Small Satellite Conference 2016

Total Page:16

File Type:pdf, Size:1020Kb

Small Satellite Conference 2016 https://ntrs.nasa.gov/search.jsp?R=20160010305 2019-05-22T01:40:23+00:00Z Small Satellite Conference 2016 An Optimum Space-to-Ground Communication Concept for CubeSat Platform Utilizing NASA Space Network and Near Earth Network Yen F Wong, Obadiah Kegege, Scott H Schaire, George Bussey, Serhat Altunc Goddard Space Flight Center Yuwen Zhang, Chitra Patel Harris Corp, Information Systems Presenter Scott H Schaire [email protected] EXPLORATION AND SPACE COMMUNICATIONS PROJECTS DIVISION 1 NASA GODDARD SPACE FLIGHT CENTER NASA Near Earth Network/Space Network Overview - The Space Network (SN) Tracking and Data Relay Satellite System (TDRSS) fleet currently consists of nine satellites supported by three tracking stations, two at White Sands, New Mexico, and a third on the Pacific island of Guam - TDRSS supports low earth orbiting satellites including the International Space Station, earth observing satellites, aircraft, scientific balloons, expendable launch vehicles, and terrestrial systems Example SA User 2nd or 3rd (S- Band Fwd & Rtn Gen TDRS Ka-Band Rtn) 2nd or 3rd Gen TDRS - NASA Near Earth Network (NEN) is comprised of Example SA User (S- Band Fwd & Rtn stations distributed throughout the world in locations Ku-Band Fwd & Rtn) SA USER (S- and / or including Svalbard, Norway; Fairbanks, Alaska; Ku-Band) Santiago, Chile; McMurdo, Antarctica; Wallops Island, Virginia. SA USER SA USER (S- and / or (S- and / or Ku-Band) MA User ORION Ku-Band or (S-Band) (S- Band Fwd & Rtn - The NEN supports orbits in the Near Earth region Ka-Band) Ka-Band Fwd & Rtn) from Earth to 2 million kilometers. MA User (S-Band) - NEN and SN assets are assigned to missions WSC based on priorities set by the NASA Science WHITE SANDS, NM Mission Directorate EXPLORATION AND SPACE COMMUNICATIONS PROJECTS DIVISION 2 NASA GODDARD SPACE FLIGHT CENTER NASA Future CubeSat Communication Architecture Study Study Objectives 1. Develop optimum communication concepts for CubeSat platform utilizing TDZ NASA SN and NEN “Mothership” Direct-to- Support via 2. Perform detailed analyses and Ground Through Direct-to- simulations of the proposed communication TDRS Ground architecture configurations. This includes TDW TDE CubeSat swarm, daughter ship/mother ship constellation, NEN S- and X-band direct-to- ground link, TDRSS MA array vs Single Access mode, notional transceiver/antenna WSC configurations, ground asset configurations, GSFC signal trades, space science X-band Service Characteristics downlink 10 MHz channel maximum Support provided via TDRS achievable data rates CubeSat Characteristics Multiple Access (MA) antenna S-band transmit and receive No customer RTN service Hemispheric or patch antenna, i.e. scheduling no rigorous attitude / antenna Global coverage; low latency 3. Explore CubeSat current technologies pointing requirements. capabilities CubeSat Constellation “Mothership” Support via Cubesat Characteristics Mothership: S-band transmit and TDRSS 4. Develop concepts of operations for receive; directional antenna (i.e., Configuration attitude / antenna pointing NASA’s future CubeSat/SmallSat end-to- requirements); high rate burst end communication Constellation Characteristics transmissions; transponder required if TDRSS tracking services One Mothership, however, multiple CubeSats have the ability to fulfill the role of required 5. Provide innovation concepts to meet Mothership Subordinates: Proximity link Two or more Cubesat architectures (Mothership-capable CubeSats, subordinate Cubesats) comm only; GPS position future CubeSat/SmallSat communication determination needs EXPLORATION AND SPACE COMMUNICATIONS PROJECTS DIVISION 3 NASA GODDARD SPACE FLIGHT CENTER NEN CubeSat Support Analysis • NEN Support Link