Innervation of the Temporomandibular Joint Can Be Discussed It Is Necessary First to Describe Its Embryology, Gfoss Anatomy and Microscopic Appe¿Ìrance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Applied Anatomy of the Temporomandibular Joint
Applied anatomy of the temporomandibular joint CHAPTER CONTENTS process which, together with the temporal process of the zygo- Bones . e198 matic bone, forms the zygomatic arch (Fig. 1). The midline fusion of the left and right mandibular bodies Joint .capsule .and .ligaments . e198 provides a connection between the two temporomandibular Intra-articular .meniscus . e198 joints, so that movement in one joint always influences the opposite one. Nociceptive .innervation . e199 Muscles .and .tendons . e199 Joint capsule and ligaments Biomechanical .aspects . e200 Forward movement of the mandible . e200 The joint capsule is wide and loose on the upper aspect around Opening and closing the mouth. e200 the mandibular fossa. Distally, it diminishes in a funnel shaped Grinding movements . e200 manner to become attached to the mandibular neck (Fig. 2). Nerves .and .blood .vessels . e200 Its laxity prevents rupture even after dislocation. Laterally and medially, a local reinforcement of the joint capsule is found. The lateral collateral ligament courses from The temporomandibular joint (TMJ) is sited at the base of the the zygomatic arch obliquely downwards and backwards skull and formed by parts of the mandible and the temporal towards the posterior rim of the mandibular neck, lateral to bone, separated by an intra-articular meniscus. It is a synovial the outer aspect of the capsule. At its posterior aspect, it is in joint capable of both hinge (rotation) and sliding (translatory) close relation to the joint capsule and prevents the joint from movements. Like other synovial joints, it may be affected by opening widely. Medially, the joint capsule is locally reinforced internal derangement, inflammatory arthritis, arthrosis, and by the medial collateral ligament. -
Diagnosis and Treatment of Temporomandibular Disorders ROBERT L
Diagnosis and Treatment of Temporomandibular Disorders ROBERT L. GAUER, MD, and MICHAEL J. SEMIDEY, DMD, Womack Army Medical Center, Fort Bragg, North Carolina Temporomandibular disorders (TMD) are a heterogeneous group of musculoskeletal and neuromuscular conditions involving the temporomandibular joint complex, and surrounding musculature and osseous components. TMD affects up to 15% of adults, with a peak incidence at 20 to 40 years of age. TMD is classified asintra-articular or extra- articular. Common symptoms include jaw pain or dysfunction, earache, headache, and facial pain. The etiology of TMD is multifactorial and includes biologic, environmental, social, emotional, and cognitive triggers. Diagnosis is most often based on history and physical examination. Diagnostic imaging may be beneficial when malocclusion or intra-articular abnormalities are suspected. Most patients improve with a combination of noninvasive therapies, including patient education, self-care, cognitive behavior therapy, pharmacotherapy, physical therapy, and occlusal devices. Nonsteroidal anti-inflammatory drugs and muscle relaxants are recommended initially, and benzodiazepines or antidepressants may be added for chronic cases. Referral to an oral and maxillofacial surgeon is indicated for refrac- tory cases. (Am Fam Physician. 2015;91(6):378-386. Copyright © 2015 American Academy of Family Physicians.) More online he temporomandibular joint (TMJ) emotional, and cognitive triggers. Factors at http://www. is formed by the mandibular con- consistently associated with TMD include aafp.org/afp. dyle inserting into the mandibular other pain conditions (e.g., chronic head- CME This clinical content fossa of the temporal bone. Muscles aches), fibromyalgia, autoimmune disor- conforms to AAFP criteria Tof mastication are primarily responsible for ders, sleep apnea, and psychiatric illness.1,3 for continuing medical education (CME). -
Diagnosing and Treating Trigeminal Neuralgia in General Dentistry
