<<

https://ntrs.nasa.gov/search.jsp?R=20150009006 2019-08-31T08:13:11+00:00Z

Scott Schaire NASA Goddard Space Flight Center (GSFC) Near Earth Network (NEN) Wallops Station Director

Contributions from Serhat Altunc, George Bussey, Harry Shaw, Bill Horne, Jim Schier

GSFC Compact Radiation belt Explorer (CeREs) Principal Investigator Shri Kanekal holds an early version of one of the mission’s solid-state detectors – demonstrates a shift in the paradigm for satellite development. CeREs is a 3U CubeSat ~10 cm by 10 cm by 30 cm, mass ~3 kg. For the purposes of this presentation a CubeSat is defined as up to 6U, ~10cm by 20cm by 30cm, mass ~6 kg.

0 Goddard Space Flight Center

Agenda

h AgeofSmallSatellitesisHereorontheHorizon h NASAisDevelopingExcitingCubeSatConcepts h SmallSatelliteMissionCharacteristics h NASASupportforCubeSats h FlightRadiosandAntennaDevelopment h CubeSatDataRatesAchievable h SCaNEvolutionforSmallSatellites h Summary h WorkshopDiscussion AgeofSmallSatellitesisHereorontheHorizon Goddard Space Flight Center h NumerousorganizationsincludingNASA developingconceptsforexploitingsmall spacecraft h PertheNASASpectrumprogram’slistofsmall satellites(<100kg),morethan370small satellites,manyofwhichwereCubeSats,have MIT’s Micro-sized Microwave Atmospheric Satellite (MicroMAS) launchedbetween2002andFebruary2015 demonstrates an increase in science sophistication of CubeSats h Manymorehavebeenidentifiedbutnot launched(>500notcountingconceptsforlarge constellationswithnumbersinthe1000’s) h Thenumberofsmallsatellitesmaybe constrainedbylaunchopportunitiesinthenear termremainingatabout100Ͳ120/year

GSFC’s IceCube 3U CubeSat team will develop and validate a commercially available flight-qualified 874-GHz receiver for future use in ice cloud radiometer

missions 2 CubeSatlaunches (SIAStateoftheSatelliteIndustryReport2014) Goddard Space Flight Center

Satellite Industry Association Study (2014) shows recent growth in CubeSats Nano satellites released Other reports (e.g., Space Works) also shows the growth with projections of from the International over 300 launched per year by 2017 Space Station (ISS)

3 Smallsat/CubeSatLaunches:Past&Future (ascapturedinNASA/SpectrumdatasetͲ datadoesnotincludeallSmallsats) Goddard Space Flight Center

4 Goddard Space Flight Center

Agenda

h AgeofSmallSatellitesisHereorontheHorizon h NASAisDevelopingExcitingCubeSatConcepts h SmallSatelliteMissionCharacteristics h NASASupportforCubeSats h FlightRadiosandAntennaDevelopment h CubeSatDataRatesAchievable h SCaNEvolutionforSmallSatellites h Summary CubeSatLaunchInitiative(CSLI)CubeSatSelections, LaunchesandManifests(asofFeb2015) Goddard Space Flight Center

h NASA,acrossitsmissiondirectoratesandCenters,isactivelyinvolvedinallaspectsofsmall satellitemissions – Launch&deploymentsupport:CubeSatLaunchInitiative,deploymentfromISS – Technologydevelopment(e.g.,SmallSpacecraftTechnologyProgram) – ApplyingsmallsatellitestoNASA’sscienceandexplorationmissionsisstilllimitedwith studiesunderwayonhowbesttoutilizeSmallsats • ExampleMission:NASAEarthScienceCycloneGlobalNavigationSatelliteSystem(CYGNSS) missionusingeight(8)18kgmicrosatellitestostudytropicaloceanwinds – OnenotableNASAfunctionwithonlylimitedactivityrelatedtosmallsatellitesisspace communicationsandnavigationsupport

NASA CubeSat Launch Initiative (CSLI) began in 2009 Left: CSLI Activity; Right: Antares lifts off from Goddard/ (WFF), with 3 CubeSats onboard in April 2013 6 Goddard Space Flight Center

Agenda

h AgeofSmallSatellitesisHereorontheHorizon h NASAisDevelopingExcitingCubeSatConcepts h SmallSatelliteMissionCharacteristics h NASASupportforCubeSats h FlightRadiosandAntennaDevelopment h CubeSatDataRatesAchievable h SCaNEvolutionforSmallSatellites h Summary h WorkshopDiscussion SmallSatelliteMissionObservations Goddard Space Flight Center h Todate,almostallsmallsatelliteshaveoperatedin lowͲEarthorbit – Deploymentsatorbits(<450km)wheredecay occursrapidly,somostdonotoperatemorethan afewweeksormonths(<6months),but... – Somesmallspacecrafthaveoperatedforyears – Future:SmallsatelliteswilloperatefromLEOto highlyelliptical,lunar,anddeepspaceregions Goddard’s Firefly CubeSat determining h linkage between lightning & Terrestrial Communicationandnavigationsupport Gamma-Ray Flashes – Availablepower(e.g.2W),modestgainantennas (e.g.patchantennas)andprocessingcapabilities arebecomingsimilartotraditional,larger spacecraft – Manydifferentspaceflightcommunicationand navigation(e.g.,GPSforLEO/MEO)hardware subͲsystemsarebecomingincreasinglyavailable

University of Colorado Boulder and the Laboratory for Atmospheric and Space Physics (LASP) Miniature X-ray Solar Spectrometer (MinXSS) 3U CubeSat funded by NASA