Analysis - CubeSat/SmallSat mission communication requirements including frequencies and data rates can be met by utilizing NEN S and X-band support Links Data Rate Mod & CubeSat Link Coding EIRP Margin S-band 2 kbps BPSK, ½ -1 dBw 40.1 dB Downlink conv + RS S-band 4 kbps BPSK, ½ -1 dBW 36.5 dB Performance Results at 400 km altitude. Downlink conv S-band 256 kbps BPSK, ½ -1 dBW 18.45 dB Downlink conv S-band 513.7 BPSK, RS -1 dBW 14.4 dB Downlink kbps X-band 13.1 Mbps QPSK, 7/8 5 dBW 10.3 dB Downlink LDPC X-band 130 Mbps QPSK, ½ 5 dBW 3.2 dB Downlink conv + RS 11.3 m at AS1, CubeSat PA = 1 W, 0 dBi Antenna Gain (S-band), Antenna Gain = 5 dBi (X-band) Performance Results at 9000 km altitude. EXPLORATION AND SPACE COMMUNICATIONS PROJECTS DIVISION 4 NASA GODDARD SPACE FLIGHT CENTER Near Earth Network (NEN) Upcoming CubeSat Support • NEN will provide first time support to a CubeSat mission, CubeSat Proximity Launch Operations Demonstration (CPOD), when it Date (No launches in 2016 Earlier – Supporting Station: WGS 11m, ASF Mission Than) 11m, MGS 10m CPOD/PONSFD (A – Service Provided: S-Band Telemetry and B) 2016 – Data Rates: 1 Mbps or 500 kbps SOCON 2017 – Service Duration: L+30 days to L+6 iSAT 2017 months (possible extension of up to CryoCube 2018 L+12 months) Lunar Ice Cube 2018 BioSentinel 2018 CUTIE 2018 Burst Cube 2019 RadSat 2019 Propulsion Pathfinder (RASCAL) TBD CSIM TBD KitCube TBD PIC/USIP TBD TRYAD/PULSAR TBD EXPLORATION AND SPACE COMMUNICATIONS PROJECTS DIVISION 5 NASA GODDARD SPACE FLIGHT CENTER TDRSS CubeSat Support Analysis • CubeSat TDRSS support will be • A CubeSat constellation demonstration limited by lower data rate due to power mission using MA, consuming TDRS constraint on the spacecraft. Unused Time, and scheduled through the Demand Access System at White • TDRSS can provide global coverage to Sands would be endorsed by the SN. CubeSat with low latency. It is ideal for emergency support. A CubeSat could • CubeSat TDRSS S-band Single send status alerts instantly without Access (SSA) and Ka-Band SA waiting until a ground station is in view. support need a high gain antenna on board the S/C to produce positive link • TDRSS legacy Multiple Access (MA) is able to support CubeSat data rate at 1 • TDRSS will provide 100% coverage kbps with practical S/C power amplifier for LEO CubeSat 5 W and a zero dBi antenna gain. • The new MA Direct Access System (DAS) can have over 100 in-beam MA users without too significant of a mutual interference at this data rate EXPLORATION AND SPACE COMMUNICATIONS PROJECTS DIVISION 6 NASA GODDARD SPACE FLIGHT CENTER CubeSat Constellation CDMA Trade Study • Solve for the most appropriate • Study results indicate : CDMA signal • With the CDMA signal design, the characteristics/design and constellation daughter/mother CubeSat orbit for daughter mother architecture is able to produce adequate constellation inter-satellite link daily data volume if the daughter and communications that will be able mother CubeSats are in a coordinated to downlink adequate daily data orbit (for instance, formation flying) volume to the ground • If the daughter/mother CubeSats are in • The mothership CubeSat an un synchronization orbit, in order to downlink a meaningful/adequate daily (provided by the mission) will be a volume of science data, the use of a store-forward relay to downlink the mother ship CubeSat as a store-forward science data to the ground either relay requires intelligent protocols through NEN direct to ground link capable of performing efficient at X-band or through TDRSS K- management and operation control of band single access (KSA) signal flow for the inter-satellite links • CubeSat inter-satellite link intelligent protocols are under development EXPLORATION AND SPACE COMMUNICATIONS PROJECTS DIVISION 7 NASA GODDARD SPACE FLIGHT CENTER Power