Mise En Page 1

Total Page:16

File Type:pdf, Size:1020Kb

Mise En Page 1 Systematic revision of the genus Isostigma Less. (Asteraceae, Coreopsideae) Guadalupe Peter Abstract Résumé PETER, G. (2009). Systematic revision of the genus Isostigma Less. (Aster- PETER, G. (2009). Révision systématique du genre Isostigma Less. (Aster- aceae, Coreopsideae). Candollea 64: 5-30. In English, English and French aceae, Coreopsideae). Candollea 64: 5-30. En anglais, résumés anglais et abstracts. français. Isostigma Less. (Asteraceae, Coreopsideae) is a South Ameri- Isostigma Less. (Asteraceae, Coreopsideae) est un genre sud- can genus, distributed in Argentina, Brazil, Bolivia, Paraguay, américain, distribué en Argentine, au Brésil, en Bolivie, au and Uruguay. This genus has 2 subgenus (Isostigma Less. and Paraguay et en Uruguay. Ce genre comprend 2 sous-genres Microtrichon Guad. Peter) including 11 species (Isostigma acaule (Isostigma Less. et Microtrichon Guad. Peter) incluant 11 (Baker) Chodat, Isostigma brasiliense (Gardner) B. D. Jacks., espèces (Isostigma acaule (Baker) Chodat, Isostigma brasi- Isostigma cordobense Cabrera, Isostigma dissitifolium Baker, liense (Gardner) B. D. Jacks., Isostigma cordobense Cabrera, Isostigma herzogii Hassl., Isostigma hoffmannii Kuntze, Iso - Isostigma dissitifolium Baker, Isostigma herzogii Hassl., stigma molfinianum Sherff, Isostigma peucedanifolium (Spreng.) Isostigma hoffmannii Kuntze, Isostigma molfinianum Sherff, Less., Isostigma scorzonerifolium (Baker) Sherff, Isostigma sim- Isostigma peucedanifolium (Spreng.) Less., Isostigma scorzo- plicifolium Less. and Isostigma sparsifolium Guad. Peter) and nerifolium (Baker) Sherff, Isostigma simplicifolium Less. et 6 varieties. Here are described the new subgenus Microtrichon Isostigma sparsifolium Guad. Peter) et 6 variétés. Ici sont and the taxon Isostigma peucedanifolium var. strictum Guad. décrits le nouveau sous-genre Microtrichon et le taxon Peter. Three new status and combinations are made: Isostigma Isostigma peucedanifolium var. strictum Guad. Peter. Trois peucedanifolium var. crithmifolium (Less.) Guad. Peter, Isostigma lectotypes sont désignés pour les noms Isostigma hoffman- peucedanifolium var. speciosum (Less.) Guad. Peter and nii, Isostigma peucedanifolium var. crithmifolium et Isostigma Isostigma simplicifolium var. riedelii (Baker) Guad. Peter. Three scorzonerifolium. Deux néotypes sont désignés pour les noms lectotypes are designated for the names Isostigma hoffmannii, Isostigma cordobense et Isostigma simplicifolium Less. var. Isostigma peucedanifolium var. crithmifolium and Isostigma simplicifolium. Un nom (Isostigma megapotamicum (Spreng.) scorzonerifolium. Two neotypes are designated for the names Sherff) est exclu. Des cartes de distribution et des clés d’iden- Isostigma cordobense and Isostigma simplicifolium Less. var. tification sont aussi données. simplicifolium. One name (Isostigma megapotamicum (Spreng.) Sherff) is excluded. Distribution maps and identification keys are provided. Key-words ASTERACEAE – Isostigma – South America – Systematics – Taxonomy Address of the author: CURZA, Universidad Nacional del Comahue, Monseñor Esandi y Ayacucho, 8500 Viedma, Argentina. Email: [email protected] Submitted on October 29, 2008. Accepted on January 13, 2009. Edited by P. Bungener ISSN: 0373-2967 Candollea 64(1): 5-30 (2009) © CONSERVATOIRE ET JARDIN BOTANIQUES DE GENÈVE 2009 6 – Candollea 64, 2009 Introduction Generic relationships The tribe Coreopsideae has 25 genera and ca. 500 species, The South American genus Isostigma Less. (Asteraceae, is cosmopolitan, with a concentration of species in America, Coreopsideae) includes 11 species distributed in Argentina, especially Mexico (BREMER, 1987; RYDING & BREMER, 1992). Brazil, Bolivia, Paraguay, and Uruguay. The