8 SmallSatelliteCommunicationSupport Goddard Space Flight Center h Manydifferentsupportapproacheshavebeenused – Manysmallsatelliteprojectshaveprocuredtheirownground stations(e.g.UltraͲHighFrequency(UHF)Yagiantenna,ora small2mdish) – Commercialgroundnetworks(e.g.,KSAT)areincreasingly deployingsystemstosupportsmallsatellites (ARC) – Afewsmallsatellitesystems,solicitsupportfromamateur GeneSat CubeSat – 1st CubeSat operatorsaroundtheworld(“crowdsourcing”)tocollectand launched in the US – Dec, 2006, senddatapacketsbacktoamissioncontrolcenter from GSFC/Wallops Flight Facility – Example:UniversityofMichigan – BothIridiumandGlobalstarmobilesatellitesystemshave supportedSmallsats – Nooneorsetofstandardshasemergedastheobviouschoice forsmallsatellites h NASAsupporthasbeenlimitedtodate – NASAWallopsrange(notSCaN)hassupportedandplanstosupportseveralCubeSats – Todate,theNASASpaceCommunicationandNavigation(SCaN)Network(SpaceNetwork,NearEarth Network(NEN),andDeepSpaceNetwork(DSN))havenotdirectlysupportedanyCubeSatmission butplanstosupportfuturemissions

9 BeyondEarthOrbitSmallsat&CubeSatSupport Goddard Space Flight Center h Todate,noidentifiedCubeSathasoperatedincisͲLunarspaceorindeepspace(>2Mkm); however,Smallsats(e.g.microͲsats<100kg)have... – LunarflyͲby:Pioneer4(1959,6kg)firstU.S.probetoescapefromtheEarth'sgravity – LunarorbitͲfirstmicroͲsat?:15subsatellite(PFSͲ1)(36kg)(1971) – CurrentOperationalExample:ARTEMISP1&P2(THEMISB&C)(77kg+49kgfuelat launch)currentlyoperatingincisͲLunarandsupportedbyDSNandNEN – DeepSpaceExample:Three(3)microsatelliteswerereleasedwithHayabusa2(launch Dec2014)intrajectoriestowarddeepspaceincludingPROCYON(65kg)whichplansan asteroidflybyin2016 h DeepSpace(>2Mkm)PlannedMissions – MarsCubeOne(MarCO):Two(2)6UCubeSats launchingwithInsightmissiontoMars(March2016) • RelayfromInSighttoMarCOat401MHz(8kbps, Proximity1protocolstandard) • SpaceͲEarthsupportfromDSNin7/8GHzdeep spacebands(8kbps) – Othersystemshavebeenproposedandareevenin development,butnodeepspaceCubeSatsareknown

tobemanifested(exceptonEMͲ1mission,nextchart) Concept Art of MarCO

10 BeyondEarthOrbitSmallsat&CubeSatSupport:EM11 Goddard Space Flight Center

h NASA’sSpaceLaunchSystem(SLS)hasarequirementtosupportuptoeleven(11)6UCubeSats perlaunch h ThefirstSLSlaunch(withunmannedspacecraft)in2018planstocarry11CubeSats – CubeSatsmayentercisͲLunarspaceormaycontinuetodeepspace – DuetothelargenumberofSmallsatsbeingreleasedintrajectoriesdepartingEarthorbit, specialconsiderationsforcommunicationandnavigationserviceswillbeneededandwill likelyincludemultiplegroundsites – CandidateEM1CubeSatManifestAllocation(NOTFinal) • HumanExplorationandOperations(HEO)MissionDirectorate sponsored – BioSentinel – LunarFlashlight – NearEarthAsteroidScout – NextSTEPeffortrecentlyannounced2candidateCubeSats • ScienceMissionDirectorate(SMD)sponsored – BothHeliophysicsandPlanetaryDivisionsarereviewingproposals – OtherSMDͲsponsoredCubeSatsmaybeproposed • NASA’sCubeQuestCentennialChallengemaybookafewslots – CubeQuestisofferingprizestosuccessfuldemosofCubeSatsinlunarorbit&innovativedeep spacecommunications;Bidders(nonͲNASA)maychooseDSNoralternativegroundstations 1 See the “Next-Generation Ground Network Architecture for Communications and Tracking of Interplanetary Smallsats” for information on how ground networks can support the EM1 scenario. Paper was presented at the CubeSat Developer's Workshop, April 22-24, 2015, San Luis Obispo. To be published in the Interplanetary Network Directorate Progress Report. 11 SpectrumforSmallsats Goddard Space Flight Center h Fromaspectrumrequirementsandfrequency coordinationperspective,smallsatellites(e.g., nanosatellites,etc.)cannotbedefinedasadistinct satelliteclass...Anemitterisanemitternomatterwhat sizetheplatform(spacecraft)(perITU) h ExistingspectrumregulationsapplytoALLspacecraftno matterwhatsize... Radio Aurora Explorer (RAX-2) – – Authorization/licensingrequired U. of Michigan, SRI International – Mustfollowregulationsincludingtechnicalparameters (e.g.,powerfluxdensitylimits) – Mustfollowsatellitenotificationandcoordination processes – Thetypicaltwoyearspectrumcoordinationprocesscan beachallengeforSmallsats thattypicallyhaveafast developmentlifeͲcycle h Basedonpartialintomissiondesigns,atleast25 differentfrequencybandshavebeenorareplannedtobe usedbysmallsatellitesforcommunications...Notallare appropriateforsustainedoperations