and Bandwidth Efficient Signal Techniques for Earth Science CubeSats High Data Rates CubeSat Space Science NEN X-band 10 MHz Earth Science CubeSats Channel Downlink Maximum Achievable High Data Rate Data Rate with High Order Modulation and • Due to the limited power and mass for Bandwidth Efficient Coding Study CubeSat spacecraft, power and bandwidth efficient signal techniques are recommended Summary of the study results for use to achieve CubeSat high data rate Max Implementation Modulation Coding Data Comment requirements loss at 10-5 BER Rate • 7/8 LDPC code with low overhead to There is significant positive link margin increase bandwidth efficiency is 7/8 16 assuming a CubeSat equivalent isotropically OQPSK 3.6 dB recommended for CubeSat NEN S-band 5 LDPC Mbps radiated power (EIRP) with 8.0 dBW (2 Watt TX Power). MHz channel communication links to 7/8 23.6 8PSK 4.1 dB Same as in OQPSK achieve high data rate LDPC Mbps • CCSDS and DVB-S2 signal schemes are > 6 dB For the 6 dB implementation loss case, it was recommended for CubeSat high rate assumed that the CubeSat transmitter distortions are the same as defined in the missions Space Network Users Guide (SNUG). S-band Single Access Return (SSAR) user 7/8 28 16 APSK distortions were used except with a lower LDPC Mbps ~ 5 dB Power Amplifier (PA) nonlinearity. For the 5 dB case, it was assumed the CubeSat transmitter had less distortions than the SNUG defined SSAR user distortions amount and lower PA nonlinearity >> 6dB 7/8 30 32 APSK should not be considered because 32 APSK LDPC Mbps it has minimum benefits on data rate. ~ 5 dB > 6 dB Considering 16 APSK can achieve the same 7/8 28 16 QAM data rate with less stringent constraints, 16 LDPC Mbps ~ 5 dB QAM should not be considered. EXPLORATION AND SPACE COMMUNICATIONS PROJECTS DIVISION 8 NASA GODDARD SPACE FLIGHT CENTER CubeSat Ka-Band End-to-End Communication Analysis Achievable Data Rate at Ka-Band Ground Antenna LEO Data Rate QPSK* Data Rate LEO DVB-S2 ** ASF 1.2
Recommended publications
  • SSC Tenant Meeting: NASA Near Earth Network (NENJ Overview
    https://ntrs.nasa.gov/search.jsp?R=20180001495 2019-08-30T12:23:41+00:00Z SSC Tenant Meeting: NASA Near Earth Network (NENJ Overview --- --- ~ I - . - - Project Manager: David Carter Deputy Project Manager: Dave Larsen Chief Engineer: Philip Baldwin Financial Manager: Cristy Wilson Commercial Service Manager: LaMont Ruley ============== February ==============21, 2018 Agenda > NEN Overview > NEN / SSC Relationship > NEN Missions > Future Trends S1ide2 The Near Earth Network (NEN) consists of globally distributed tracking stations that are strategically located throughout the world which provide Telemetry, Tracking, and Commanding (TT&C) services support to a variety of orbital and suborbital flight missions, including Low Earth Orbit (LEO), Geosynchronous Earth Orbit (GEO), highly elliptical, and lunar orbits Network: The NEN is one of.three networks that together comprise the NASA1s Space Communications and Navigation (SCaN) Networks The NEN provides cost-effective, high data rate services from a global set of NASA, commercial, and partner ground stations to a mission set that requires hourly to daily contacts Missions: The NEN provides communication services to: - Earth Science missions such as Aqua, Aura, OC0-2, QuikSCAT, and SMAP - Space Science missions including AIM, FSGT, IRIS, NuSTAR, and Swift - Lunar orbiting missions such as LRO - CubeSat missions including the upcoming CryoCube, iSAT, and SOCON Stations: The NEN consists of several polar stations which are vital to polar orbiting missions since they enable communications services
    [Show full text]
  • Should We Manage to a Single Data Point? a NASA/Goddard Space Flight Center Perspective