genus is closely Inside the tribe, there are some large genera that are poorly related to the genus Chrysanthellum Rich. Isostigma, together delimited, such as Bidens and Coreopsis L. (KARIS & RYDING, with Chrysanthellum, Diodontium F. Muell., Glossocardia 1994; KIMBALL & CRAWFORD, 2004; MORT & al., 2008). Cass., and Trioncinia (F. Muell.) Veldkamp, form the generic RYDING & BREMER (1992) presented a cladistic study of group Chrysanthellum (RYDING & BREMER, 1992; KARIS & the Coreopsideae, and suggested that it had three groups of RYDING, 1994). This group is characterised by having alter- genera, with the status of subtribes or informal generic groups nate and/or basally rosulate leaves, Kranz syndrome, and long, (KARIS & RYDING, 1994): the Coreopsis group, the Chrysan- subulate-appendaged style branches (KARIS & RYDING, 1994). thellum group, and the Petrobium group. SHERFF (1926) considered Isostigma related to Bidens, with Taxonomic history differences only in the stigmatic branches: elongated in Isostigma was first recognised by LESSING (1831), who Isostigma, and generally shorter and broadened distally in transferred Tragoceras peucedanifolium Spreng. as Isostigma Bidens. Depending on which genera were included in the dif- peucedanifolium (Spreng.) Less. Tragoceras peucedanifolium ferent cladistic analysis, the closest genera related to Isostigma was described by SPRENGEL (1826), based on Sello’s material varied. In the work of RYDING & BREMER (1992) were Glos- from the state of Rio Grande do Sul, Brazil. LESSING (1831) sogyne Cass. and Guerreroia Merr. (currently Glossocardia), described three other species in his work (Isostigma crithmi- or Chrysanthellum in the works of KARIS (1993) and KARIS & folium Less., I. simplicifolium Less., and I. speciosum Less.). RYDING (1994), or Glossogyne according to KIMBALL & CRAW- FORD GARDNER (1848) described Glossogyne brasiliensis Baker, (2004). which was subsequently transferred to Isostigma by BENTHAM & HOOKER (1873). BAKER (1884) described I. microcephalum Baker, and considered it as a synonym of Glossogyne brasilien- Key to the South American genera of Coreopsideae sis. Two other species (Isostigma dissitifolium Baker and I. stellatum Baker) and a variety (I. speciosum var. riedelii 1. Cypselae heteromorphic ............................................... 2 Baker) were described in the same work. Some species were 1a. Cypselae homomorphic................................................ 3 originally described as belonging to the genus Bidens L. in the 2. Leaves alternate .......................... Chrysanthellum Rich. “Flora Brasiliensis” (BAKER, 1884). These were later trans- 2a. Leaves opposite ............................... Heterosperma Cav. ferred to Isostigma: Bidens acaulis Baker by CHODAT (1901), 3. Inner phyllaries connate 1/3 or more............................... B. glycinifolius Baker and B. scorzonerifolius Baker by SHERFF .......................................................... Thelesperma Less. (1923, 1926). KUNTZE (1898) and MALME (1899) added other 3a. Inner phyllaries free or connate only at the base.......... 4 new species to Isostigma, I. hoffmannii Kuntze and I. foliosum Malme respectively. 4. Trees or large shrubs with entire leaves .......................... .............................................................. Narvalina Cass. CHODAT (1901), HASSLER (1909, 1916) and SHERFF (1923) 4a. Herbs, shrubs or climbers............................................. 5 described and disposed of various taxa, this culminating with the work of SHERFF (1926) which recognised 11 species in the 5. Pappus with 6-16 awns, retrorsely barbelate ................... genus. Sherff subsequently described I. molfinianum Sherff .................................. Ericentrodea S. F. Blake & Sherff (SHERFF, 1931) and the new variety I. crithmifolium var. nanum 5a. Pappus with up to 4 (-8) aristae or awns ...................... 