MAPS DIGEST Vol 24 No 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Contributions in BIOLOGY and GEOLOGY
MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - --- -
Main Morphological Events in the Evolution of Paleozoic Cephalopods I
Stratigraphy and Geological Correlation, Vol. 2, No. 1, 1994, pp. 49 - 55. Translated from Stratigrafiya. Geologicheskaya Korrelyatsiya, Vol. 2, No. 1,1994, pp. 55 - 61. Original Russian Text Copyright © 1994 by Barskov, Bogoslovskaya, Zhuravleva, Kiselev, Kuzina, Leonova, Shimanskii, Yatskov. English Translation Copyright © 1994 by Interperiodica Publishing (Russia). Main Morphological Events in the Evolution of Paleozoic Cephalopods I. S. Barskov*, M. F. Bogoslovskaya*, F. A. Zhuravleva*, G. N. Kiselev**, L. F. Kuzina*, T. B. Leonova*, V. N. Shimanskii*, and S. V. Yatskov* institute of Paleontology, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117647 Russia **Department of Paleontology, St. Petersburg State University, 16-ya Liniya 29, St. Petersburg, 199178 Russia Received January 26,1993 Abstract - New morphological features in shell structure, which were the starting points of cephalopod diver sification into taxa of high ranks (subclasses, orders, superfamilies), are considered as phylogenetic events. Main morphological innovations in the evolution of nautiloid cephalopods; the formation of endosiphuncular and cameral deposits, shell coiling, truncation of the phragmocone’s apical end, and contracted aperture, which originated to make the relative shell positioning in the water more efficient. Changes in the lobe line structure and various types of complications in the primary lobes (ventral, umbonal, and lateral) were the most important morphological innovations in convolute ammonoids. The functional significance of these changes remains unclear, but recognition of equally significant changes in primary lobes requires a review of the Paleozoic Ammonoidea taxonomy at the suborder level. This paper is a continuation of a study whose first lation of the buoyancy process and to support in various results have been published (Barskov et al., 1993). -
Ascocerid Cephalopods from the Hirnantian?–Llandovery Stages of the Southern Paraná Basin (Paraguay, South America): first Record from High Paleolatitudes
Journal of Paleontology, page 1 of 11 Copyright © 2018, The Paleontological Society 0022-3360/18/0088-0906 doi: 10.1017/jpa.2018.59 Ascocerid cephalopods from the Hirnantian?–Llandovery stages of the southern Paraná Basin (Paraguay, South America): first record from high paleolatitudes M. Cichowolski,1,2 N.J. Uriz,3 M.B. Alfaro,3 and J.C. Galeano Inchausti4 1Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geológicas, Área de Paleontología, Ciudad Universitaria, Pab. 2, C1428EGA, Buenos Aires, Argentina 〈[email protected]〉 2CONICET-Universidad de Buenos Aires, Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN), Buenos Aires, Argentina 3División Geología del Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina. 〈[email protected]〉, 〈[email protected]〉 4Ministerio de Obras Públicas y Comunicaciones de Paraguay, Asunción, Paraguay 〈[email protected]〉 Abstract.—Ascocerid cephalopods are described for the first time from high paleolatitudes of Gondwana. Studied material was collected from the Hirnantian?–Llandovery strata of the Eusebio Ayala and Vargas Peña formations, Paraná Basin, southeastern Paraguay. The specimens are poorly preserved and were questionably assigned to the sub- family Probillingsitinae Flower, 1941, being undetermined at genus and species rank because diagnostic characters are not visible. A particular feature seen in our material is the presence of both parts of the ascocerid conch (the juve- nile or cyrtocone and the mature or brevicone) joined together, which is a very rare condition in the known paleonto- logical record. The specimens are interpreted as at a subadult stage of development because fully grown ascocerids would have lost the juvenile shell. -
Cephalopod Reproductive Strategies Derived from Embryonic Shell Size