    Goddard Space Flight Center Flight Projects Directorate Performance Management Should We Manage to a Single Data Point? A NASA/Goddard Space Flight Center Perspective Dr. Wanda Peters Deputy Director for Planning and Business Management 2019 Project Management Symposium Turning Knowledge into Practice University of Maryland May 10, 2019 Goddard Overview Project Management at Goddard Business Change Initiative Optimization State of Business Why is this Important? 2 Best Place to Work in the Federal Government 2018 3 Goddard Overview 4 Goddard Space Flight Center ONE World-Class Science and Engineering Organization SIX Distinctive Facilities & Installations Independent Greenbelt Wallops Flight White Sands Test Columbia Goddard Institute Validation & Main Campus Facility Facility Ground Balloon for Space Studies Verification 1,270 Acres 6,188 Acres Stations Facility Facility Executing NASA’s most Launching Payloads for Understanding our Providing Software Communicating with Directing High Altitude complex science missions NASA & the Nation Planet Assurance Assets in Earth’s Orbit Investigations Est. 1959 Est. 1945 Est. 1961 Est. 1993 Est. 1963 Est. 1982 MARYLAND VIRGINIA NEW YORK WEST VIRGINIA NEW MEXICO TEXAS 2 Who We Are THE GODDARD COMMUNITY Technicians and Others 6% Clerical 5% Professional & Administrative 28% Scientists & Engineers GSFC CS Employees 61% with Degrees Bachelors – 37% Advanced Degrees – 48% Associate/Technical – 2% Number of Employees High School – 13% A diverse community of scientists, engineers, ~3,000 Civil Service technologists, and administrative personnel ~6,000 Contractor dedicated to the exploration of space ~1,000 Other* Total - ~10,000 *Including off-site contractors, interns, and Emeritus The Nation’s largest community of scientists, engineers, and technologists Goddard Space Flight Center Employees Receive Worldwide Accolades for Their Work Dr.
    [Show full text]
  • LCS Onepager
    National Aeronautics and Space Administration NASA’s Launch communications segment: Advanced Communications Capabilities for the Florida Spaceport NASA Goddard Space Flight Center’s Near Earth Network Launch Communications Segment (LCS) consists of two modern ground stations designed to complement the U.S. Air Force’s Eastern Range, enabling next-generation space missions and launch vehicles departing from, or returning to, the Florida spaceport. The LCS stations provide the critical link between astronauts and mission controllers on crewed flights, and augment FEATURED launch vehicle telemetry and orbital tracking communications CAPABILITIES for robotic missions. LCS provides a broad array of communications services: • Pre-launch, launch, ascent and landing communications services • Agile, tailored and robust solutions for a variety of customer needs • Simultaneous transmitting and receiving via S-band • Support of IRIG and CCSDS space link standards, advanced modulation and encoding, and 2 Mbps data rates • Remote monitor and control for routine events and pre-mission testing • Common Space Link Extension (SLE) user gatewayIP baseband data interfaces • Orbital communications services to near-Earth users • Standard service scheduling through the Near Earth Network Scheduling Office • Antenna auto-tracking with automatic fail-over to Launch Trajectory Acquisition System (LTAS) or predicted vectors • Doppler and ranging capabilities Strategic Locations LCS consists of two strategically placed permanent ground stations: the Kennedy Uplink Station on site at NASA’s Kennedy Space Center (KSC) and the Ponce de Leon Station 40 miles north in New Smyrna Beach, Florida. Each of these sites has a 6.1-meter antenna capable of simultaneously transmitting and receiving S-band signals. The two-site architecture ensures continuous signal coverage during launch, as well as for vehicles returning to the launch site or the Shuttle Landing Facility.