general practice feature Chasing Pain Diagnosing and Treating Trigeminal Neuralgia in General Dentistry by Steven Olmos, DDS, DABCP, DABCDSM, DABDSM, DAAPM, FAAOP, FAACP, FICCMO, FADI, FIAO As dentists, we know quite a bit about tooth and gum pain, but when it comes to chronic facial pain and neuropathic pain, our dental school education leaves us unprepared. The objective of this article is to explain the differences between men and women with chronic orofacial pain and the relationship to proper functional breathing, using a case study as demonstration. 34 JANUARY 2016 // dentaltown.com general practice feature the United States, nearly half research published in Chest 2015 demonstrates that of all adults lived with chronic respiratory-effort-related arousal may be the most pain in 2011. Of 353,000 adults likely cause (nasal obstruction or mouth breath- 11 aged 18 years or older who were ing). Rising C02 (hypercapnia) in a patient with a surveyed by Gallup-Health- sleep-breathing disorder (including mouth breath- ways, 47 percent reported having at least one of ing) specifically stimulates the superficial masseter three types of chronic pain: neck or back pain, muscles to contract.12 knee or leg pain, or recurring pain.2 Identifying the structural area of obstruction A study published in The Journal of the Amer- (Four Points of Obstruction; Fig. 1) of the air- ican Dental Association October 2015 stated: way will insure the most effective treatment for a “One in six patients visiting a general dentist had sleep-breathing disorder and effectively reduce the experienced orofacial pain during the last year. -
MRI-Based Assessment of Masticatory Muscle Changes in TMD Patients After Whiplash Injury
Journal of Clinical Medicine Article MRI-Based Assessment of Masticatory Muscle Changes in TMD Patients after Whiplash Injury Yeon-Hee Lee 1,* , Kyung Mi Lee 2 and Q-Schick Auh 1 1 Department of Orofacial Pain and Oral Medicine, Kyung Hee University Dental Hospital, #613 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Korea; [email protected] 2 Department of Radiology, Kyung Hee University College of Medicine, Kyung Hee University Hospital, #26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-958-9409; Fax: +82-2-968-0588 Abstract: Objective: to investigate the change in volume and signal in the masticatory muscles and temporomandibular joint (TMJ) of patients with temporomandibular disorder (TMD) after whiplash injury, based on magnetic resonance imaging (MRI), and to correlate them with other clinical parameters. Methods: ninety patients (64 women, 26 men; mean age: 39.36 ± 15.40 years), including 45 patients with symptoms of TMD after whiplash injury (wTMD), and 45 age- and sex- matched controls with TMD due to idiopathic causes (iTMD) were included. TMD was diagnosed using the study diagnostic criteria for TMD Axis I, and MRI findings of the TMJ and masticatory muscles were investigated. To evaluate the severity of TMD pain and muscle tenderness, we used a visual analog scale (VAS), palpation index (PI), and neck PI. Results: TMD indexes, including VAS, PI, and neck PI were significantly higher in the wTMD group. In the wTMD group, muscle tenderness was highest in the masseter muscle (71.1%), and muscle tenderness in the temporalis (60.0%), lateral pterygoid muscle (LPM) (22.2%), and medial pterygoid muscle (15.6%) was significantly more frequent than that in the iTMD group (all p < 0.05). -
Orofacial Pain Caused by Trigeminal Neuralgia And/Or Temporomandibular Joint Disorder
PERIODICUM BIOLOGORUM UDC 57:61 VOL. 115, No 2, 185–189, 2013 CODEN PDBIAD ISSN 0031-5362 Original scientific paper Orofacial pain caused by trigeminal neuralgia and/or temporomandibular joint disorder Abstract TOMISLAV BADEL1 IVANA SAVI] PAVI^IN2 Background and Purpose: The purpose was to evaluate an accurate VANJA BA[I] KES3 method of differentiating between temporomandibular joint (TMJ) dis- IRIS ZAVOREO3 4 order and trigeminal neuralgia (TN) in the sample of patients from a DIJANA ZADRAVEC subspecialist dental practice. JOSIPA KERN5 Patients and Methods: Patients (n=239, mean age 39.3 years, 83.3% 1 Department of Removable Prosthodontics, female) were examined for clinical symptoms and signs of orofacial pain of School of Dental Medicine, non-dental origin. The study included 12 female patients (group G-1; mean University of Zagreb, Gunduli}eva 5, 10000 Zagreb, Croatia age 60.3 years) with determined co-morbidity of TMJ disorder and TN, and 17 patients (group G-2; mean age 53.8 years, 64.7% female) with only TN 2Department of Dental Anthropology, confirmed and the TMJ disorder ruled out. The TMJ diagnosis by means of School of Dental Medicine magnetic resonance imaging (MRI) was confirmed. Pain intensity was University of Zagreb, Gunduli}eva 5, 10000 Zagreb, Croatia rated on a visual-analogue scale (VAS with range 0–10) and maximal mouth opening capacity (mm) measured by gauge. 3 Department of Neurology, Clinical Hospital Results: TMJ pain on the VAS scale for G-1 patients amounted to 6.91. Centre “Sisters of Charity”University of Zagreb, Vinogradska cesta 29, TN related pain symptoms on the VAS scale for G-1 patients amounted to 10000 Zagreb, Croatia 9.0±1.6 and for G-2 patients 8.1±2.7. -
Giant Cell Arteritis Misdiagnosed As Temporomandibular Disorder: a Case Report and Review of the Literature