Biol. Rev. (2017), pp. 000–000. 1 doi: 10.1111/brv.12341 Cephalopod embryonic shells as a tool to reconstruct reproductive strategies in extinct taxa Vladimir Laptikhovsky1,∗, Svetlana Nikolaeva2,3,4 and Mikhail Rogov5 1Fisheries Division, Cefas, Lowestoft, NR33 0HT, U.K. 2Department of Earth Sciences Natural History Museum, London, SW7 5BD, U.K. 3Laboratory of Molluscs Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, 117997, Russia 4Laboratory of Stratigraphy of Oil and Gas Bearing Reservoirs Kazan Federal University, Kazan, 420000, Russia 5Department of Stratigraphy Geological Institute, Russian Academy of Sciences, Moscow, 119017, Russia ABSTRACT An exhaustive study of existing data on the relationship between egg size and maximum size of embryonic shells in 42 species of extant cephalopods demonstrated that these values are approximately equal regardless of taxonomy and shell morphology. Egg size is also approximately equal to mantle length of hatchlings in 45 cephalopod species with rudimentary shells. Paired data on the size of the initial chamber versus embryonic shell in 235 species of Ammonoidea, 46 Bactritida, 13 Nautilida, 22 Orthocerida, 8 Tarphycerida, 4 Oncocerida, 1 Belemnoidea, 4 Sepiida and 1 Spirulida demonstrated that, although there is a positive relationship between these parameters in some taxa, initial chamber size cannot be used to predict egg size in extinct cephalopods; the size of the embryonic shell may be more appropriate for this task. The evolution of reproductive strategies in cephalopods in the geological past was marked by an increasing significance of small-egged taxa, as is also seen in simultaneously evolving fish taxa. Key words: embryonic shell, initial chamber, hatchling, egg size, Cephalopoda, Ammonoidea, reproductive strategy, Nautilida, Coleoidea. -
Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda. -
High-Level Classification of the Nautiloid Cephalopods: a Proposal for the Revision of the Treatise Part K
Swiss Journal of Palaeontology (2019) 138:65–85 https://doi.org/10.1007/s13358-019-00186-4 (0123456789().,-volV)(0123456789().,- volV) REGULAR RESEARCH ARTICLE High-level classification of the nautiloid cephalopods: a proposal for the revision of the Treatise Part K 1 2 Andy H. King • David H. Evans Received: 4 November 2018 / Accepted: 13 February 2019 / Published online: 14 March 2019 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2019 Abstract High-level classification of the nautiloid cephalopods has been largely neglected since the publication of the Russian and American treatises in the early 1960s. Although there is broad general agreement amongst specialists regarding the status of nautiloid orders, there is no real consensus or consistent approach regarding higher ranks and an array of superorders utilising various morphological features has been proposed. With work now commencing on the revision of the Treatise Part K, there is an urgent need for a methodical and standardised approach to the high-level classification of the nautiloids. The scheme proposed here utilizes the form of muscle attachment scars as a diagnostic feature at subclass level; other features (including siphuncular structures and cameral deposits) are employed at ordinal level. We recognise five sub- classes of nautiloid cephalopods (Plectronoceratia, Multiceratia, Tarphyceratia nov., Orthoceratia, Nautilia) and 18 orders including the Order Rioceratida nov. which contains the new family Bactroceratidae. This scheme has the advantage of relative simplicity (it avoids the use of superorders) and presents a balanced approach which reflects the considerable morphological diversity and phylogenetic longevity of the nautiloids in comparison with the ammonoid and coleoid cephalopods. -
Wirbellose Tiere Der Vorzeit Leitfaden Der Systematischen Paläontologie Der Invertebraten
Ulrich Lehmann, Gero Hillmer Wirbellose Tiere der Vorzeit Leitfaden der systematischen Paläontologie der Invertebraten 4V neu bearbeitete und erweiterte Auflage mit mehr als 1000 Einzeldarstellungen Ferdinand Enke Verlag Stuttgart 1997 Inhalt Vorwort V Einleitung 1 Zur Geschichte der Paläontologie 1 Entstehung des Lebens 6 Zur Systematik und Skelettmineralogie 12 System der Organismen 12 Überreich: Prokaryota 17 Reich: Monera 18 Unterreich: Archaebacteria 18 Unterreich: Eubacteria 18 Stamm: Cyanobacteria 18 Überreich: Eukaryota (Kernzeller) 19 Reich: Protista 19 Unterreich: Protophyta 20 Stamm: Pyrrhophyta (Rotalgen) 20 Klasse: Dinophyceae (Dinoflagellaten) 20 Stamm: Chrysophyta (gelbgrüne Algen) 21 Klasse: Chrysophyceae 21 Unterordnung: Silicoflagellata 21 Klasse: Bacillariophyceae (Diatomeen, Kieselalgen) 22 Klasse: Coccolithophyceae (Coccolithophorida, Coccolithen) 