    [Show full text]
  • Scan-MOCS-0001
    SCaN-MOCS-0001 SPACE COMMUNICATIONS AND NAVIGATION PROGRAM Space Communications and Navigation (SCaN) Mission Operations and Communications Services (MOCS) Revision 2 Effective Date: March 15, 2019 Expiration Date: March 15, 2024 National Aeronautics and NASA Headquarters Space Administration Washington, D. C. CHECK THE SCaN NEXT GENERATION INTEGRATED NETWORK (NGIN) AT: https://scanngin.gsfc.nasa.gov TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE. Space Communications and Navigation (SCaN) Mission Operations and Communications Services (MOCS) Effective Date: March 15, 2019 Approved and Prepared by: John J. Hudiburg 3/15/19 J ohn J. Hudiburg Date Mission Integration and Commitment Manager, SCaN Network Services Division Human Exploration and Operations Mission Directorate NASA Headquarters Washington, D. C. SCaN-MOCS-0001 Revision 2 Preface This document is under configuration management of the SCaN Integrated Network Configuration Control Board (SINCCB). This document will be changed by Documentation Change Notice (DCN) or complete revision. Proposed changes to this document must be submitted to the SCaN Configuration Management Office along with supportive material justifying the proposed change. Comments or questions concerning this document and proposed changes shall be addressed to: Configuration Management Office [email protected] Space Communications and Navigation Office NASA Headquarters Washington, D. C. ii SCaN-MOCS-0001 Revision 2 Change Information Page List of Effective Pages Page Number Issue Title Rev 2 iii
    [Show full text]
  • The Decade of Light: Innovations in Space Communications and Navigation Technologies
    Journal of Space Operations & Communicator (ISSN 2410-0005) Vol. 16, No. 1, Year 2019 The Decade of Light: Innovations in Space Communications and Navigation Technologies Philip Liebrecht Donald Cornwell David Israel Gregory Heckler NASA Headquarters NASA Headquarters Goddard Space Flight Center NASA Headquarters 300 E Street SW 300 E Street SW 8800 Greenbelt Road 300 E Street SW Washington, D.C Washington, D.C. Greenbelt, Md. 20771 Washington, D.C. 202-358-1701 202-358-0570 301-286-5294 202-358-1626 [email protected] [email protected] [email protected] [email protected] INTRODUCTION NASA’s Space Communications and Navigation (SCaN) program office’s vision of a fully interoperable network of space communications assets is known as the Decade of Light. Through relentless advancement of current technologies, NASA is progressing toward a future of seamless mission enabling space communications and navigation. This futuristic, interoperable system will include the development of optical communications, wideband Ka-band, hybrid optical and radio frequency (RF) antennas, user- initiated services (UIS), a cognitive network with disruption-tolerant networking (DTN) capabilities and autonomous navigation. This vision, although vastly complex, will introduce dramatic increases in performance and is already being worked at NASA Headquarters, NASA’s Goddard Space Flight Center, NASA’s Glenn Research Center, and Jet Propulsion Laboratory. Teams from around the country continue to investigate and strive for innovative solutions to the many complex challenges space communications and navigation faces. CURRENT CAPABILITIES For the past 50 years, NASA has primarily used RF to communicate mission data from satellites orbiting in our solar system to data users on Earth.