12 SpectrumUsedforSmallsatCommunications(Continued) Goddard Space Flight Center

13 Goddard Space Flight Center

Agenda

h AgeofSmallSatellitesisHereorontheHorizon h NASAisDevelopingExcitingCubeSatConcepts h SmallSatelliteMissionCharacteristics h NASASupportforCubeSats h FlightRadiosandAntennaDevelopment h CubeSatDataRatesAchievable h SCaNEvolutionforSmallSatellites h Summary h WorkshopDiscussion NASASupportsNationalTelecommunicationsandInformation Administration(NTIA)SatelliteCommunicationBands Goddard Space Flight Center h BandswithsignificantglobalnetworksupportandNTIAlicensesfornearͲEarthanddeep spaceSmallsatsinclude,butarenotlimitedto: – 400– 470MHz – 2025Ͳ2120MHz&2200Ͳ2300MHz – 7145Ͳ7235MHz&8025Ͳ8500MHz – 22.55Ͳ23.55GHz&25.5Ͳ27.0GHz – 31.8Ͳ32.3GHz&34.2Ͳ34.7GHz h NASASpaceCommunicationandNavigation(SCaN) – NASAfundedinfrastructureforNASAmissions – NearEarthNetwork:S,X,Ka – SpaceNetwork:S,Ku,Ka – DeepSpaceNetwork:S,X,Ka

Near Earth Network McMurdo Ground Station

15 NASARespondedtoPopularityofUHFforCubeSats WallopsUHFCubeSatGroundStation(notSCaN) Goddard Space Flight Center h Specifications – Beamwidth:2.9degrees – FrequencyRange:380to480MHz – SecondaryFrequencyBand:XͲBandavailablefor futurehighdatarateCubeSatcommunication – AntennaMainBeamGain:35dBi – Diameter:18.3meters(60’) Wallops UHF on left, S-Band h UHFRadarasaCubeSatGroundstation on right – 1stusedwithUtahStateUniversityDynamic IonosphereCubeSatExperiment(DICE) • Interference • MoreheadaddedasabackͲup – CuttingͲEdgeCubeSatcommunicationovera governmentͲlicensedUHFfrequencyallocationthat enableshighdatarates(3.0Mbit/Sec) – CurrentlycommunicatingwiththeFireflyand MicroMASspacecraft

– SlatedforuseforMiRaTA,Delingr,CeREs,HARP, Morehead State University 21 IceCube,andmanyproposedCubeSats Meter antenna

16 NearEarthNetwork(NEN)Description Goddard Space Flight Center h Bestvaluecommunications&trackingservices

h MissionsinnearͲearthregion

h SupportsmultipleroboticmissionsinlowEarth, geosynchronous,highlyelliptical,andlunarorbits usingamixofNASAͲownedstationsand cooperativeagreementswithcommercialand internationalspacecommunicationsproviders

h Lightsoutautomationoneachgroundstation

h SmallstaffatWallopsGlobalMonitorandControl Center(GMaCC)for24*7365daymonitoringof passes

h Streamlinedplanningprocesstomaximizesreuseof groundstationconfigurations Near Earth Network Alaska Satellite Facility 11 Meter class antennas

17 NENBaselineafterProjectedExpansions(FY20) Goddard Space Flight Center

Svalbard Gilmore (KSAT) 3 1 Creek (NOAA) 3 2 4 1 2 Kiruna 1 (SSC) North Pole Fairbanks (SSC/USN) (ASF) Pre-mission Planning & Analysis Pre-mission Testing Network Monitoring & Coordination Scheduling (Greenbelt, MD) (White Sands) GMaCC (Wallops, VA) 1 1 2 Wallops, VA 1 1 White Sands, NM 2 LCS 2 1 2 (NEN/AF) Bermuda (NEN/Wallops RRS) South Point, HI (SSC/USN)

Singapore 1 (KSAT)

1 Hartebeesthoek Dongara 1 (SANSA) (SSC/USN) Santiago 2 (SSC)

1 Punta Arenas

1 1 TrollSat McMurdo 1 (KSAT)

18 NENUpcomingCubeSatSupport Goddard Space Flight Center h TheNENwillprovidefirsttimesupporttoaCubeSatmission,CubeSatProximity OperationsDemonstration(CPOD),whenitlaunchesin2015 – SupportingStation:WGS11m,ASF11m,MGS10m – LevelofSupport:2contactsperdaywithaminimumdurationof5minutes – ServiceProvided:SͲBandTelemetry – DataRates:1Mbpsor500kbps – ServiceDuration:L+30daystoL+6months(possibleextensionofuptoL+12months)

19 SpaceNetwork(SN)Description Goddard Space Flight Center h Aconstellationofgeosynchronous(Earthorbiting)satellitesnamedtheTrackingDataRelay Satellite(TDRS) – Groundsystemsthatoperateasarelaysystembetweensatellites – SatellitesinlowEarthorbit(LEO)above73km – Supports24by7coverage – Lowlatency

TDRS Spacecraft Constellation – The Space Segment 20 SpaceNetworkWhiteSandsComplex–TheGroundSegment Goddard Space Flight Center h TheWSGTiscomposedofthefollowing h TheSTGTincludesthefollowingsubsystems: subsystems: – ThreeSpaceͲGroundLinkTerminals(SGLTs) – TwoSpaceͲGroundLinkTerminals – Three19ͲmeterKaͲbandantennas – Three18.3ͲmeterKaͲBandantennas – One10ͲmeterSͲBand(STTC) – One10ͲmeterSͲBandTelemetry,Tracking – TwodualS/KuͲband4.5Ͳmeterantennas andCommand(STTC) forendͲtoͲendtests – TwodualS/KuͲBand4.5Ͳmeterantennasfor – DataInterfaceSystem endͲtoͲendtests – OneTDRSOperationsControlCenter – DataInterfaceSystem (TOCC) – OneTDRSOperationsControlCenter(TOCC)