6 Sherff (SHERFF, 1935). In 1959, CABRERA (1959) described 6. Pappus with a spinulose-hispid corona ........................... another new species: I. cordobense Cabrera. Isostigma crith- ................................................. Cyathomone S. F. Blake mifolium var. nanum and I. cordobense were considered as 6a. Pappus without corona ................................................ 7 synonyms by ARIZA-ESPINAR (2000). The latest species of Isostigma was described as I. sparsifolium Guad. Peter (PETER, 7. Leaves rosulate or alternate.......................................... 8 2006). There are several partial treatments of the genus in 7a. Leaves opposite or whorle d.......................................... 9 recent regional floras (ARIZA-ESPINAR, 1969, 2000; CABRERA, 8. Cypselae winged or with cartilaginous or spongy 1974; PETER, 2004a, 2004b, 2005). The aim of the present margins ...................................................... Coreopsis L. study is to provide anatomical data, to delimite the species and 8a. Cypselae wingless or with narrow hyaline margins to resolve nomenclatural and typification problems. ............................................................... Isostigma Less. Systematic revision of the genus Isostigma Less. (Asteraceae, Coreopsideae) – 7 9. Disc cypselae with neck. Staminal filaments The genus comprises 2 subgenera with 11 species. hirsute ........................................................ Cosmos Cav. Habit. – Perennial herbs or subshrubs; erect or ascending, 9a. Disc cypselae without neck. Staminal filaments rar ely decumbent. glabrous ...................................................................... 10 Root. – Principal axis and ramified, some species have a 10. Cypselae winged or with cartilaginous or spongy xylopodium. margins ...................................................... Coreopsis L. Stem. – Simple, or
Recommended publications
  • Barcoding the Asteraceae of Tennessee, Tribe Coreopsideae
    Schilling, E.E., N. Mattson, and A. Floden. 2014. Barcoding the Asteraceae of Tennessee, tribe Coreopsideae. Phytoneuron 2014-101: 1–6. Published 20 October 2014. ISSN 2153 733X BARCODING THE ASTERACEAE OF TENNESSEE, TRIBE COREOPSIDEAE EDWARD E. SCHILLING, NICHOLAS MATTSON, AARON FLODEN Herbarium TENN Department of Ecology & Evolutionary Biology University of Tennessee Knoxville, Tennessee 37996 [email protected]; [email protected] ABSTRACT Results from barcoding studies of tribe Coreopsideae for the Tennessee flora using the nuclear ribosomal ITS marker are presented and include the first complete reports for 2 of the 20 species of the tribe that occur in the state, as well as updated reports for several others. Sequence data from the ITS region separate most of the species of Bidens in Tennessee from one another, but species of Coreopsis, especially those of sect. Coreopsis, have ITS sequences that are identical (or nearly so) to at least one congener. Comparisons of sequence data to GenBank records are complicated by apparent inaccuracies of older sequences as well as potentially misidentified samples. Broad survey of C. lanceolata from across its range showed little variability, but the ITS sequence of a morphologically distinct sample from a Florida limestone glade area was distinct in lacking a length polymorphism that was present in other samples. Tribe Coreopsideae is part of the Heliantheae alliance and earlier was often included in an expanded Heliantheae (Anderberg et al. 2007) in which it was usually treated as a subtribe (Crawford et al. 2009). The tribe shows a small burst of diversity in the southeastern USA involving Bidens and Coreopsis sect.