    [Show full text]
  • Communications Enabling Science from the 2050 Heliophysics System Observatory 1 2 3 4 2 Authors: S
    Heliophysics 2050 White Papers (2021) 4119.pdf Communications Enabling Science from the 2050 Heliophysics System Observatory 1 2 3 4 2 Authors: S. J. Schonfeld ,​ W. D. Pesnell ,​ J. L. Verniero ,​ Y. J. Rivera ,​ A. J. Halford ,​ S. K. 5 4 ​ ​ ​ ​ ​ Vines ,​ S. A. Spitzer ​ ​ 2 6 7 Cosigners: A. K. Higginson ,​ B. L. Alterman ,​ M. J. Weberg ​ ​ ​ ​ 1 2 3 I​ nstitute for Scientific Research, Boston College, N​ ASA Goddard Space Flight Center, U​ niversity of 4 5 ​ ​ California, Berkeley, U​ niversity of Michigan, J​ ohns Hopkins University Applied Physics Laboratory, 6 ​ 7 ​ S​ outhwest Research Institute, N​ RC postdoc at U.S. NRL ​ The difficulties associated with receiving telemetry from satellites severely limits the volume of scientific data that can be downlinked to scientists on the ground. Current missions must employ many techniques to reduce the data they transmit, such as compressing and pruning datasets, to meet the current restrictions of limited telemetry budgets. Yet future Heliophysics System Observatory missions will produce ever larger data volumes with higher resolution and cadence observations from constellations of satellites spread throughout the heliosphere1. In addition, heliophysics missions often produce data for the Space Weather community that requires a low latency between observation and downlink. In light of current limitations, the infrastructure to ​ receive NASA satellite telemetry must be expanded and modernized to support future science needs and the data-rich missions of the 2050 Heliophysics System Observatory. The current communications landscape: Communications with NASA science missions are primarily routed through the Deep Space Network (DSN), Near Earth Network (NEN), and Space Network (SN) using S, X, and Ka band ​ ​ ​ ​ ​ ​ radio transmissions.
    [Show full text]
  • IWPSS 2013 Multi-Mission Scheduling Operations at UC Berkeley Bester
    Proceedings of the 2013 International Workshop on Planning & Scheduling for Space, Mountain View, CA, USA, March 25-26, 2013, Paper AIAA-2013-XXXX. THIS SPACE MUST BE KEPT BLANK] Multi-Mission Scheduling Operations at UC Berkeley Manfred Bester, Gregory Picard, Bryce Roberts, Mark Lewis, and Sabine Frey Space Sciences Laboratory, University of California, Berkeley [email protected], [email protected], [email protected], [email protected], [email protected] Abstract completed in 2011 when both probes were inserted into The University of California, Berkeley conducts mission stable lunar orbits (Cosgrove et al. 2012, Bester et al. operations for eight spacecraft at present. Communications 2013). with the orbiting spacecraft are established via a multitude of network resources, including all NASA networks, plus • The Nuclear Spectroscopic Telescope Array (NuSTAR) – assets provided by foreign space agencies and commercial a NASA SMEX mission launched in June 2012 – is a companies. Mission planning is based on the science re- high-energy X-ray observatory carrying twin telescopes quirements as well as accessibility to communications net- with focusing optics (Kim et al. 2013). work resources. The integrated scheduling process is com- plex and is supported by partly automated software tools. • The CubeSat for Ion, Neutral, Electron, and MAgnetic Challenges encountered and lessons learned are described. fields (CINEMA) – the first CubeSat built in-house at SSL – launched in September 2012. The project home page can be found at http://sprg.ssl.berkeley.edu/cinema. Introduction A summary of these missions and their characteristics is The University of California, Berkeley (UCB) currently provided in Table A1 in the Appendix.
