Compositae Metatrees: the Next Generation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Safety Assessment of Helianthus Annuus (Sunflower)-Derived Ingredients As Used in Cosmetics
Safety Assessment of Helianthus annuus (Sunflower)-Derived Ingredients as Used in Cosmetics Status: Draft Tentative Report for Panel Review Release Date: March 7, 2016 Panel Meeting: March 31-April 1, 2016 The 2016 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, D.P.A. This report was prepared by Lillian C. Becker, Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 Washington, DC 20036-4702 ph 202.331.0651 fax 202.331.0088 [email protected] 1 Distributed for comment only -- do not cite or quote Commitment & Credibility since 1976 MEMORANDUM To: CIR Expert Panel and Liaisons From: Lillian C. Becker, M.S. Scientific Analyst and Writer Ivan J. Boyer, PhD, DABT Senior Toxicologist Date: March 7, 2016 Subject: Helianthus annuus (Sunflower)-Derived Ingredients as Used in Cosmetics Attached is the tentative report of 13 Helianthus annuus (sunflower)-derived ingredients as used in cosmetics. [Helian122015Rep] All of these ingredients are derived from parts of the Helianathus annuus (sunflower) plant. The sunflower seed oils (with the exception of Ozonized Sunflower Seed Oil) were reviewed in the vegetable- derived oils report and are not included here. In December, 2015, the Panel issued an Insufficient Data Announcement with these data needs: • HRIPT of Hydrogenated Sunflower Seed Extract at 1% or greater • Method of manufacture, including clarification of the source material (whole plant vs “bark”), of Helianthus Annuus (Sunflower) Extract • Composition of these ingredients, especially protein content (including 2S albumin) Impurities The Council submitted summaries of HRIPTs and use studies of products containing Helianthus annuus (sunflower)-derived ingredients. -
Tree of Life Marula Oil in Africa
HerbalGram 79 • August – October 2008 HerbalGram 79 • August Herbs and Thyroid Disease • Rosehips for Osteoarthritis • Pelargonium for Bronchitis • Herbs of the Painted Desert The Journal of the American Botanical Council Number 79 | August – October 2008 Herbs and Thyroid Disease • Rosehips for Osteoarthritis • Pelargonium for Bronchitis • Herbs of the Painted Desert • Herbs of the Painted Bronchitis for Osteoarthritis Disease • Rosehips for • Pelargonium Thyroid Herbs and www.herbalgram.org www.herbalgram.org US/CAN $6.95 Tree of Life Marula Oil in Africa www.herbalgram.org Herb Pharm’s Botanical Education Garden PRESERVING THE FULL-SPECTRUM OF NATURE'S CHEMISTRY The Art & Science of Herbal Extraction At Herb Pharm we continue to revere and follow the centuries-old, time- proven wisdom of traditional herbal medicine, but we integrate that wisdom with the herbal sciences and technology of the 21st Century. We produce our herbal extracts in our new, FDA-audited, GMP- compliant herb processing facility which is located just two miles from our certified-organic herb farm. This assures prompt delivery of freshly-harvested herbs directly from the fields, or recently HPLC chromatograph showing dried herbs directly from the farm’s drying loft. Here we also biochemical consistency of 6 receive other organic and wildcrafted herbs from various parts of batches of St. John’s Wort extracts the USA and world. In producing our herbal extracts we use precision scientific instru- ments to analyze each herb’s many chemical compounds. However, You’ll find Herb Pharm we do not focus entirely on the herb’s so-called “active compound(s)” at fine natural products and, instead, treat each herb and its chemical compounds as an integrated whole. -
Barcoding the Asteraceae of Tennessee, Tribe Coreopsideae