    [Show full text]
  • Coreopsideae Daniel J
    Chapter42 Coreopsideae Daniel J. Crawford, Mes! n Tadesse, Mark E. Mort, "ebecca T. Kimball and Christopher P. "andle HISTORICAL OVERVIEW AND PHYLOGENY In a cladistic analysis of morphological features of Heliantheae by Karis (1993), Coreopsidinae were reported Morphological data to be an ingroup within Heliantheae s.l. The group was A synthesis and analysis of the systematic information on represented in the analysis by Isostigma, Chrysanthellum, tribe Heliantheae was provided by Stuessy (1977a) with Cosmos, and Coreopsis. In a subsequent paper (Karis and indications of “three main evolutionary lines” within "yding 1994), the treatment of Coreopsidinae was the the tribe. He recognized ! fteen subtribes and, of these, same as the one provided above except for the follow- Coreopsidinae along with Fitchiinae, are considered ing: Diodontium, which was placed in synonymy with as constituting the third and smallest natural grouping Glossocardia by "obinson (1981), was reinstated following within the tribe. Coreopsidinae, including 31 genera, the work of Veldkamp and Kre# er (1991), who also rele- were divided into seven informal groups. Turner and gated Glossogyne and Guerreroia as synonyms of Glossocardia, Powell (1977), in the same work, proposed the new tribe but raised Glossogyne sect. Trionicinia to generic rank; Coreopsideae Turner & Powell but did not describe it. Eryngiophyllum was placed as a synonym of Chrysanthellum Their basis for the new tribe appears to be ! nding a suit- following the work of Turner (1988); Fitchia, which was able place for subtribe Jaumeinae. They suggested that the placed in Fitchiinae by "obinson (1981), was returned previously recognized genera of Jaumeinae ( Jaumea and to Coreopsidinae; Guardiola was left as an unassigned Venegasia) could be related to Coreopsidinae or to some Heliantheae; Guizotia and Staurochlamys were placed in members of Senecioneae.
    [Show full text]
  • New Insights on Bidens Herzogii (Coreopsideae, Asteraceae), an Endemic Species from the Cerrado Biogeographic Province in Bolivia
    Ecología en Bolivia 52(1): 21-32. Mayo 2017. ISSN 1605-2528. New insights on Bidens herzogii (Coreopsideae, Asteraceae), an endemic species from the Cerrado biogeographic province in Bolivia Novedades en el conocimiento de Bidens herzogii (Coreopsideae, Asteraceae), una especie endémica de la provincia biogeográfica del Cerrado en Bolivia Arturo Castro-Castro1, Georgina Vargas-Amado2, José J. Castañeda-Nava3, Mollie Harker1, Fernando Santacruz-Ruvalcaba3 & Aarón Rodríguez2,* 1 Cátedras CONACYT – Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Durango (CIIDIR-Durango), Instituto Politécnico Nacional. 2 Herbario Luz María Villarreal de Puga (IBUG), Instituto de Botánica, Departamento de Botánica y Zoología, Universidad de Guadalajara. Apartado postal 1-139, Zapopan 45101, Jalisco, México. *Author for correspondence: [email protected] 3 Laboratorio de Cultivo de Tejidos, Departamento de Producción Agrícola, Universidad de Guadalajara. Apartado postal 1-139, Zapopan 45101, Jalisco, México. Abstract The morphological limits among some Coreopsideae genera in the Asteraceae family are complex. An example is Bidens herzogii, a taxon first described as a member of the genus Cosmos, but recently transferred to Bidens. The species is endemic to Eastern Bolivia and it grows on the Cerrado biogeographic province. Recently collected specimens, analysis of herbarium specimens, and revisions of literature lead us to propose new data on morphological description and a chromosome counts for the species, a tetraploid, where x = 12, 2n = 48. Lastly, we provide data on geographic distribution and niche modeling of B. herzogii to predict areas of endemism in Eastern Bolivia. This area is already known for this pattern of endemism, and the evidence generated can be used to direct conservation efforts.