360_Reiter.qxp 10/14/09 3:17 PM Page 360 Giant Cell Arteritis Misdiagnosed as Temporomandibular Disorder: A Case Report and Review of the Literature Shoshana Reiter, DMD Giant cell arteritis (GCA) is a systemic vasculitis involving medium Teacher and large-sized arteries, most commonly the extracranial branches Department of Oral Rehabilitation of the carotid artery. Early diagnosis and treatment are essential to avoid severe complications. This article reports on a GCA case Ephraim Winocur, DMD and discusses how the orofacial manifestations of GCA can lead to Lecturer misdiagnosis of GCA as temporomandibular disorder. GCA Department of Oral Rehabilitation should be included in the differential diagnosis of orofacial pain in Carole Goldsmith, DMD the elderly based on the knowledge of related signs and symptoms, Instructor mainly jaw claudication, hard end-feel limitation of range of Department of Oral Rehabilitation motion, and temporal headache. J OROFAC PAIN 2009;23:360–365 Alona Emodi-Perlman, DMD Key words: Giant cell arteritis, jaw claudication, Teacher temporomandibular disorders, trismus Department of Oral Rehabilitation Meir Gorsky, DMD Professor Department of Oral Pathology and Oral iant cell arteritis (GCA) is a systemic vasculitis involving Medicine the large and medium-sized vessels, particularly the extracranial branches of the carotid artery. It is more com- The Maurice and Gabriela Goldschleger G School of Dental Medicine mon in women (M:F ratio 2:5) and usually affects patients older 1 Tel Aviv University, Israel than 50 years with an increased risk with age. The highest preva- lence of GCA has been reported in Scandinavian populations and Correspondence to: in those with a strong Scandinavian ethnic background.2 Dr. -
Anatomic Relationship Between Trigeminal Nerve and Temporomandibular Joint
Eur opean Rev iew for Med ical and Pharmacol ogical Sci ences 2008; 12: 15-18 Anatomic relationship between trigeminal nerve and temporomandibular joint F. PAPARO, F.M.G. FATONE, V. RAMIERI, P. CASCONE Cattedra di Chirurgia Maxillo-Facciale, Università degli Studi “La Sapienza” – Roma Abstract. – Temporomandibular joint ship with TMD. Nevertheless, other common disorders (TMD) is a collective term used to complains with uncertain pathogenesis are of - describe pathologic conditions involving tem - ten associated with TMD, such as earache, poromandibular joint (TMJ), masticatory mus - cles and associated structures. headache tinnitus and atypical trigeminal 2,3 Common related complaints include local symptoms . pain, limited mouth opening and TMJ noises Particularly, TMD trigeminal related symp - whereas symptoms often associated to TMD toms are complex, difficult to treat and have a with debated pathogenesis enclose earache, great impact on everyday life of the affected pa - headaches, tinnitus and trigeminal-like symp - tients thus suggesting a compound multimodal toms such as atypical orofacial pain. and multidisciplinary treatment. In particular, TMD trigeminal associated 4 symptoms are intricate, difficult to treat and James B. Costen , in 1934, was the first to exert a great impact on everyday life of the pa - depict a syndrome related to TMD in enclosing tients thus invoking a complex multidiscipli - all toghtether signs and symptoms such as per - nary treatment. ceived hearing loss, stuffy sensation in the ears, In this paper, the authors analyze the pain in the ear region, tinnitus, dizziness, si - anatomic and topographic relationships be - nusitis-like pain, burning sensation in the throat tween the mandibular branch of the trigeminal nerve and the medial aspect of the TMJ cap - and tongue, headache, trismus as well as tran - sule in 8 fresh adult cadavers thus resuming a sient paresthesia in the region of the mandibu - pathologic relationship between atypical lar nerve. -
Computed Tomography of the Buccomasseteric Region: 1
605 Computed Tomography of the Buccomasseteric Region: 1. Anatomy Ira F. Braun 1 The differential diagnosis to consider in a patient presenting with a buccomasseteric James C. Hoffman, Jr. 1 region mass is rather lengthy. Precise preoperative localization of the mass and a determination of its extent and, it is hoped, histology will provide a most useful guide to the head and neck surgeon operating in this anatomically complex region. Part 1 of this article describes the computed tomographic anatomy of this region, while part 2 discusses pathologic changes. The clinical value of computed tomography as an imaging method for this region is emphasized. The differential diagnosis to consider in a patient with a mass in the buccomas seteric region, which may either be developmental, inflammatory, or neoplastic, comprises a rather lengthy list. The anatomic complexity