Schilling, E.E., N. Mattson, and A. Floden. 2014. Barcoding the Asteraceae of Tennessee, tribe Coreopsideae. Phytoneuron 2014-101: 1–6. Published 20 October 2014. ISSN 2153 733X BARCODING THE ASTERACEAE OF TENNESSEE, TRIBE COREOPSIDEAE EDWARD E. SCHILLING, NICHOLAS MATTSON, AARON FLODEN Herbarium TENN Department of Ecology & Evolutionary Biology University of Tennessee Knoxville, Tennessee 37996 [email protected]; [email protected] ABSTRACT Results from barcoding studies of tribe Coreopsideae for the Tennessee flora using the nuclear ribosomal ITS marker are presented and include the first complete reports for 2 of the 20 species of the tribe that occur in the state, as well as updated reports for several others. Sequence data from the ITS region separate most of the species of Bidens in Tennessee from one another, but species of Coreopsis, especially those of sect. Coreopsis, have ITS sequences that are identical (or nearly so) to at least one congener. Comparisons of sequence data to GenBank records are complicated by apparent inaccuracies of older sequences as well as potentially misidentified samples. Broad survey of C. lanceolata from across its range showed little variability, but the ITS sequence of a morphologically distinct sample from a Florida limestone glade area was distinct in lacking a length polymorphism that was present in other samples. Tribe Coreopsideae is part of the Heliantheae alliance and earlier was often included in an expanded Heliantheae (Anderberg et al. 2007) in which it was usually treated as a subtribe (Crawford et al. 2009). The tribe shows a small burst of diversity in the southeastern USA involving Bidens and Coreopsis sect. -
Early Evolution of the Angiosperm Clade Asteraceae in the Cretaceous of Antarctica
Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica Viviana D. Barredaa,1,2, Luis Palazzesia,b,1, Maria C. Telleríac, Eduardo B. Oliverod, J. Ian Rainee, and Félix Forestb aDivisión Paleobotánica, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia,” Consejo Nacional de Investigaciones Cientificas y Técnicas, Buenos Aires C1405DJR, Argentina; bJodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom; cLaboratorio de Sistemática y Biología Evolutiva, Museo de La Plata, La Plata B1900FWA, Argentina; dCentro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Cientificas y Técnicas, 9410 Ushuaia, Tierra del Fuego, Argentina; and eDepartment of Palaeontology, GNS Science, Lower Hutt 5040, New Zealand Edited by Michael J. Donoghue, Yale University, New Haven, CT, and approved July 15, 2015 (received for review December 10, 2014) The Asteraceae (sunflowers and daisies) are the most diverse Here we report fossil pollen evidence from exposed Campanian/ family of flowering plants. Despite their prominent role in extant Maastrichtian sediments from the Antarctic Peninsula (Fig. 1, Fig. S1, terrestrial ecosystems, the early evolutionary history of this family and SI Materials and Methods, Fossiliferous Localities)(7)thatradi- remains poorly understood. Here we report the discovery of a cally changes our understanding of the early evolution of Asteraceae. number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back Results and Discussion the timing of assumed origin of the family. Reliably dated to ∼76–66 The pollen grains reported here and discovered in the Late Cre- Mya, these specimens are about 20 million years older than previ- taceous of Antarctica are tricolporate, microechinate, with long ously known records for the Asteraceae. -
Coreopsideae Daniel J