    [Show full text]
  • Ndhf Sequence Evolution and the Major Clades in the Sunflower Family KI-JOONG KIM* and ROBERT K
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 10379-10383, October 1995 Evolution ndhF sequence evolution and the major clades in the sunflower family KI-JOONG KIM* AND ROBERT K. JANSENt Department of Botany, University of Texas, Austin, TX 78713-7640 Communicated by Peter H. Raven, Missouri Botanical Garden, St. Louis, MO, June 21, 1995 ABSTRACT An extensive sequence comparison of the either too short or too conserved to provide adequate numbers chloroplast ndhF gene from all major clades of the largest of characters in recently evolved families. A number of alter- flowering plant family (Asteraceae) shows that this gene native genes have been suggested as potential candidates for provides -3 times more phylogenetic information than rbcL. phylogenetic comparisons at lower taxonomic levels (9). The This is because it is substantially longer and evolves twice as phylogenetic utility of one of these, matK, has been recently fast. The 5' region (1380 bp) ofndhF is very different from the demonstrated (10). Comparison of sequences of two chloro- 3' region (855 bp) and is similar to rbcL in both the rate and plast genomes (rice and tobacco), however, revealed only two the pattern of sequence change. The 3' region is more A+T- genes, rpoCl and ndhF, that are considerably longer and evolve rich, has higher levels of nonsynonymous base substitution, faster than rbcL (9, 11). We selected ndhF because it is longer and shows greater transversion bias at all codon positions. and evolves slightly faster than rpoCl (11), because rpoCl has These differences probably reflect different functional con- an intron that may require additional effort in DNA amplifi- straints on the 5' and 3' regions of nduhF.
    [Show full text]
  • Asteraceae) from the Campos Rupestres
    Anais da Academia Brasileira de Ciências (2015) 87(2): 797-812 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201520140214 www.scielo.br/aabc Anatomy and fructan distribution in vegetative organs of Dimerostemma vestitum (Asteraceae) from the campos rupestres TAIZA M. SILVA1, DIVINA A.A. VILHALVA2*, MOEMY G. MORAES2 and RITA DE CÁSSIA L. FIGUEIREDO-RIBEIRO3 1Programa de Pós-Graduação em Biodiversidade Vegetal, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, Av. Esperança, s/n, 74690-900 Goiânia, GO, Brasil 2Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, Av. Esperança, s/n, 74690-900 Goiânia, GO, Brasil 3Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica, Av. Miguel Stéfano, 3687, Água Funda, 04301-902 São Paulo, SP, Brasil Manuscript received on April 28, 2014; accepted for publication on October 24, 2014 ABSTRACT Among the compounds stored by plants, several functions are assigned to fructans, such as source of energy and protection against drought and extreme temperatures. In the present study we analyzed the anatomy and distribution of fructans in vegetative organs of Dimerostemma vestitum (Asteraceae), an endemic species from the Brazilian campos rupestres. D. vestitum has amphistomatic and pubescent leaves, with both glandular and non-glandular trichomes. In the basal aerial stem the medulla has two types of parenchyma, which differ from the apical portion. The xylopodium has mixed anatomical origin. Interestingly, although inulin-type fructans with high degree of polymerization were found in all analyzed organs except the leaves, the highest amount and maximum degree of polymerization were detected in the xylopodium.
