SSC Tenant Meeting: NASA Near Earth Network (NENJ Overview
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diurnal Variation of Stratospheric Hocl, Clo and HO2 at the Equator
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Atmos. Chem. Phys. Discuss., 12, 21065–21104, 2012 Atmospheric www.atmos-chem-phys-discuss.net/12/21065/2012/ Chemistry doi:10.5194/acpd-12-21065-2012 and Physics © Author(s) 2012. CC Attribution 3.0 License. Discussions This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available. Diurnal variation of stratospheric HOCl, ClO and HO2 at the equator: comparison of 1-D model calculations with measurements of satellite instruments M. Khosravi1, P. Baron2, J. Urban1, L. Froidevaux3, A. I. Jonsson4, Y. Kasai2,5, K. Kuribayashi2,5, C. Mitsuda6, D. P. Murtagh1, H. Sagawa2, M. L. Santee3, T. O. Sato2,5, M. Shiotani7, M. Suzuki8, T. von Clarmann9, K. A. Walker4, and S. Wang3 1Department of Earth and Space Sciences, Chalmers University of Technology, Gothenburg, Sweden 2National Institute of Information and Communications Technology, Tokyo, Japan 3Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 4Tokyo Institute of Technology, Kanagawa, Japan 5Tokyo Institute of Technology, Yokohama, Japan 6Fujitsu FIP Corporation, Tokyo, Japan 7Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan 8Japan Aerospace Exploration Agency, Ibaraki, Japan 21065 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | 9Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Karlsruhe, Germany Received: 10 May 2012 – Accepted: 20 July 2012 – Published: 20 August 2012 Correspondence to: M. Khosravi ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 21066 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract The diurnal variation of HOCl and the related species ClO, HO2 and HCl mea- sured by satellites has been compared with the results of a one-dimensional pho- tochemical model. -
Cloudsat CALIPSO
www.nasa.gov andSpaceAdministration National Aeronautics & CloudSat CALIPSO Clean air is important to everyone’s health and well-being. Clean air is vital to life on Earth. An average adult breathes more than 3000 gallons of air every day. In some places, the air we breathe is polluted. Human activities such as driving cars and trucks, burning coal and oil, and manufacturing chemicals release gases and small particles known as aerosols into the atmosphere. Natural processes such as for- est fires and wind-blown desert dust also produce large amounts of aerosols, but roughly half of the to- tal aerosols worldwide results from human activities. Aerosol particles are so small they can remain sus- pended in the air for days or weeks. Smaller aerosols can be breathed into the lungs. In high enough con- centrations, pollution aerosols can threaten human health. Aerosols can also impact our environment. Aerosols reflect sunlight back to space, cooling the Earth’s surface and some types of aerosols also absorb sunlight—heating the atmosphere. Because clouds form on aerosol particles, changes in aerosols can change clouds and even precipitation. These effects can change atmospheric circulation patterns, and, over time, even the Earth’s climate. The Air We Breathe The Air We We need better information, on a global scale from satellites, on where aerosols are produced and where they go. Aerosols can be carried through the atmosphere-traveling hundreds or thousands of miles from their sources. We need this satellite infor- mation to improve daily forecasts of air quality and long-term forecasts of climate change. -
FY17 Request/Appropriation