    [Show full text]
  • Mission Operations and Communication Services
    Space Communications and Navigation (SCaN) Overview Astrophysics Explorers SMEX Preproposal Conference Jerry Mason May 2, 2019 Agenda • Space Communications and Navigation (SCaN) overview • AO Considerations and Requirements • Spectrum Access & Licensing • SCaN’s Mission Commitment Offices • Points of contact •2 SCaN is Responsible for all NASA Space Communications • Responsible for Agency-wide operations, management, and development of all NASA space communications capabilities and enabling technology. • Expand SCaN capabilities to enable and enhance robotic and human exploration. • Manage spectrum and represent NASA on national and international spectrum management programs. • Develop space communication standards as well as Positioning, Navigation, and Timing (PNT) policy. • Represent and negotiate on behalf of NASA on all matters related to space telecommunications in coordination with the appropriate offices and flight mission directorates. •3 Supporting Over 100 Missions • SCaN supports over 100 space missions with the three networks. – Which includes every US government launch and early orbit flight • Earth Science – Earth observation missions – Global observation of climate, Land, Sea state and Atmospheric conditions. – Aura, Aqua, Landsat, Ice Cloud and Land Elevation Satellite (ICESAT-2), Orbiting Carbon Observatory (OCO- 2) • Heliophysics – Solar observation-Understanding the Sun and its effect on Space and Earth. – Parker Solar Probe, Solar Dynamics Observer (SDO), Solar Terrestrial Relations Observatory (STEREO) • Astrophysics – Studying the Universe and its origins. – Hubble Space Telescope, Chandra X-ray Observatory, James E. Webb Space Telescope (JWST), WFIRST • Planetary – Exploring our solar system’s content and composition – Voyagers-1/2, Mars Atmosphere and Volatile Evolution (MAVEN), InSight, Lunar Reconnaissance Orbiter (LRO) • Human Space Flight – Human tended Exploration missions, Commercial Space transportation and Space Communications.
    [Show full text]
  • Enabling Richer Data Sets for Future Astrophysics Missions
    Enabling Richer Data Sets for Future Astrophysics Missions Infrastructure Activity white paper submitted to the National Academy of Sciences Astro2020 Decadal Survey on Astronomy & Astrophysics Point of Contact: Brian Giovannoni (Jet Propulsion Laboratory, California Institute of Technology) Co-authors: Joseph Lazio, Brad Arnold, Andrew Dowen, Wayne Sible, Carole Boyles, Jeff Berner, Stephen Lichten, Stephen Townes (Jet Propulsion Laboratory, California Institute of Technology) Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This document contains pre-decisional information — for planning and discussion purposes only. © 2019 California Institute of Technology. Government sponsorship acknowledged. A consequence of our improved understanding of the Universe and our place in it is that future Astrophysics missions must envision richer data sets. NASA has enabled an infrastructure that permits future Astrophysics missions to deliver richer and more complex data sets. Importantly, this infrastructure has been and is being implemented without requiring funding from NASA’s Astrophysics Division, but it is available to future Astrophysics missions and future Astrophysics missions would benefit from making use of it. This Activity white paper outlines both the current status of that NASA infrastructure and development plans into the next decade. Key Science Goals and Objectives Often, the science return from a mission
    [Show full text]
  • NASA's Launch Communications Ground Segment for the 21St Century
    https://ntrs.nasa.gov/search.jsp?R=20180003363 2019-08-31T15:48:00+00:00Z NASA’s launch communications ground segment for the 21st century Florida spaceport Christopher J. Roberts,1 David R. McCormick,2 Robert N. Tye,3 Eric J. Harris,4 David L. Carter,5 and John J. Hudiburg6 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Patricia H. Peskett,7 Peraton Corporation, Greenbelt, Maryland, 20771, USA and Peter B. Celeste,8 and Patricia R. Perrotto9 Booz Allen Hamilton, Annapolis Junction, MD 20701, USA The National Aeronautics and Space Administration (NASA) Near Earth Network (NEN) Project is implementing a new launch communications ground segment to provide services for the next generation of human and robotic space exploration systems. It will deliver unique and advanced capabilities to accelerate the transformation of Kennedy Space Center into a multi- user spaceport in cooperation with the United States Air Force. The project has leveraged commercial technologies and remote operations concepts matured in NASA’s orbiting satellite ground systems to achieve dramatic lifecycle cost efficiencies as compared to the space shuttle- era ground segment. The purpose of this paper is to discuss the development history, capabilities, and anticipated use cases of the NEN Launch Communications Segment (LCS). I. I. Introduction N July 8, 2011 the National Aeronautics and Space Administration (NASA) Near Earth Network (NEN) S-band O antennas at Merritt Island Launch Annex (MILA) and Ponce de Leon (PDL) data and tracking stations provided communications support to the launch and ascent of the final Space Shuttle mission, Space Transportation System- 135 (STS-135), as it lifted off from the Kennedy Space Center (KSC) Launch Complex 39.