    [Show full text]
  • Phylogenetic Distribution of an Endogenous Strain of Dahlia
    Phylogenetic distribution of an endogenous strain K.L. Caudle and E.T. Gillock Department of Biological Sciences, of Dahlia mosaic virus in members of Asteraceae Fort Hays State University, Hays, KS INTRODUCTION OBJECTIVES & HYPOTHESES DISCUSSION Dahlia Mosaic Virus (DMV) is a double-stranded Determine the host range of DMV-D10 by sampling Asteraceae There was no phylogenetic relationship when DNA viral pathogen belonging to the family members including Dahlia variabilis determining absence or presence of DMV-D10 in Caulimoviridae (Pahalawatta et al., 2008). Symptoms • Cosmos bipinnatus and Dahlia variabilis belong to the Coreopsideae tribe samples. The DMV-D10 movement protein was associated with DMV include vein clearing in the in Asteraceae; therefore, we hypothesized DMV-D10 was most likely to present in Callistephus chinensis, which belongs to leaves (Figure 1a), flower breaking (Figure 1b), and the Astereae tribe, Centaurea cyanus, belonging to the stunted growth (Abdel-Salam et al., 2010). DMV is be present in these species compared to others based on phylogeny. Cardueae tribe, and Dahlia variabilis, belonging to most commonly observed in horticultural and wild • In contrast, we hypothesized members in the Astereae, Cardueae, and the Coreopsideae tribe. This indicates DMV-D10 or varieties of the genus Dahlia. Additionally, a new Tageteae tribe would be less likely to be infected with DMV-D10 based a related DMV virus was present in some samples, strain of this virus called DMV-D10 was first on phylogenetic relationship with Coreopsideae. but not all of them. Past studies indicate DMV-D10 Aster observed in Dahlia variabilis growing in Egypt spreads via vertical transmission from parent to offspring (Pahalawatta et al., 2008).
    [Show full text]
  • The C4 Plant Lineages of Planet Earth
    Journal of Experimental Botany, Vol. 62, No. 9, pp. 3155–3169, 2011 doi:10.1093/jxb/err048 Advance Access publication 16 March, 2011 REVIEW PAPER The C4 plant lineages of planet Earth Rowan F. Sage1,*, Pascal-Antoine Christin2 and Erika J. Edwards2 1 Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S3B2 Canada 2 Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St., Providence, RI 02912, USA * To whom correspondence should be addressed. E-mail: [email protected] Received 30 November 2010; Revised 1 February 2011; Accepted 2 February 2011 Abstract Using isotopic screens, phylogenetic assessments, and 45 years of physiological data, it is now possible to identify most of the evolutionary lineages expressing the C4 photosynthetic pathway. Here, 62 recognizable lineages of C4 photosynthesis are listed. Thirty-six lineages (60%) occur in the eudicots. Monocots account for 26 lineages, with a Downloaded from minimum of 18 lineages being present in the grass family and six in the sedge family. Species exhibiting the C3–C4 intermediate type of photosynthesis correspond to 21 lineages. Of these, 9 are not immediately associated with any C4 lineage, indicating that they did not share common C3–C4 ancestors with C4 species and are instead an independent line. The geographic centre of origin for 47 of the lineages could be estimated. These centres tend to jxb.oxfordjournals.org cluster in areas corresponding to what are now arid to semi-arid regions of southwestern North America, south- central South America, central Asia, northeastern and southern Africa, and inland Australia.
    [Show full text]
  • Using ITS Sequences Suggests Lability in Reproductive Characters
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 33 (2004) 127–139 www.elsevier.com/locate/ympev Phylogeny of Coreopsideae (Asteraceae) using ITS sequences suggests lability in reproductive characters Rebecca T. Kimballa,*, Daniel J. Crawfordb a Department of Zoology, University of Florida, P.O. Box 118525, Gainesville, FL 32611-8525, USA b Department of Ecology and Evolutionary Biology, The Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, KS 66045-2106, USA Received 3 November 2003; revised 14 April 2004 Available online 7 July 2004 Abstract Relationships among the 21 genera within the tribe Coreopsideae (Asteraceae) remain poorly resolved despite phylogenetic stud- ies using morphological and anatomical traits. Recent molecular phylogenies have also indicated that some Coreopsideae genera are not monophyletic. We used internal transcribed spacer (ITS) sequences from representatives of 19 genera, as well as all major lin- eages in those genera that are not monophyletic, to examine phylogenetic relationships within this group. To examine the affects of alignment and method of analysis on our conclusions, we obtained alignments using five different parameters and analyzed all five alignments with distance, parsimony, and Bayesian methods. The method of analysis had a larger impact on relationships than did alignments, although different analytical methods gave very similar results. Although not all relationships could be resolved, a num- ber of well-supported lineages were found, some in conflict with earlier hypotheses. We did not find monophyly in Bidens, Coreopsis, and Coreocarpus, though other genera were monophyletic for the taxa we included. Morphological and anatomical traits which have been used previously to resolve phylogenetic relationships in this group were mapped onto the well-supported nodes of the ITS phy- logeny.