White Sands Ground Terminal (WSGT) Second TDRSS Ground Terminal (STGT)

21 SN:VariousCubeSatCommunicationConfigurations Goddard Space Flight Center

TDZ

“Mothership” Architecture DirectͲtoͲ Supportvia Ground DirectͲtoͲGround Through TDRS

TDW TDE

WSC GSFC

Service Characteristics x Support provided via TDRS Service Characteristics Multiple Access (MA) antenna x Provided via NEN Ground Stations x No customer RTN service x No customer RTN service scheduling scheduling x Global coverage; low latency x Global coverage; low latency CubeSatConstellation “Mothership” CubeSat Characteristics SupportviaTDRSS x Mothership: S-band transmit and Configuration receive; directional antenna (i.e., attitude / antenna pointing); high rate burst transmissions; transponder required if TDRSS Constellation Characteristics tracking services required x Subordinates: Proximity link x One Mothership, however, multiple CubeSats have the ability to fulfill the role of Mothership comm. only; GPS position x Two or more CubeSat architectures (Mothership-capable CubeSats, subordinate CubeSats) determination 22 SNCubeSatServices Goddard Space Flight Center h LEOCubeSatstypicallyhavelowRFpoweroutput,lowEIRP,andlongslantrangestoTDRS h Typicalconceptsofoperationswouldinclude: – CubeSatlocationfindingandemergencyrecovery – Highpercentageglobalcoveragewithlowlatency(upto24x7) h Lowdatarateusers(e.g.,CubeSatconstellations)willutilizetheMultipleAccessService, whichwillrequireSpreadSpectrumcommunicationssystemsonboardtheuserCubeSat – NonͲspreadsystemswillcausespectrummanagementandinterferenceissues. (ExceptionscanbemadeonacaseͲbyͲcasebasis) – WeareworkingonidentifyingspreadspectrumradiooptionsforCubeSatusers

23 DeepSpaceNetwork(DSN)Description Goddard Space Flight Center h NASA’sinternationalarrayofgiantradioantennasthatsupportsinterplanetaryspacecraft missions h OperatedbyNASA'sJetPropulsionLaboratory(JPL),whichalsooperatesmanyofthe agency'sinterplanetaryroboticspacemissions h Consistsofthreefacilitiesspacedequidistantfromeachother– approximately120degrees apartinlongitude– aroundtheworld,Goldstone,nearBarstow,California;nearMadrid, Spain;andnearCanberra,Australia

DSN Deep Space Station (DSS) Resources as of December 11, 2014

24 Goddard Space Flight Center

Agenda

h AgeofSmallSatellitesisHereorontheHorizon h NASAisDevelopingExcitingCubeSatConcepts h SmallSatelliteMissionCharacteristics h NASASupportforCubeSats h FlightRadiosandAntennaDevelopment h CubeSatDataRatesAchievable h SCaNEvolutionforSmallSatellites h Summary h WorkshopDiscussion SelectedCommonCubeSatRadiosandAntennas Goddard Space Flight Center

Flight Output Input Power Volume Network Board TRL Frequency Bands Data Rate Mass (g) Modulation; FEC Heritage Power(watt) (watt) (cm^3) Compatibility

Tethers S-band downlink/ BPSK; TRL4 No 15 Mbps downlink 380 1 5 10X10X3.5 NEN,TDRS,DSN Unlimited S-band uplink FEC can be added

S-band downlink/ 230 kbps downlink/ MHX-2420 TRL9 RAX 75 1 5 8.9X5.3X1.8 FSK, CDMA Partially NEN S-Band uplink 115 kbps uplink

AstroDev RAX, Firefly, UHF downlink/ TRL9 76.8 kbps downlink 52 250 mW – 4 W 1.25-20 10X6.5X3.3 FSK, GMSK None Lithium Radio CSSWE, CXBN UHF uplink

UHF downlink/ 24 Mbps downlink/ OPSK,FSK,GMSK; TRL9 DICE 215 2 10 6.9X6.9X1.3 None UHF uplink 250 kbps uplink Turbo FEC, Conv. L3 Cadet S-band downlink/ 24 Mbps downlink/ OPSK, FSK,GMSK; TRL4 No 215 2 10 6.9X6.9X1.3 None UHF uplink 250 kbps uplink Turbo FEC, Conv.

S-band downlink/ 1 Mbps downlink/ Nimitz Radio TRL3 No 500 1 5 9X9.6X1.4 BPSK, FSK, GFSK None UHF uplink 50 kbps uplink

S/X-band downlink/ 150 Mbps X-Band downlink/ BPSK, OQPSK; MSFC TRL 7 FASTSat2 <1kg 2 8 10.8X10.8X7.6 NEN S-band uplink 50 kbps uplink LDPC 7/8

Sense S-band downlink/ BPSK,QPSK,OQPSK, GMSK, FM/PCM; Innoflight TRL 9 4.5 Mbps downlink 300 2 10 8.2X8.2X3.2 NEN,TDRS,DSN NanoSat S-band uplink Conv. and RS

X-band downlink/ 256 kbps downlink/ BPSK; IRIS (JPL) TRL 6 No 400 4 20 0.4 U DSN X-band uplink 1 kbps uplink RS