of this region, defined arbitrarily by the soft tissue and bony structures including and surrounding the masseter muscle, excluding the parotid gland, makes the accurate anatomic diagnosis of masses in this region imperative if severe functional and cosmetic defects or even death are to be avoided during treatment. An initial crucial clinical pathoanatomic distinction is to classify the mass as extra- or intraparotid. Batsakis [1] recommends that every mass localized to the cheek region be considered a parotid tumor until proven otherwise. Precise clinical localization, however, is often exceedingly difficult. Obviously, further diagnosis and subsequent therapy is greatly facilitated once this differentiation is made. Computed tomography (CT), with its superior spatial and contrast resolution, has been shown to be an effective imaging method for the evaluation of disorders of the head and neck. -
Atlas of the Facial Nerve and Related Structures
Rhoton Yoshioka Atlas of the Facial Nerve Unique Atlas Opens Window and Related Structures Into Facial Nerve Anatomy… Atlas of the Facial Nerve and Related Structures and Related Nerve Facial of the Atlas “His meticulous methods of anatomical dissection and microsurgical techniques helped transform the primitive specialty of neurosurgery into the magnificent surgical discipline that it is today.”— Nobutaka Yoshioka American Association of Neurological Surgeons. Albert L. Rhoton, Jr. Nobutaka Yoshioka, MD, PhD and Albert L. Rhoton, Jr., MD have created an anatomical atlas of astounding precision. An unparalleled teaching tool, this atlas opens a unique window into the anatomical intricacies of complex facial nerves and related structures. An internationally renowned author, educator, brain anatomist, and neurosurgeon, Dr. Rhoton is regarded by colleagues as one of the fathers of modern microscopic neurosurgery. Dr. Yoshioka, an esteemed craniofacial reconstructive surgeon in Japan, mastered this precise dissection technique while undertaking a fellowship at Dr. Rhoton’s microanatomy lab, writing in the preface that within such precision images lies potential for surgical innovation. Special Features • Exquisite color photographs, prepared from carefully dissected latex injected cadavers, reveal anatomy layer by layer with remarkable detail and clarity • An added highlight, 3-D versions of these extraordinary images, are available online in the Thieme MediaCenter • Major sections include intracranial region and skull, upper facial and midfacial region, and lower facial and posterolateral neck region Organized by region, each layered dissection elucidates specific nerves and structures with pinpoint accuracy, providing the clinician with in-depth anatomical insights. Precise clinical explanations accompany each photograph. In tandem, the images and text provide an excellent foundation for understanding the nerves and structures impacted by neurosurgical-related pathologies as well as other conditions and injuries. -
Physiologic Factors for Dental Anesthesia Injections
ARE YOU NUMB YET? THE ANATOMY OF LOCAL ANESTHESIA PART 2: TECHNIQUES PHYSIOLOGIC FACTORS FOR DENTAL ANESTHESIA Alan W. Budenz, MS, DDS, MBA INJECTIONS Dept. of Biomedical Sciences and Vice Chair of Diagnostic Sciences & Services, Dept. of Dental Practice University of the Pacific, Arthur A. Dugoni School of Dentistry San Francisco, California Success versus Failure [email protected] Failed Anesthetic: Measuring the Problem Physiology of Anesthetic Agents One of every three patients is not properly numb when the dentist or hygienist is ready to start (or actually starts) a dental procedure. How do we assess anesthesia? Is this “failed anesthetic”? 60% Question the patient Soft tissue only 50% * Probe the area 46% Average 40% 42% 41% Failure 38% Rate is Cold test 30% 29% Pulpal tissue 31% Electric pulp tester 20% 19% 20% 17% 15% How is anesthetic success defined in studies? 10% Frequency Frequency Anesthetic Failedof Ideal: 2 consecutive 80/80 readings with EPT within 15 0% IAN Blocks - 15 min. after injection Maxillary infiltrations - 10 min. after injection minutes of injection (and sustained for 60 mins) Delayed pulpal onset: occurs in the mandible of 19 – 27% Slide courtesy Dr. Mic Falkel of patients (even though soft tissue is numb) Delayed over 30 minutes in 8% Nusstein J et al. The challenges of successful * Average failure rate reported across 38 published studies mandibular anesthesia, Inside Dentistry, May 2008 Physiology of Anesthetic Agents Blocks versus Infiltrations Onset of anesthesia: Advantages of infiltrations 1. Dependent upon anesthetic agent 1. Faster onset Concentration 2. Diffusion to the site Simple Lipid solubility 3. -
Are You Numb Yet?