Chapter42 Coreopsideae Daniel J. Crawford, Mes! n Tadesse, Mark E. Mort, "ebecca T. Kimball and Christopher P. "andle HISTORICAL OVERVIEW AND PHYLOGENY In a cladistic analysis of morphological features of Heliantheae by Karis (1993), Coreopsidinae were reported Morphological data to be an ingroup within Heliantheae s.l. The group was A synthesis and analysis of the systematic information on represented in the analysis by Isostigma, Chrysanthellum, tribe Heliantheae was provided by Stuessy (1977a) with Cosmos, and Coreopsis. In a subsequent paper (Karis and indications of “three main evolutionary lines” within "yding 1994), the treatment of Coreopsidinae was the the tribe. He recognized ! fteen subtribes and, of these, same as the one provided above except for the follow- Coreopsidinae along with Fitchiinae, are considered ing: Diodontium, which was placed in synonymy with as constituting the third and smallest natural grouping Glossocardia by "obinson (1981), was reinstated following within the tribe. Coreopsidinae, including 31 genera, the work of Veldkamp and Kre# er (1991), who also rele- were divided into seven informal groups. Turner and gated Glossogyne and Guerreroia as synonyms of Glossocardia, Powell (1977), in the same work, proposed the new tribe but raised Glossogyne sect. Trionicinia to generic rank; Coreopsideae Turner & Powell but did not describe it. Eryngiophyllum was placed as a synonym of Chrysanthellum Their basis for the new tribe appears to be ! nding a suit- following the work of Turner (1988); Fitchia, which was able place for subtribe Jaumeinae. They suggested that the placed in Fitchiinae by "obinson (1981), was returned previously recognized genera of Jaumeinae ( Jaumea and to Coreopsidinae; Guardiola was left as an unassigned Venegasia) could be related to Coreopsidinae or to some Heliantheae; Guizotia and Staurochlamys were placed in members of Senecioneae. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca
Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Lamoreux, J. F., McKnight, M. W., and R. Cabrera Hernandez (2015). Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca. Gland, Switzerland: IUCN. xxiv + 320pp. ISBN: 978-2-8317-1717-3 DOI: 10.2305/IUCN.CH.2015.SSC-OP.53.en Cover photographs: Totontepec landscape; new Plectrohyla species, Ixalotriton niger, Concepción Pápalo, Thorius minutissimus, Craugastor pozo (panels, left to right) Back cover photograph: Collecting in Chamula, Chiapas Photo credits: The cover photographs were taken by the authors under grant agreements with the two main project funders: NGS and CEPF. -
The Origin of the Bifurcating Style in Asteraceae (Compositae)
Annals of Botany 117: 1009–1021, 2016 doi:10.1093/aob/mcw033, available online at www.aob.oxfordjournals.org The origin of the bifurcating style in Asteraceae (Compositae) Liliana Katinas1,2,*, Marcelo P. Hernandez 2, Ana M. Arambarri2 and Vicki A. Funk3 1Division Plantas Vasculares, Museo de La Plata, La Plata, Argentina, 2Laboratorio de Morfologıa Comparada de Espermatofitas (LAMCE), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina and 3Department of Botany, NMNH, Smithsonian Institution, Washington D.C., USA *For correspondence. E-mail [email protected] Received: 20 November 2015 Returned for revision: 22 December 2015 Accepted: 8 January 2016 Published electronically: 20 April 2016 Background and Aims The plant family Asteraceae (Compositae) exhibits remarkable morphological variation in the styles of its members. Lack of studies on the styles of the sister families to Asteraceae, Goodeniaceae and Calyceraceae, obscures our understanding of the origin and evolution of this reproductive feature in these groups. The aim of this work was to perform a comparative study of style morphology and to discuss the relevance of im- portant features in the evolution of Asteraceae and its sister families. Methods The histochemistry, venation and general morphology of the styles of members of Goodeniaceae, Calyceraceae and early branching lineages of Asteraceae were analysed and put in a phylogenetic framework to dis- cuss the relevance of style features in the evolution of these families. Key Results The location of lipophilic substances allowed differentiation of receptive from non-receptive style papillae, and the style venation in Goodeniaceae and Calyceraceae proved to be distinctive. -