NASA’s Earth Science Division Research Flight Applied Sciences Technology FY17 Program Overview April 2016 1 ESD Budget/Program Overview ESD Budget: FY17 Request/Appropriation • The FY17-21 ESD program is executable and balanced, informed by and consistent with Decadal ESD Total Survey and national Administration priorities: • advances Earth system science $M FY16 (op plan) FY17 FY18 FY19 FY20 FY21 • delivers societal benefit through applications development and testing FY16 PBS $ 1,927 $ 1,966 $ 1,988 $ 2,009 $ 2,027 • provides essential global spaceborne measurements supporting science and operations FY17 PBS $ 2,032 $ 1,990 $ 2,001 $ 2,021 $ 2,048 • develops and demonstrates technologies for next-generation measurements, and • complements and is coordinated with activities of other agencies and international partners • ESD budget jumps significantly in FY17 – then becomes • Funds operations and core data production for on-orbit missions in prime and extended phases, in consistent with FY16 President’s Budget Request for the keeping with 2015 Senior Review recommendations/decisions. Funds NASA portal for Copernicus out-years and other international missions, increasing DAAC capability to host added NASA missions • Completes high priority missions: SAGE-III/ISS, ICESat-2, CYGNSS, GRACE-FO, SWOT, TEMPO, RBI, OMPS-Limb, TSIS-1 and -2, CLARREO Pathfinder, Jason-CS/Sentinel-6A,Landsat-9, NISAR FY17 • Develops (for launch beyond budget window): PACE, Landsat-10, Jason-CS/Sentinel-6B request • Continues all originally planned Venture Class -
NASA Earth Science Research Missions NASA Observing System INNOVATIONS
NASA’s Earth Science Division Research Flight Applied Sciences Technology NASA Earth Science Division Overview AMS Washington Forum 2 Mayl 4, 2017 FY18 President’s Budget Blueprint 3/2017 (Pre)FormulationFormulation FY17 Program of Record (Pre)FormulationFormulation Implementation MAIA (~2021) Implementation MAIA (~2021) Landsat 9 Landsat 9 Primary Ops Primary Ops TROPICS (~2021) (2020) TROPICS (~2021) (2020) Extended Ops PACE (2022) Extended Ops XXPACE (2022) geoCARB (~2021) NISAR (2022) geoCARB (~2021) NISAR (2022) SWOT (2021) SWOT (2021) TEMPO (2018) TEMPO (2018) JPSS-2 (NOAA) JPSS-2 (NOAA) InVEST/Cubesats InVEST/Cubesats Sentinel-6A/B (2020, 2025) RBI, OMPS-Limb (2018) Sentinel-6A/B (2020, 2025) RBI, OMPS-Limb (2018) GRACE-FO (2) (2018) GRACE-FO (2) (2018) MiRaTA (2017) MiRaTA (2017) Earth Science Instruments on ISS: ICESat-2 (2018) Earth Science Instruments on ISS: ICESat-2 (2018) CATS, (2020) RAVAN (2016) CATS, (2020) RAVAN (2016) CYGNSS (>2018) CYGNSS (>2018) LIS, (2020) IceCube (2017) LIS, (2020) IceCube (2017) SAGE III, (2020) ISS HARP (2017) SAGE III, (2020) ISS HARP (2017) SORCE, (2017)NISTAR, EPIC (2019) TEMPEST-D (2018) SORCE, (2017)NISTAR, EPIC (2019) TEMPEST-D (2018) TSIS-1, (2018) TSIS-1, (2018) TCTE (NOAA) (NOAA’S DSCOVR) TCTE (NOAA) (NOAA’SXX DSCOVR) ECOSTRESS, (2017) ECOSTRESS, (2017) QuikSCAT (2017) RainCube (2018*) QuikSCAT (2017) RainCube (2018*) GEDI, (2018) CubeRRT (2018*) GEDI, (2018) CubeRRT (2018*) OCO-3, (2018) CIRiS (2018*) OCOXX-3, (2018) CIRiS (2018*) CLARREO-PF, (2020) EOXX-1 CLARREOXX XX-PF, (2020) EOXX-1 -
Should We Manage to a Single Data Point? a NASA/Goddard Space Flight Center Perspective
Goddard Space Flight Center Flight Projects Directorate Performance Management Should We Manage to a Single Data Point? A NASA/Goddard Space Flight Center Perspective Dr. Wanda Peters Deputy Director for Planning and Business Management 2019 Project Management Symposium Turning Knowledge into Practice University of Maryland May 10, 2019 Goddard Overview Project Management at Goddard Business Change Initiative Optimization State of Business Why is this Important? 