    [Show full text]
  • A New Type of Kranz Anatomy in Asteraceae
    CSIRO PUBLISHING A new type of Kranz anatomy in Asteraceae Guadalupe PeterA,C and Liliana KatinasB ADepartamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670 (8000) Bahía Blanca, Argentina. BDivisión Plantas Vasculares, Museo de La Plata, Paseo del Bosque s/n (1900) La Plata, Argentina. CCorresponding author; email: [email protected] Abstract. The anatomical structure of the leaves and stems of the 13 species of Isostigma (Asteraceae: Heliantheae) has been examined by using light microscopy. All species of Isostigma have Kranz anatomy in their leaves, containing one or more Kranz units (=KU, the unit constituted by the vascular bundle/s, the parenchyma sheath and the surrounding mesophyll). It is demonstrated that there are the following two different types of Kranz anatomy in leaves of Isostigma: (1) Eryngiophyllum type, with one KU per leaf and with sclerenchyma tissue (I. brasiliense, I. cordobense, I. crithmifolium, I. dissitifolium, I. peucedanifolium, I. riedelii, I. simplicifolium and I. speciosum); and (2) Isostigma type, with more than one KU per leaf, without sclerenchyma tissue (I. acaule, I. herzogii, I. hoffmannii, I. molfinianum and I. scorzoneraefolium). The stems of all 13 species of Isostigma show also Kranz anatomy, without variation among species. Until the present, the Eryngiophyllum and the Atriplicoid types were the only reported for Asteraceae. The Isostigma type is a new type for the family, characteristic of plants growing in humid places. The following evolutionary sequence of Kranz anatomy is hypothesised: Atriplicoid–Isostigma–Eryngiophyllum where numerous KUs become continuous to reach a unique, compound KU. BT02080 AG. n eP weter type and of L.
    [Show full text]
  • Distribución Geográfica Y Riqueza Del Género Cosmos (Asteraceae: Coreopsideae)
    Revista Mexicana de Biodiversidad 84: 536-555, 2013 536 Vargas-Amado et al.- DistribuciónDOI: geográfica 10.7550/rmb.31481 de Cosmos Distribución geográfica y riqueza del género Cosmos (Asteraceae: Coreopsideae) Geographic distribution and richness of the genus Cosmos (Asteraceae: Coreopsideae) 1, 3 1, 3 1 2 2 Georgina Vargas-Amado , Arturo Castro-Castro , Mollie Harker , José Luis Villaseñor , Enrique Ortiz y Aarón Rodríguez1 1Instituto de Botánica, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Apartado postal 139, 45105 Zapopan, Jalisco, México. 2Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado postal 70-233, 04510 México, D. F., México. 3Doctorado en Ciencias en Biosistemática, Ecología y Manejo de Recursos Naturales y Agrícolas, Universidad de Guadalajara. Apartado postal 139, 45105 Zapopan, Jalisco, México. [email protected] Resumen. Cosmos es uno de los géneros monofiléticos más diversos de la tribu Coreopsideae (Asteraceae). El grupo incluye 35 especies y 4 taxa infraespecíficos restringidos al continente americano. El objetivo del presente trabajo fue evaluar la distribución geográfica y la riqueza de Cosmos a través de un sistema de información geográfica (SIG). Se estimó el área de distribución geográfica de los taxa con más de un registro. También se evaluó la riqueza de las especies de Cosmos por región política, provincia geológica y una cuadrícula de 80 × 80 km. Por último, se valoraron los patrones de distribución geográfica por hábito de crecimiento. Se encontraron 3 zonas de alta riqueza, todas en México, en los estados de Jalisco, Durango y México. Las hierbas anuales, las hierbas perennes y los sufrútices mostraron patrones de distribución geográfica diferente.