ARE YOU NUMB YET? Patients rate “painless injections” as PROBLEM-SOLVING THE DELIVERY the most important criteria in evaluating OF LOCAL ANESTHESIA their dentist or dental hygienist de St Georges J, How dentists are judged by patients, Dentistry Today, Vol. 23, August 2004 Alan W. Budenz, MS, DDS, MBA Professor, Dept. of Biomedical Sciences and Interim Chair, Dept. of Diagnostic Sciences University of the Pacific, Arthur A. Dugoni School of Dentistry San Francisco, California 90% of all patients report being anxious [email protected] about going to the dentist or dental hygienist Friedman & Krochak, Using a precision-metered injection and receiving a shot. system to minimize dental injection anxiety, Compend Contin Educ Dent, Vol. 19(2), Feb 1998 Reasons for Anesthetic Failures Reasons for Anesthetic Failures 1. Anatomical/physiological 1. Anatomical/physiological variations variations 2. Technical errors of administration Wide flaring mandible Wide flaring ramus 3. Patient anxiety Long (A - P) ramus 4. Inflammation and infection Bulky musculature Large buccal fat pad 5. Defective/expired solutions Class III occlusion Missing teeth Children Wong MKS & Jacobsen PL, Reasons for local anesthesia failures, J Am Dent Assoc, Vol 123, Jan 1992 Accessory or anomalous nerve pathways Reasons for Anesthetic Failures Reasons for Anesthetic Failures 1. Anatomical/physiological 2. Technical errors of administration variations Too high Too low 2. Technical errors of Too anterior administration Too posterior These two are Too medial closely -
SŁOWNIK ANATOMICZNY (ANGIELSKO–Łacinsłownik Anatomiczny (Angielsko-Łacińsko-Polski)´ SKO–POLSKI)
ANATOMY WORDS (ENGLISH–LATIN–POLISH) SŁOWNIK ANATOMICZNY (ANGIELSKO–ŁACINSłownik anatomiczny (angielsko-łacińsko-polski)´ SKO–POLSKI) English – Je˛zyk angielski Latin – Łacina Polish – Je˛zyk polski Arteries – Te˛tnice accessory obturator artery arteria obturatoria accessoria tętnica zasłonowa dodatkowa acetabular branch ramus acetabularis gałąź panewkowa anterior basal segmental artery arteria segmentalis basalis anterior pulmonis tętnica segmentowa podstawna przednia (dextri et sinistri) płuca (prawego i lewego) anterior cecal artery arteria caecalis anterior tętnica kątnicza przednia anterior cerebral artery arteria cerebri anterior tętnica przednia mózgu anterior choroidal artery arteria choroidea anterior tętnica naczyniówkowa przednia anterior ciliary arteries arteriae ciliares anteriores tętnice rzęskowe przednie anterior circumflex humeral artery arteria circumflexa humeri anterior tętnica okalająca ramię przednia anterior communicating artery arteria communicans anterior tętnica łącząca przednia anterior conjunctival artery arteria conjunctivalis anterior tętnica spojówkowa przednia anterior ethmoidal artery arteria ethmoidalis anterior tętnica sitowa przednia anterior inferior cerebellar artery arteria anterior inferior cerebelli tętnica dolna przednia móżdżku anterior interosseous artery arteria interossea anterior tętnica międzykostna przednia anterior labial branches of deep external rami labiales anteriores arteriae pudendae gałęzie wargowe przednie tętnicy sromowej pudendal artery externae profundae zewnętrznej głębokiej