A Taxonomic Re-Evaluation of the Allium Sanbornii Complex
University of the Pacific Scholarly Commons University of the Pacific Theses and Dissertations Graduate School 1986 A taxonomic re-evaluation of the Allium sanbornii complex Stella Sue Denison University of the Pacific Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds Part of the Biology Commons Recommended Citation Denison, Stella Sue. (1986). A taxonomic re-evaluation of the Allium sanbornii complex. University of the Pacific, Thesis. https://scholarlycommons.pacific.edu/uop_etds/2124 This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. A TAXONOMIC RE-EVALUATION OF THE ALLIUM SANBORNII COMPLEX A Thesis Presented to the Faculty of the Graduate School University of the Pacific In Partial Fulfillment of the Requirements for the Degree Master of Science by Stella S. Denison August 1986 ACKNOWLEDGMENTS Many contributions have been made for my successful completion of this work. Appreciation is extended to: Drs. Dale McNeal, Alice Hunter, and Anne Funkhouser for their advice and assistance during the research and in the preparation of this manuscript, the entire Biology faculty for their, friendship and suggestions, Ginger Tibbens for the typing of this manuscript, and to my husband, Craig, and my children, Amy, Eric and Deborah for their continued support and encouragement. Grateful acknowledgement is made to the curators of the herbaria from which material was borrowed during this investigation. These herbaria are indicated below by the standard abbreviations of Holmgren and Keuken (1974}. -
Subphyl. Nov., Based on Multi-Gene Genealogies
ISSN (print) 0093-4666 © 2011. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON Volume 115, pp. 353–363 January–March 2011 doi: 10.5248/115.353 Mortierellomycotina subphyl. nov., based on multi-gene genealogies K. Hoffmann1*, K. Voigt1 & P.M. Kirk2 1 Jena Microbial Resource Collection, Institute of Microbiology, University of Jena, Neugasse 25, 07743 Jena, Germany 2 CABI UK Centre, Bakeham Lane, Egham, Surrey TW20 9TY, United Kingdom *Correspondence to: Hoff[email protected] Abstract — TheMucoromycotina unifies two heterogenous orders of the sporangiferous, soil- inhabiting fungi. The Mucorales comprise saprobic, occasionally facultatively mycoparasitic, taxa bearing a columella, whereas the Mortierellales encompass mainly saprobic fungi lacking a columella. Multi-locus phylogenetic analyses based on eight nuclear genes encoding 18S and 28S rRNA, actin, alpha and beta tubulin, translation elongation factor 1alpha, and RNA polymerase II subunits 1 and 2 provide strong support for separation of the Mortierellales from the Mucoromycotina. The existence of a columella is shown to serve as a synapomorphic morphological trait unique to Mucorales, supporting the taxonomic separation of the acolumellate Mortierellales from the columellate Mucoromycotina. Furthermore, irregular hyphal septation and development of subbasally vesiculate sporangiophores bearing single terminal sporangia strongly correlate with the phylogenetic delimitation of Mortierellales, supporting a new subphylum, Mortierellomycotina. Key words — Zygomycetes, SSU rDNA, LSU rDNA, protein-coding genes, monophyly Introduction The type species ofMortierella Coem. 1863, M. polycephala Coem. 1863, was originally isolated from a parasitic interaction with a mushroom and named in honour of M. Du Mortier, the president of the Société de Botanique de Belgique (Coemans 1863). However, the common habit of mortierellalean species is as soil saprobes, enabling the fungi to grow on excrements, decaying plants, or (not infrequently) on decaying mushrooms and mucoralean fungi (Fischer 1892). -