2 Best Place to Work in the Federal Government 2018 3 Goddard Overview 4 Goddard Space Flight Center ONE World-Class Science and Engineering Organization SIX Distinctive Facilities & Installations Independent Greenbelt Wallops Flight White Sands Test Columbia Goddard Institute Validation & Main Campus Facility Facility Ground Balloon for Space Studies Verification 1,270 Acres 6,188 Acres Stations Facility Facility Executing NASA’s most Launching Payloads for Understanding our Providing Software Communicating with Directing High Altitude complex science missions NASA & the Nation Planet Assurance Assets in Earth’s Orbit Investigations Est. 1959 Est. 1945 Est. 1961 Est. 1993 Est. 1963 Est. 1982 MARYLAND VIRGINIA NEW YORK WEST VIRGINIA NEW MEXICO TEXAS 2 Who We Are THE GODDARD COMMUNITY Technicians and Others 6% Clerical 5% Professional & Administrative 28% Scientists & Engineers GSFC CS Employees 61% with Degrees Bachelors – 37% Advanced Degrees – 48% Associate/Technical – 2% Number of Employees High School – 13% A diverse community of scientists, engineers, ~3,000 Civil Service technologists, and administrative personnel ~6,000 Contractor dedicated to the exploration of space ~1,000 Other* Total - ~10,000 *Including off-site contractors, interns, and Emeritus The Nation’s largest community of scientists, engineers, and technologists Goddard Space Flight Center Employees Receive Worldwide Accolades for Their Work Dr. -
LCS Onepager
National Aeronautics and Space Administration NASA’s Launch communications segment: Advanced Communications Capabilities for the Florida Spaceport NASA Goddard Space Flight Center’s Near Earth Network Launch Communications Segment (LCS) consists of two modern ground stations designed to complement the U.S. Air Force’s Eastern Range, enabling next-generation space missions and launch vehicles departing from, or returning to, the Florida spaceport. The LCS stations provide the critical link between astronauts and mission controllers on crewed flights, and augment FEATURED launch vehicle telemetry and orbital tracking communications CAPABILITIES for robotic missions. LCS provides a broad array of communications services: • Pre-launch, launch, ascent and landing communications services • Agile, tailored and robust solutions for a variety of customer needs • Simultaneous transmitting and receiving via S-band • Support of IRIG and CCSDS space link standards, advanced modulation and encoding, and 2 Mbps data rates • Remote monitor and control for routine events and pre-mission testing • Common Space Link Extension (SLE) user gatewayIP baseband data interfaces • Orbital communications services to near-Earth users • Standard service scheduling through the Near Earth Network Scheduling Office • Antenna auto-tracking with automatic fail-over to Launch Trajectory Acquisition System (LTAS) or predicted vectors • Doppler and ranging capabilities Strategic Locations LCS consists of two strategically placed permanent ground stations: the Kennedy Uplink Station on site at NASA’s Kennedy Space Center (KSC) and the Ponce de Leon Station 40 miles north in New Smyrna Beach, Florida. Each of these sites has a 6.1-meter antenna capable of simultaneously transmitting and receiving S-band signals. The two-site architecture ensures continuous signal coverage during launch, as well as for vehicles returning to the launch site or the Shuttle Landing Facility. -
Scan-MOCS-0001
SCaN-MOCS-0001 SPACE COMMUNICATIONS AND NAVIGATION PROGRAM Space Communications and Navigation (SCaN) Mission Operations and Communications Services (MOCS) Revision 2 Effective Date: March 15, 2019 Expiration Date: March 15, 2024 National Aeronautics and NASA Headquarters Space Administration Washington, D. C. CHECK THE SCaN NEXT GENERATION INTEGRATED NETWORK (NGIN) AT: https://scanngin.gsfc.nasa.gov TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE. Space Communications and Navigation (SCaN) Mission Operations and Communications Services (MOCS) Effective Date: March 15, 2019 Approved and Prepared by: John J. Hudiburg 3/15/19 J ohn J. Hudiburg Date Mission Integration and Commitment Manager, SCaN Network Services Division Human Exploration and Operations Mission Directorate NASA Headquarters Washington, D. C. SCaN-MOCS-0001 Revision 2 Preface This document is under configuration management of the SCaN Integrated Network Configuration Control Board (SINCCB). This document will be changed by Documentation Change Notice (DCN) or complete revision. Proposed changes to this document must be submitted to the SCaN Configuration Management Office along with supportive material justifying the proposed change. Comments or questions concerning this document and proposed changes shall be addressed to: Configuration Management Office [email protected] Space Communications and Navigation Office NASA Headquarters Washington, D. C. ii SCaN-MOCS-0001 Revision 2 Change Information Page List of Effective Pages Page Number Issue Title Rev 2 iii -