TRL 5/ S/X-band downlink/ 12.5 Mbps X-Band downlink/ BPSK/OQPSK LASP/GSFC No <600 1.5 10 0.5 U NEN TRL 8 (7/15) S-band uplink 200 kbps uplink Conv. and RS

S-band downlink/ 3 Mbps downlink/ QPSK/OQPSK, Syrlinks TBD No 325 3 15 9x9.6x5.1 NEN S-Band uplink 256 kbps uplink Conv. (7;½) Differential Coding

OQPSK/ Syrlinks TBD No X-band downlink 100 Mbps downlink 225 2 10 9x9.6x2.4 NEN Conv. (7;½)

Quasonix PCM/FM, SOQPSK-TG, Multi-h CPM, TRL 9 CPOD L/S-Band downlink 46 Mbps downlink TBD 10 50 3.2x8.6x0.8 NEN nanoTX BPSK, QPSK, OQPSK, UQPSK

26 LASP/GSFCXͲBandRadioDevelopmentEffort Goddard Space Flight Center

LASP and GSFC are currently undertaking a X-Band Cube Satellite Communication System development project with the following objectives:

1. Investigate different X-band communication system architectures that can be used as a baseline 2. Design, simulate and test a NEN compatible CubeSat S- and X-band communication system 3. End-to-end demo of X-band CubeSat communication system with a Balloon to a NEN station 4. An end-to-end innovative, compact, efficient and low cost S-band uplink and X-band downlink CubeSat Communication System Demonstration between a balloon and a NEN ground

Ant Dev Corp Low Gain S-band Patch • 0 dBi +/- 40 deg • 2210 MHz • 4X4X0.25 inches

Ant Dev Corp Medium Gain X-band Patch Array Antennas • 8250 MHz • 4 elements/16 elements HRCCS X-Band transmitter prototype module • 2.5X2.75X0.13 inches top and bottom view

27 STKSimulationsofLASP/GSFCRadio Goddard Space Flight Center

h AnSTKsimulationswasconductedwiththeLASP/GSFCradioandaLEOsatellitewith distancesupto705km,whichconcludedthelinkcouldbeclosedwithatleast+3dBmargin

Wallops Fairbanks McMurdo Grouped GroundStation WGS11.3M ASF10M ASF11M MGS(10m) (inclusive) Frequency SͲband XͲband SͲband XͲband SͲband XͲband SͲband XͲband SͲband XͲband ElevationAngle(deg) 510510510510510 MinDataRate(Mbps) OCOͲ2Model 5.00 7.71 5.00 10.90 5.00 13.11 5.00 10.00 5.00 7.71 (from705kmAlt.) ContactTime Average 0.71 0.494 1.674 1.136 1.674 1.136 2.253 1.546 4.64 3.18 PerDay(hrs) Minimum 0.71 0.494 1.674 1.136 1.674 1.136 2.253 1.546 4.64 3.18 Latency(hrs) Average 4.556 2.032 1.983 4.599 1.983 4.599 1.416 1.829 0.65 0.84 Maximum 11.843 10.032 8.374 11.879 8.374 11.879 1.6 6.094 1.45 1.52

28 LASP/GSFCRadioSchedule Goddard Space Flight Center h TestwillbeperformedduringSummer2015 – AnechoicChamberAntennatest – LabtestswithTransceiverandCortexXXL – ClosedLooptestwithWGS11m,injectthesignalfromreceivertotheWGS11m – FarFieldtestͲ calltowertestingwithWGS11m(Nofrequencylicenserequired) – FullBalloonDemo h Transceiverdevelopmentschedule – XͲbandtransmitterwillbecompletedinJune15 – SͲbandportionwillbecompletedlateSummer/EarlyFall2015

29 JPLIRISRadioandAntennaDevelopment Goddard Space Flight Center h IrisRadioDevelopment – Developmentbeganin2013 – DSNͲcompatibleXͲbandtransponder – Volumeof0.4Uandmassof0.4kg – CCSDSstandards(e.g.,AOS,Turbo,Conv.,BPSK) – Returnratesfrom62.5to256,000bps – Forwardratesfrom62.5to8000bps – 32Mbitsofstorage Iris Version 1 Prototype Stack – Doppler,ranging,anddeltaͲDORtonessupported h DevelopingmultipleCubeSatͲCompatibleHighͲGainAntennastoincreaseEIRP – Deployablereflector:DesignedforKaͲBandbutpotentiallyapplicabletoXͲBand,can providethenecessarysurfaceaccuracyduetodeploymentandfoldingribmechanism – Reflectarrays:Combinetheadvantagesofarraysandreflectors – Inflatablereflectors:Providesthehigheststowingefficiencyallowingforlargersized antennasandbiggergain

30 Goddard Space Flight Center

Agenda

h AgeofSmallSatellitesisHereorontheHorizon h NASAisDevelopingExcitingCubeSatConcepts h SmallSatelliteMissionCharacteristics h NASASupportforCubeSats h FlightRadiosandAntennaDevelopment h CubeSatDataRatesAchievable h SCaNEvolutionforSmallSatellites h Summary h WorkshopDiscussion NEN:CubeSatCapabilities/DataRates(LEO400kmOrbit) Goddard Space Flight Center

h ThefollowingtableprovidesanticipatedachievabledataratesbetweenaLEOCubeSat equippedwithdifferentcompatibleradiosandtypicalNENantennas