    [Show full text]
  • Environmental Assessment & Management Plan
    Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized E1050 v3 rev m Theun 2 Hydroelectric Project Na & Management Plan Environmental Assessment March 2005 annexes List of Annexes List of Annexes Annex A: References ........................................................................................A1-6 Annex B: Contributors to the EAMP ....................................................................B1-2 Annex C: Project Key Technical Data ..................................................................C1-4 Annex D: Technical Drawings of Project Infrastructure ......................................D1-18 Annex E: Hydrological Data ............................................................................. E1-10 Annex F: Simulated Dam Operations ................................................................ F1-10 Annex G: Water Quality Modelling Assumptions and Results ................................G1-4 Annex H: Forest & Vegetation Types ..................................................................H1-4 Annex I: Mammal & Bird Species of the NNT Area .............................................I1-20 Annex J: Fish Species & Migration ..................................................................... J1-8 Annex K: Head Construction Contractor’s Environmental Requirements .............. K1-18 Annex L: Pest Management Plan ..................................................................... L1-18 Annex M: Public Consultation and Disclosure Events .........................................
    [Show full text]
  • Generic Disposition Inspection of the Few Representative Specimens
    BLUMEA 35 (1991) 459-482 Notes onSoutheastAsianand AustralianCoreopsidinae (Asteraceae) J.F. Veldkamp & L.A. Kreffer Rijksherbarium/Hortus Botanicus, Leiden, The Netherlands Summary Chrysanthellum L.C.M. Rich, (inch Eryngiophyllum Greenm.) is distinguished from Glos- socardia Cass. The Guerreroia Merr. and Neuractis Cass. reduced to genera Glossogyne Cass., are Glossocardia. Diodontium F. Muell. from Australia is resurrected, and Glossogyne sect. Trioncinia F. Muell. is raised to generic rank. Three new species are described and several new combinations are proposed. Cosmos calvus sensu Sherff is renamed to Cosmos steenisiae Veldk. Introduction of otherwise American In Malesiatwo species the mainly genus Chrysanthellum L.C.M. Rich, have been described:Chrysanthellum leschenaultii(Cass.) Koster and Chrysanthellum smithii Back. Dr. J.Th. Koster and later Dr. C.G.G.J, van Steenis had for some years kept material of what of and apart they thought were two new species Chrysanthellum on the latter's instigation a revision was prepared. One of the problems encountered was the generic disposition of the taxa involved. After a survey of the literatureand inspection of the few representative specimens available in Leiden, we have come to the following observations. GENERIC DELIMITATION Chrysanthellum belongs to the Heliantheae-Coreopsidinae Less. Stuessy (1977) distinguished a numberof informal groups in this subtribe, e.g.: Group 2: Leaves very finely dissected, opposite (alternate in Glossocardia); heads homogamous (radiate in Coreocarpus and Guardiola); involucres funnelform to cylindrical; pappus barbed (absent in Guardiola); anthers brown (green in Guardi- ola).—Coreocarpus Benth., Dicranocarpus A. Gray, Glossocardia Cass., Guar- diola Humb. & Bonpl., Heterosperma Cav. dissected Group 3: Leaves alternate or nearly basal, finely (sic!); heads heterogam- ous (discoid in Isostigma), small, solitary or in small clusters; involucre hemi- spheric; pappus absent or of 2 awns.
    [Show full text]