22 Unterreich: Protozoa 22 Stamm: Flagellata (Zoo-Flagellaten; Geißeltierchen) 22 Stamm: Rhizopoda (Wurzelfüßer) 23 Klasse: Foraminiferida 23 Ordnung: Allogromiida 25 Ordnung: Textulariida 26 Ordnung: Fusulinida 27 Ordnung: Miliolida ("Porcellanea") 29 Familie: Alveolinidae 29 Ordnung: Rotaliida 30 Familie: Nummulitidae 32 Familie: Orbitoididae 33 Klasse: Actinopoda (Strahlentierchen) 35 Unterklasse: Heliozoa (Sonnentierchen) 35 Unterklasse: Acantharia 35 Unterklasse: Radiolaria (Radiolarien i.e.S.) 35 VIII Ordnung: Polycystina 36 Unterordnung: Spumellaria 37 Unterordnung: Nassellaria 37 Unterordnung: Entactinaria 37 Unterordnung: Albaillellaria 37 Ordnung: Phaeodaria (Tripylea) -
The Paleoecology of a Late Ordovician Shale Unit from Southwest Ohio and Southeastern Indiana Author(S): Robert C
Paleontological Society The Paleoecology of a Late Ordovician Shale Unit from Southwest Ohio and Southeastern Indiana Author(s): Robert C. Frey Source: Journal of Paleontology, Vol. 61, No. 2 (Mar., 1987), pp. 242-267 Published by: Paleontological Society Stable URL: http://www.jstor.org/stable/1305320 Accessed: 14/03/2010 21:30 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=sepm and http://www.jstor.org/action/showPublisher?publisherCode=paleo. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Paleontological Society and SEPM Society for Sedimentary Geology are collaborating with JSTOR to digitize, preserve and extend access to Journal of Paleontology. -
Gigantism, Taphonomy and Palaeoecology of Basiloceras, a New Oncocerid Genus from the Middle Devonian of the Tafilalt (Morocco)
Swiss Journal of Palaeontology (2019) 138:151–162 https://doi.org/10.1007/s13358-019-00182-8 (0123456789().,-volV)(0123456789().,- volV) REGULAR RESEARCH ARTICLE Gigantism, taphonomy and palaeoecology of Basiloceras, a new oncocerid genus from the Middle Devonian of the Tafilalt (Morocco) 1 1 2,3 Alexander Pohle • Christian Klug • Mischa Haas Received: 13 September 2018 / Accepted: 16 January 2019 / Published online: 31 January 2019 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2019 Abstract The genus Basiloceras gen. nov. containing the two species B. goliath sp. nov. and B. david sp. nov. is described. It belongs to the Acleistoceratidae within the Oncocerida. Both species are from the Middle Devonian of the Tafilalt (Morocco). The genus exhibits a large interspecific size range between the small Eifelian B. david sp. nov. and the Givetian B. goliath sp. nov., the largest Devonian oncocerid currently known, altogether only second to some fragmentary remains of Calchasiceras from the Carboniferous of Russia. Several other large species are mainly known from the late Emsian of Bohemia and the Eifelian of Germany. The holotype of B. goliath sp. nov. contains numerous epicoles, trace fossils and shell debris, which are discussed in the context of its taphonomy. Compared to other oncocerids, Basiloceras is charac- terised by a short body chamber, which might be related to buoyancy regulation. In contrast to some older publications, we do not regard breviconic oncocerids with contracted aperture as benthic or nektobenthic animals, but instead, we think that they dwelled in the water column. Keywords Oncocerida Á Cephalopoda Á Gigantism Á Epicoles Á Taphonomy Á Buoyancy Introduction (Kro¨ger et al. -
Brief Report Acta Palaeontologica Polonica 53 (4): 745–749, 2008
Brief report Acta Palaeontologica Polonica 53 (4): 745–749, 2008 A new genus of middle Tremadocian orthoceratoids and the Early Ordovician origin of orthoceratoid cephalopods BJÖRN KRÖGER The cephalopods of the subclass Orthoceratoidea, which are today within the Orthocerida, Pseudorthocerida, and Dissido− termed “orthoceratoids” herein, are a group that remains cerida. Herein I always refer to the emended order Orthocerida “the last unexplored wilderness in the Cephalopoda” (Flower sensu Kröger and Isakar, 2006 as orthocerids. The origin of the 1962: 23). After 45 years this statement still holds true because Orthocerida and Pseudorthocerida is poorly understood. In the phylogeny reconstructions are hindered by their morphologi− Early Ordovician a number of orthocones occurred that are ei− cal simplicity, numerous homeomorphies and iterative evolu− ther poorly known proper members of these latter orders or stem tion. The Orthocerida, straight cephalopods that are charac− group