AchievableDataRate (#dBMargin) Req.CubeSat Radio Antenna Gain Power Band Yagi LowGain 5m 11m 18m Pointing 3Mbps L3Cadet Omni 0dBi 2WUHF NA 50kbps 200kbps 750kbps 3Mbps (+7dB)

4.5Mbps 4.5Mbps 4.5Mbps Innoflight 2xPatch 0dBi 2WSͲBand NA 60kbps 250kbps (+2dB) (+9dB)

8Mbps 10Mbps 10Mbps 10Mbps Innoflight HighGain 10dBi 2WSͲBand 10deg 500kbps (+13dB) (+19dB) (+26dB)

12.5Mbps 12.5Mbps LASP/GSFC 2xPatch 0dBi 2WXͲBand NA 125kbps 500kbps 6Mbps (+3dB) (+10dB)

HighGainDep.or 12.5Mbps 12.5Mbps 12.5Mbps 12.5Mbps LASP/GSFC 15dBi 2WXͲBand 10deg 6.25Mbps PatchArray (+6dB) (+12dB) (+18dB) (+25dB)

HighGainDep.or 12.5Mbps 12.5Mbps 150Mbps 150Mbps MSFC 15dBi 2WXͲBand 10deg 6.25Mbps PatchArray (+6dB) (+12dB) (+8dB) (+15dB)

32 NEN:CubeSatCapabilities/DataRates(LunarOrbit) Goddard Space Flight Center h ThefollowingtableprovidesanticipatedachievabledataratesbetweenaLunarCubeSat equippedwithdifferentcompatibleradiosandtypicalNENantennas

AchievableDataRate (#dBMargin) Req.CubeSat Radio Antenna Gain Power Band 11m 18m Pointing

L3Cadet Omni 0dBi 2WUHF NA NA NA

Innoflight 2xPatch 0dBi 2WSͲBand NA 0.04kbps 0.2kbps

Innoflight HighGain 10dBi 2WSͲBand 10deg 3kbps 16kbps

LASP/GSFC 2xPatch 0dBi 2WXͲBand NA 0.2kbps 1kbps

HighGainDep.or LASP/GSFC 15dBi 2WXͲBand 10deg 1kbps 32kbps PatchArray

HighGainDep.or MSFC 15dBi 2WXͲBand 10deg 1kbps 32kbps PatchArray

33 SN:CubeSatCapabilities/DataRates Goddard Space Flight Center h ThelimitingcaseforCubeSatsutilizingTDRSSistheReturnService(signalsoriginatingat theCubeSatuptoTDRSSdowntoWSC). h CubeSatͲTDRSSsupportwillbelimitedbylowerdatarateduetoS/Cpowerconstraints; howeverSNcanprovidefullglobalcoverageandlowdatalatency

Information SymbolRate Symbolrate CubeSat LinkDescription Rate(priorto (afterRS (afterallcoding Coding Margin EIRP allcoding) encoding) applied) 1st generation TDRSMA 874bps 1ksps 2ksps 0.4dB Return Rate½CCwith 2nd/3rd ReedSolomon 2.0dBW generationTDRS 1.139kbps 1.303ksps 2.606ksps Coding MAReturn 1.0dB

SSAReturn 6.914kbps 7.906ksps 15.812ksps

Link characteristics are for a CubeSat with 2W RF out, 0dBi patch antenna in a ISS-like orbit. Communication mode is S-band SQPN, via either 1st gen Multiple Access, 2nd/3rd gen Multiple Access or Single Access Service.

34 DSN:CubeSatCapabilities/DataRates Goddard Space Flight Center h ThefollowingtableprovidesanticipatedachievabledataratesbetweenaLunarCubeSat equippedwithdifferentcompatibleradiosanda34mDSNclassantenna

AchievableDataRate (#dBMargin) Req.CubeSat Radio Antenna Gain Power Band 34m Pointing

L3Cadet Omni 0dBi 2WUHF NA 1kbps

Innoflight 2xPatch 0dBi 2WSͲBand NA 10kbps

Innoflight HighGain 10dBi 2WSͲBand 10deg 160kbps

LASP/GSFCor 2xPatch 0dBi 2WXͲBand NA 20kbps IRIS(JPL) HighGainDep.or LASP/GSFC 15dBi 2WXͲBand 10deg 1Mbps PatchArray

HighGainDep.or IRIS(JPL) 15dBi 2WXͲBand 10deg 256kbps PatchArray HighGainDep.or MSFC 15dBi 2WXͲBand 10deg 1Mbps PatchArray

35 Goddard Space Flight Center

Agenda

h AgeofSmallSatellitesisHereorontheHorizon h NASAisDevelopingExcitingCubeSatConcepts h SmallSatelliteMissionCharacteristics h NASASupportforCubeSats h FlightRadiosandAntennaDevelopment h CubeSatDataRatesAchievable h SCaNEvolutionforSmallSatellites h Summary h WorkshopDiscussion NearEarthNetworkEvolution Goddard Space Flight Center h TransitionfromSͲbandtoXͲBandtoKaͲBanddependson flighthardwareevolution

h NENS,XandKaͲBandgroundsystemisalready standardized

h Higherdataratewillreducenumberofpassesrequired

h Standardizationonradiosandconfigurationswillreduce planning/testingcostsandmayreducefrequency authorizationtime Near Earth Network Wallops 11 Meter h 11MeterclassdishesyieldshighgainforXͲband class antenna – Linkbudgetshows12.5Mbpscanbeachievedinlow Earthorbitwitha1Wattoutputsatellitetransmitter overXͲband – LASPandGoddard/WallopsFlightFacilityhave partneredtodesignaCubeSatXͲBandtransmitter,SͲ Bandreceiver(NENcompatible) – ProjectfundedbyNASASpaceTechnologyandMission Directorate(STMD)andGSFCIR&D NASA GSFC/Wallops LunarCube with h Developerscanfocusonenduseandmaximizescience deployable X-band antenna based on “bangͲforͲtheͲbuck” University of Colorado/Goddard X/S band CubeSat Radio and Near Earth Network h PossibilityofaddingUHFcapability