    [Show full text]
  • Scan Commercialization of Near-Earth Communications Services – Strategic Overview Presentation to the NASA Advisory Council Gr
    National Aeronautics and Space Administration SCaN Commercialization of Near-Earth Communications Services – Strategic Overview Presentation to the NASA Advisory Council January 13, 2021 Greg Heckler, SCaN www.nasa.gov NASA’s Road to Commercialization 2005 Today Beyond Commercial Cargo Program “What I would like to do is Commercial Crew Program to be able to buy [crew and cargo] services from “Embrace the Low Earth Orbit (LEO) Commercialization (International Space Station) industry…and utilize the commercial space market that is offered by SCaN Near Earth Commercialization industry…by “Transition in a step- the International Space contracting with wise approach from the Station’s requirements” American companies current regime that “NASA will define the acquisition strategy for to provide astronaut - NASA Administrator relies heavily on NASA transitioning near-Earth NASA users to transportation to the Mike Griffin, June 2005 sponsorship to a regime suitable commercially provided services.” Space Station.” where NASA could be - NASA’s 2020 Budget - NASA’s 2011 one of many customers President’s Budget of a low-Earth orbit non- Request governmental human space flight enterprise.” - NASA Transition Authorization Act of 2017 The Space Communication and Navigation (SCaN) Program Plan is a Natural Next Step in Commercialization of the LEO Space Environment 2 Extending Commercial Capabilities to Space Users Commercial Science Missions Space Relay Existing Market New Market Human Space Flight Small Sats Land, Sea and Air User Terminals Launch
    [Show full text]
  • NASA's Evolution to Ka-Band Space Communications for Near-Earth Spacecraft
    NASA’s Evolution to Ka-Band Space Communications for Near-Earth Spacecraft Kevin P. McCarthy1 and Frank J. Stocklin2 NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771 Barry J. Geldzahler3 NASA Headquarters, Washington, DC, 20546 and Daniel E. Friedman4 and Peter B. Celeste5 Booz Allen Hamilton, Annapolis Junction, MD 20701 Over the next several years, NASA plans to launch multiple earth‐science missions which will send data from low-Earth orbits to ground stations at 1‐3 Gbps, to achieve data throughputs of 5‐40 terabits per day. These transmission rates exceed the capabilities of S-band and X‐band frequency allocations used for science probe downlinks in the past. Accordingly, NASA is exploring enhancements to its space communication capabilities to provide the Agency’s first Ka‐band architecture solution for next generation missions in the near‐earth regime. This paper describes the proposed Ka-band solution’s drivers and concept, constraints and analyses which shaped that concept, and expansibility for future needs. I. Introduction or over five decades, NASA has launched and operated spacecraft for studying Earth and space phenomena. As Fboth scientific knowledge and instrument technology have advanced during this period, the observation capabilities of these spacecraft have grown as well. The transmission rates and daily volumes of data collected by science probes orbiting the earth have correspondingly increased by several orders of magnitude. As the science data downlink rates have increased, so, too, have the signal bandwidths required to support these transmissions. NASA, like all users of the radio spectrum, must respect frequency allocations established by the International Telecommunications Union (ITU).
    [Show full text]