members, respectively. terised by a wide chamber spacing, a thin tubular siphuncle Classically the origin of Orthocerida was sought within the and a small spherical initial chamber, lacking a cicatrix middle Floian (Flower 1962; Hook and Flower 1977) when the (Kröger 2006) were the ancestors of bactritoids, ammonoids, first straight orthocerids with wide chamber spacing and a cen− and coleoids (Engeser 1996). The origin of the Orthocerida is tral, narrow, empty siphuncle appear. Recently, Evans (2005) poorly understood. The earliest unequivocal Orthocerida are described the new genus Semiannuloceras from the early Floian known from the Floian (Early Ordovician). A number of (Moridunian) of Wales and classified it within the orthocerid poorly known possible Orthocerida and/or stem group Ortho− family Baltoceratidae. -
Conch Ornamentation in Nonammonoid Cephalopods: Form and Function
Invertebrate Zoology, 2017, 14(1): 2–7 © INVERTEBRATE ZOOLOGY, 2017 Conch ornamentation in nonammonoid cephalopods: form and function I.S. Barskov A.A. Borissiak Paleontological Institute Russian Academy of Sciences, Profsoiuznaya Str. 123, Moscow, 117321 Russia. E-mail: [email protected] ABSTRACT. The initial appearance and the functional significance of external conch ornamentation in main orders nonammonoid cephalopods (Plectronocerida, Ellesmerocer- ida, Orthocerida, Pseudorthocerida, Actinocerida, Endocerida, Oncocerida, Discosorida, Tarphycerida, Barrandeocerida) is discussed. The origin and primary functions of conch ornamentation is considered. The first type of ornamentation to appear was the annulated shell of some Early Ordovician Plectronocerida and Ellesmerocerida, and its function was increase in buoyancy of the phragmocone. Annulated conchs only appeared from the Middle Ordovician in Orthocerida, Pseudorthocerida, Actinocerida, Endocerida. The functional significance of longitudinal ornamentation in cyrtoceraconic and orthoceraconic and spiral ornamentation in coiled conch not apparent. The lateral apertural flanges (lappets), present in some Devonian and late Paleozoic Nautilida probably served as directing planes/wings, which allowed the animal to maintain an oriented position while moving rapidly using its hyponome. How to cite this article: Barskov I.S. 2017. Conch ornamentation in nonammonoid cephalopods: form and function // Invert. Zool. Vol.14. No.1. P.2–7. doi: 10.15298/ invertzool.14.1.01 KEY WORDS. Nonammonoid -
The Origin and Initial Rise of Pelagic Cephalopods in the Ordovician
The Origin and Initial Rise of Pelagic Cephalopods in the Ordovician Bjo¨ rn Kro¨ ger1*, Thomas Servais2, Yunbai Zhang3 1 Museum fu¨r Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Berlin, Germany, 2 Universite´ de Lille 1, UMR 8157 du CNRS Ge´osyste´mes, Villeneuve d’ Ascq, France, 3 Nanjing Institute of Geology and Paleontology, Nanjing, China Abstract Background: During the Ordovician the global diversity increased dramatically at family, genus and species levels. Partially the diversification is explained by an increased nutrient, and phytoplankton availability in the open water. Cephalopods are among the top predators of todays open oceans. Their Ordovician occurrences, diversity evolution and abundance pattern potentially provides information on the evolution of the pelagic food chain. Methodology/Principal Findings: We reconstructed the cephalopod departure from originally exclusively neritic habitats into the pelagic zone by the compilation of occurrence data in offshore paleoenvironments from the Paleobiology Database, and from own data, by evidence of the functional morphology, and the taphonomy of selected cephalopod faunas. The occurrence data show, that cephalopod associations in offshore depositional settings and black shales are characterized by a specific composition, often dominated by orthocerids and lituitids. The siphuncle and conch form of these cephalopods indicate a dominant lifestyle as pelagic, vertical migrants. The frequency distribution of conch sizes and the pattern of epibionts indicate an autochthonous origin of the majority of orthocerid and lituitid shells. The consistent concentration of these cephalopods in deep subtidal sediments, starting from the middle Tremadocian indicates the occupation of the pelagic zone early in the Early Ordovician and a subsequent diversification which peaked during the Darriwilian.