37 SNEvolutionforCubeSats Goddard Space Flight Center h TDRSScanprovidecontinualcoverageofCubeSatscomparedtoverylimitedcontacttime withjustgroundstations – ContinualcoveragecanbeusedbyCubeSatstosendstatusalertsinstantlywithout waitinguntilagroundstationisinview – Supportscontinual,realͲtimedataflowswithoutinterruption – Morecoveragetimeallowsusinglowerdatarates(i.e.lesspower)todelivermoredata thanbrief,intermittentgroundstationcontacts h TDRSScanprovideemergencysupportforCubeSats – TDRSS360° coveragecanconstantlylistenforsignalsfromCubeSatsaroundtheworld andlocatethemwhentheyarenotvisibletogroundstations – TDRSSmaybeabletoprovideCubeSatlocationinformationbyprocessingsignal informationfrommultipleTDRS'sviewingaCubeSat

38 DSNEvolution Goddard Space Flight Center

h TheDSNispursingmultipleeffortsinresponsetothechallengesassociatedwithcommunication andnavigationofSmallsats outsideLEO,inlunaranddeepspace1 – Radioandantennadevelopment(see“FlightRadiosandAntennaDevelopment”section) – StreamliningaccessandutilizationprocessesforDSNandrelatedservices – Developingmethodologiesfortracking&operatingmultiplespacecraftsimultaneously – CoordinationandcollaborationwithnonͲDSNfacilities h StreamliningandUpgradingExistingDSNCapabilitiesandProcesses – DSNResourceAllocationProcess:PlansareunderwaytointegrateDSNresourceallocation toolsintoasingletoolforendͲtoͲendschedulingneeds,increasingefficiencies – DSNCosts:DSNisconsideringCubeSattrackingpackagestoassistmissionwithhighDSNcosts aswellasreducedpreͲlaunchtestingwhenaCubeSatmissionconsistsofseveralspacecraft

h NewTechniquesforSimultaneousTrackingofMultipleSpacecraftinanAntennaBeam – DSNisworkingtodeveloplowͲcosttechniquestoenableitsantennastosupportmore spacecraftsimultaneouslysuchasMultipleSpacecraftperAntenna(MSPA)

h DSNOperationanditsInterfaceswithNonͲDSNAntennaFacilitiesandMissions – DSNisinvestigatingaspectsofSmallsat operationsconceptsandinterfacesincludingthe followingtopics:(1)Spectrumcoordination,(2)DSNcompatibilityandinterfaces,(3)CrossͲ SupportwithUniversitystations,and(4)PotentialESAantennas

1 See the “Next-Generation Ground Network Architecture for Communications and Tracking of Interplanetary Smallsats” paper from corresponding author Kar-Ming Cheung for in depth details for each topic discussed regarding DSN Evolution. Paper was presented at the CubeSat Developer's Workshop, April 22-24, 2015, San Luis Obispo. To be published in the Interplanetary Network Directorate Progress Report. 39 Goddard Space Flight Center

Agenda

h AgeofSmallSatellitesisHereorontheHorizon h NASAisDevelopingExcitingCubeSatConcepts h SmallSatelliteMissionCharacteristics h SCaNSupportforCubeSats h FlightRadiosandAntennaDevelopment h CubeSatDataRatesAchievable h SCaNEvolutionforSmallSatellites h Summary h WorkshopDiscussion Summary Goddard Space Flight Center h NASASCaNisintheprocessofstudyingfurthertheuserneedsforCubeSatswithintheNASAuser community – WhatlevelofserviceisappropriatetoprovidetoCubeSats? – TDRSlocation – UHFsupport – Spacecraftemergency

h NASASCaNintendstoprovidestandardservicesandcapabilitiestoCubeSatsandtoevolveandenhance networkcapabilitiesasbudgetpermits

h Increasedknowledgeofkeylessonslearnedandimprovedefficiencies(morecoordinatedoperations andcommunicationssupport)willlikelybenecessarytofullymaturethesmallsatellitedomain

h Evolutiondependsonbothflighthardwareandgroundstationdevelopment

h UHFusewilllikelycontinueuntilotherbandsolutionsbecomemorematureandaffordable h XͲbandisrecommendedsolutioninthenearͲtermformaximizingtheuseoftheNASANearEarth Networkresourcesandhighdatarates

