68! . - - % 9 9 " % % $8 - & - + (2.* & & + % $ & $ : 7 $ & & % % & $ 2. $ $$ & $ % & $ 2. + 7 % ; -& % $ - $$ % $ 2. & + ,% $ $ % % - & % $ 2. $ $$ + % % $ 8 & - % $ ('1)* % % + ' % % - % '1) & $$ $ 2. + % $ % '1) $ $ % & $$ + ,% 0 </0= & & %- % & $ '1)+ 7 $$ % 0 </0= %- + 3 & $ $ & % $$ - + ,% && % '1)8 & - $ $$ + ) % - & & % + ' & $ % $ $ + 7 - % & + ,% % % % - % - 2. & '1)+ '1) - % & 2. -%% % &% $ 2. + ,% % ; -& & $ & 2. + ! " 2. '1) $ $$ /0= & # $ % $ %& '()$ $ #*'+), $ ! > / !! 7..2 ! 5 8??6 7.2 8##8##68! " """ 8 # (% "<< +;+< : @ " """ 8 #* To life and music! List of Papers This thesis is based on the following papers, which will be referred to in the text by their Roman numerals: I Erlandsson A., Enarsson M., Forsberg-Nilsson K. (2001) Immature neurons from CNS stem cells proliferate in response to platelet-derived growth factor. -
The Brain, Cranial Nerves, and Sensory and Motor Pathways
13 The Brain, Cranial Nerves, and Sensory and Motor Pathways Lecture Presentation by Lori Garrett © 2018 Pearson Education, Inc. Note to the Instructor: For the third edition of Visual Anatomy & Physiology, we have updated our PowerPoints to fully integrate text and art. The pedagogy now more closely matches that of the textbook. The goal of this revised formatting is to help your students learn from the art more effectively. However, you will notice that the labels on the embedded PowerPoint art are not editable. You can easily import editable art by doing the following: Copying slides from one slide set into another You can easily copy the Label Edit art into the Lecture Presentations by using either the PowerPoint Slide Finder dialog box or Slide Sorter view. Using the Slide Finder dialog box allows you to explicitly retain the source formatting of the slides you insert. Using the Slide Finder dialog box in PowerPoint: 1. Open the original slide set in PowerPoint. 2. On the Slides tab in Normal view, click the slide thumbnail that you want the copied slides to follow. 3. On the toolbar at the top of the window, click the drop down arrow on the New Slide tab. Select Reuse Slides. 4. Click Browse to look for the file; in the Browse dialog box, select the file, and then click Open. 5. If you want the new slides to keep their current formatting, in the Slide Finder dialog box, select the Keep source formatting checkbox. When this checkbox is cleared, the copied slides assume the formatting of the slide they are inserted after. -
Chapter 12 Central Nervous System
CHAPTER 12 CENTRAL NERVOUS SYSTEM Copyright © 2010 Pearson Education, Inc. CENTRAL NERVOUS SYSTEM Embryonic Development Copyright © 2010 Pearson Education, Inc. Figure 12.1 Development of the neural tube from embryonic ectoderm (1 of 4). Surface Head ectoderm Neural plate Tail 1 The neural plate forms from surface ectoderm. Copyright © 2010 Pearson Education, Inc. Figure 12.1 Development of the neural tube from embryonic ectoderm (2 of 4). Neural folds Neural groove 2 The neural plate invaginates, forming the neural groove, flanked by neural folds. Copyright © 2010 Pearson Education, Inc. Figure 12.1 Development of the neural tube from embryonic ectoderm (3 of 4). Neural crest 3 Neural fold cells migrate to form the neural crest, which will form much of the PNS and many other structures. Copyright © 2010 Pearson Education, Inc. Figure 12.1 Development of the neural tube from embryonic ectoderm (4 of 4). Head Surface ectoderm Neural tube Tail 4 The neural groove becomes the neural tube, which will form CNS structures. Copyright © 2010 Pearson Education, Inc. Neural tube formation involves all of these stages except… 1) Neural plate 2) Neural ring 3) Neural groove 4) Surface ectoderm 5) Neural tube Copyright © 2010 Pearson Education, Inc. Figure 12.2 Embryonic development of the human brain. (a) (b) Primary brain (c) Secondary brain (d) Adult brain (e) Adult Neural vesicles vesicles structures neural tube canal regions Cerebrum: cerebral Lateral hemispheres (cortex, Telencephalon ventricles white matter, basal nuclei) Anterior Prosencephalon Diencephalon (rostral) (forebrain) Diencephalon (thalamus, hypothalamus, Third ventricle epithalamus), retina Mesencephalon Cerebral Mesencephalon Brain stem: midbrain (midbrain) aqueduct Rhombencephalon Metencephalon Brain stem: pons (hindbrain) Cerebellum Fourth ventricle Myelencephalon Brain stem: medulla Posterior oblongata (caudal) Spinal cord Central canal Copyright © 2010 Pearson Education, Inc.