Embriologia De Dasyphyllum Sprengelianum (Gardner) Cabrera (Asteraceae - Barnadesioideae) ”
i UNIVERSIDADE FEDERAL DE UBERLÂNDIA INSTITUDO DE BIOLOGIA CURSO DE CIÊNCIAS BIOLÓGICAS “Embriologia de Dasyphyllum sprengelianum (Gardner) Cabrera (Asteraceae - Barnadesioideae) ” Bárbara Santinelli Moessa Paschoal Monografia apresentada à Coordenação do Curso de Ciências Biológicas, da Universidade Federal de Uberlândia, para a obtenção do grau de Bacharel em Ciências Biológicas. Uberlândia - MG Dezembro - 2017 ii UNIVERSIDADE FEDERAL DE UBERLÂNDIA INSTITUTO DE BIOLOGIA CURSO DE CIÊNCIAS BIOLÓGICAS “Embriologia de Dasyphyllum sprengelianum (Gardner) Cabrera” Bárbara Santinelli Moessa Paschoal Juliana Marzinek Monografia apresentada à Coordenação do Curso de Ciências Biológicas, da Universidade Federal de Uberlândia, para a obtenção do grau de Bacharel em Ciências Biológicas. Uberlândia - MG Dezembro - 2017 iii UNIVERSIDADE FEDERAL DE UBERLÂNDIA INSTITUTO DE BIOLOGIA CURSO DE CIÊNCIAS BIOLÓGICAS “Embriologia de Dasyphyllum sprengelianum (Gardner) Cabrera” Bárbara Santinelli Moessa Paschoal Juliana Marzinek Instituto de Biologia Homologado pela coordenação do Curso de Ciências Biológicas em __/__/__ Celine de Melo Uberlândia - MG Dezembro - 2017 iv UNIVERSIDADE FEDERAL DE UBERLÂNDIA INSTITUTO DE BIOLOGIA CURSO DE CIÊNCIAS BIOLÓGICAS “Embriologia de Dasyphyllum sprengelianum (Gardner) Cabrera” Bárbara Santinelli Moessa Paschoal Aprovado pela Banca Examinadora em: / / Nota: ____ Profa. Dra. Juliana Marzinek Uberlândia, de de v RESUMO Dasyphyllum Kunth pertence à subfamília Barnadesioideae, que é basal em Asteraceae e é encontrado nos domínios -
Illustrated Flora of East Texas Illustrated Flora of East Texas
ILLUSTRATED FLORA OF EAST TEXAS ILLUSTRATED FLORA OF EAST TEXAS IS PUBLISHED WITH THE SUPPORT OF: MAJOR BENEFACTORS: DAVID GIBSON AND WILL CRENSHAW DISCOVERY FUND U.S. FISH AND WILDLIFE FOUNDATION (NATIONAL PARK SERVICE, USDA FOREST SERVICE) TEXAS PARKS AND WILDLIFE DEPARTMENT SCOTT AND STUART GENTLING BENEFACTORS: NEW DOROTHEA L. LEONHARDT FOUNDATION (ANDREA C. HARKINS) TEMPLE-INLAND FOUNDATION SUMMERLEE FOUNDATION AMON G. CARTER FOUNDATION ROBERT J. O’KENNON PEG & BEN KEITH DORA & GORDON SYLVESTER DAVID & SUE NIVENS NATIVE PLANT SOCIETY OF TEXAS DAVID & MARGARET BAMBERGER GORDON MAY & KAREN WILLIAMSON JACOB & TERESE HERSHEY FOUNDATION INSTITUTIONAL SUPPORT: AUSTIN COLLEGE BOTANICAL RESEARCH INSTITUTE OF TEXAS SID RICHARDSON CAREER DEVELOPMENT FUND OF AUSTIN COLLEGE II OTHER CONTRIBUTORS: ALLDREDGE, LINDA & JACK HOLLEMAN, W.B. PETRUS, ELAINE J. BATTERBAE, SUSAN ROBERTS HOLT, JEAN & DUNCAN PRITCHETT, MARY H. BECK, NELL HUBER, MARY MAUD PRICE, DIANE BECKELMAN, SARA HUDSON, JIM & YONIE PRUESS, WARREN W. BENDER, LYNNE HULTMARK, GORDON & SARAH ROACH, ELIZABETH M. & ALLEN BIBB, NATHAN & BETTIE HUSTON, MELIA ROEBUCK, RICK & VICKI BOSWORTH, TONY JACOBS, BONNIE & LOUIS ROGNLIE, GLORIA & ERIC BOTTONE, LAURA BURKS JAMES, ROI & DEANNA ROUSH, LUCY BROWN, LARRY E. JEFFORDS, RUSSELL M. ROWE, BRIAN BRUSER, III, MR. & MRS. HENRY JOHN, SUE & PHIL ROZELL, JIMMY BURT, HELEN W. JONES, MARY LOU SANDLIN, MIKE CAMPBELL, KATHERINE & CHARLES KAHLE, GAIL SANDLIN, MR. & MRS. WILLIAM CARR, WILLIAM R. KARGES, JOANN SATTERWHITE, BEN CLARY, KAREN KEITH, ELIZABETH & ERIC SCHOENFELD, CARL COCHRAN, JOYCE LANEY, ELEANOR W. SCHULTZE, BETTY DAHLBERG, WALTER G. LAUGHLIN, DR. JAMES E. SCHULZE, PETER & HELEN DALLAS CHAPTER-NPSOT LECHE, BEVERLY SENNHAUSER, KELLY S. DAMEWOOD, LOGAN & ELEANOR LEWIS, PATRICIA SERLING, STEVEN DAMUTH, STEVEN LIGGIO, JOE SHANNON, LEILA HOUSEMAN DAVIS, ELLEN D.