h NASASpaceNetworkcouldtodayprovidelowͲlatency,lowdatarateservice

h NASADeepSpaceNetworkispreparingtosupportmultipleplanetaryCubeSatsinparallel

h NASAisinvestigatingstreamliningplanningandtesting

41 Goddard Space Flight Center

Agenda

h AgeofSmallSatellitesisHereorontheHorizon h NASAisDevelopingExcitingCubeSatConcepts h SmallSatelliteMissionCharacteristics h SCaNSupportforCubeSats h FlightRadiosandAntennaDevelopment h CubeSatDataRatesAchievable h SCaNEvolutionforSmallSatellites h Summary h WorkshopDiscussion WorkshopDiscussion&CandidateAction: SpaceOps2016 Goddard Space Flight Center h Previous:SpaceOps2016 – PlenaryPanel:SmallsatOperations – SmallSatelliteOperationsTechnicalTrack(Chair:JamesCutler(UofMichigan)) • Topics:CubeSatandNanosatOperations,TT&CSystems,FlightOperations,ConstellationOperations,Frequency AllocationChallenges,RegulationsandtheirChallenges,ChallengeswithSmallSatelliteOperations,EndofLife Operations,CubeSatNetworks/Swarms;ConstellationOperations,NanoͲTechnologies,LessonsLearned • SSOTechSession:TrimmedCommunicationArchitectures – AdaptingaLargeͲScaleMultiͲMissionGroundSystemforLowͲCostCubeSats – NASAWallopsFlightFacilityͲMoreheadStateGroundNetworkforSmallSatelliteMissionOperations – DevelopmentandOperationResultsofCubeSatRAIKOUsingGroundNetworkSystem • SSOTechSession:AdvancedOperationsConcepts – OperationalConsiderationsforaSwarmofCubeSatͲClassSpacecraft – OperationsofaRadioisotopeͲbasedPropulsionSystemEnablingCubeSatExplorationoftheOuterPlanets – OperationsCostReductionforaJovianScienceMissionusingCubeSats h CandidateAction:Definesessions&panelsforSpaceOps2016(Korea) – Considerations: • AreSmallsatoperationssufficientlydistinctfrom“standard”missionssuchthatdifferentapproachesand technologiesareneeded?(i.e.,isthereaneedforaseparateSpaceOpstechtrack?) • Whataboutopsforlargesatelliteconstellations(regardlessofspacecraftsize)? • ShouldstandardservicesbedefinedforSmallsatoperationssuchthatsupportcanbeprovidedbymultiple,distinct networks(e.g.,Gov.,commercial,university,etc.)?Ifso,whatwouldthosestandardservicesandinterfacesbe? – WorkshopOutcome • DefinecandidateSpaceOps2016PanelsandTracks

43 WorkshopDiscussion&CandidateAction: CrossSupportforSmallSatellites Goddard Space Flight Center h CandidateAction:EstablishSmallSatelliteCrossSupportFrameworkforSpaceAgencies – Considerations: • WhatarespaceagencyplansforusingsmallSatellites? – Note:Todate,NASAhasprimarilysupportedsmallsatellitetechnologydevelopmentandlaunchsupportwith onlyminimalusetomeetexplorationandscienceobjectives.Essentially,whatisthe“real”marketofspace agencysmallsatellitesrequiringC&Nservices? • AreSmallsatoperationssufficientlydistinctfrom“standard”missionssuchthatdifferentapproachesandservicesare needed? • Whataboutopsforlargesatelliteconstellations(regardlessofspacecraftsize? • ShouldstandardservicesbedefinedforSmallsatoperationssuchthatsupportcanbeprovidedbymultiple,distinct networks(e.g.,Gov.,commercial,university,etc.)?Ifso,whatwouldthosestandardservicesandinterfacesbe? • AreexistingIOAGrecommendations(e.g.,ServiceCatalog)andCCSDSStandardssufficientorappropriateforsmall satellites? • Whataboutspectrum...Arecurrentfrequencyallocationssufficient?Arecurrentspectrumprocesses(e.g., licensing,coordination)adequate?Ifnot,whatisneeded?

– CandidateWorkshopOutcomes • RecommendationonneedforandpotentialcontentforSmallsatCrossSupportFrameworkforSpaceAgencies

44 Goddard Space Flight Center Acronyms

AF Air Force LEO Low Earth Orbit AGO Santiago Ground Station MMeter AGS Alaska Ground Station Mbps Megabits per second ARC Ames Research Center MGS McMurdo Ground Station ASF Alaska Satellite Facility MHz Megahertz BPSK Binary Phase Shift Keying MicroMAS Micro-sized Microwave Atmospheric Satellite CeREs Compact Radiation belt Explorer MinXSS Miniature X-ray Solar Spectrometer (MinXSS) CPOD CubeSat Proximity Operations Demonstration MiRaTA Microwave Radiometer Technology Acceleration CSLI CubeSat Launch Initiative NASA National Aeronautics and Space Administration. CYGNSS Cyclone Global Navigation Satellite System NEN Near Earth Network DICE Dynamic Ionosphere CubeSat Experiment NOAA National Oceanic and Atmospheric Administration DSN Deep NSF National Science Foundation DSS Deep Space Station NTIA National Telecommunications and Information FEC Forward Error Correction Administration FSK Frequency Shift Keying RRS Research Range Services GGrams SANSA South African National Space Agency GHz Gigahertz SCaN Space Communications and Navigation GMaCC Global Monitor and Control Center SMD Science Mission Directorate GN Ground Network SNIP SCaN Network Integration Project GPS Global Positioning System SIA Satellite Industry Association GSFC Goddard Space Flight Center SN Space Network HARP Hyper Angular Rainbow Polarimeter SSC Swedish Space Corporation ISS International Space Station STGT Second TDRS Ground Terminal ITU International Telecommunication Union TDRS Tracking and Data Relay Satellite JPL Jet Propulsion Laboratory USN Universal Space Network Kbps Kilobits per second WWatt Kg Kilogram WFF Wallops Flight Facility Km Kilometer WGS Wallops Ground Station KSAT Kongsberg Satellite Services AS WSC White Sands Complex LASP Laboratory for Atmospheric and Space Physics WS1 White Sands NEN 18m Antenna #1

46