Cloudsat Overview
CloudSat Overview CloudSat will provide, from space, the first global survey of cloud profiles and cloud physical properties, with seasonal and geographical variations, needed to evaluate the way clouds are parameterized in global models, thereby contributing to improved predictions of weather, climate and the cloud-climate feedback problem. CloudSat will measure the vertical structure of clouds and precipitation from space primarily through 94 GHz radar reflectivity measurements, but also by using a combination of observations from the EOS-PM Constellation of satellites (A-Train). CloudSat will fly in on-orbit formation with the Aqua and CALIPSO satellites, providing a unique, multi-satellite observing system particularly suited for studying the atmospheric processes of the hydrological cycle. 1. Science Objectives • Evaluate the representation of clouds in weather and climate prediction models. CloudSat will provide a global survey of the vertical structure of cloud systems: This vertical structure is fundamentally important for understanding how clouds affect both their local and large-scale atmospheric and radiative environments. • Evaluate the relationship between cloud liquid water and ice content and the radiative properties of clouds. CloudSat will estimate the profiles of cloud liquid water and ice water content. These are the quantities predicted by cloud-process and global-scale models alike and determine practically all important cloud properties, including precipitation and cloud optical properties. CloudSat will provide coincident profile information on the bulk cloud microphysical properties matched to cloud optical properties. Optical properties contrasted against cloud liquid water and ice contents provide a critical test of key parameterizations that enable calculation of flux profiles and radiative heating rates throughout the atmospheric column. -
Aqua Summary (As of October 31, 2017) • Spacecraft Bus – Nominal Operations (Excellent Health) ‒ All Components Remain on Primary Hardware
Aqua Summary (as of October 31, 2017) • Spacecraft Bus – Nominal Operations (Excellent Health) ‒ All components remain on primary hardware. ‒ 13 of 132 Solar Array Strings appear to have failed. Similar failures have occurred on Aura. ‒ Significant power generation margin remains. • MODIS – Nominal Operations (Excellent Health) ‒ All voltages, currents, and temperatures as expected. ‒ All components remain on primary hardware except 10W Lamps used for calibration. • AIRS – Nominal Operations (<5% of Channels degraded) – (Excellent Health) ‒ Cooler A Telemetry is frozen since March 28, 2014 to last known value. Not impacting Science. ‒ All other voltages, currents, and temperatures as expected. ‒ ~200 of 2378 channels are degraded due to radiation, however they are still useful. ‒ Cooler-A Shut Down Anomaly on 9/25, fully recovered on 9/27 (suspected SEU). ‒ Cooler-A Telemetry was restored during recovery activities performed on 9/27/2016. • AMSU-A – Nominal Operations for 10 of 15 Channels (Fair Health) ‒ All voltages, currents, and temperatures as expected. ‒ 3 of 15 channels have been removed from Level 2 processing. 2 channels (#1 & #2) are unavailable. ‒ AMSU-A2 Anomaly on 9/24 caused loss of Channels 1 and 2, initial recovery attempts unsuccessful. ‒ Instrument manufacturer recommends not switching to the A-side to attempt to recover AMSU-A2. • CERES-AFT (FM-3) – Nominal Operations (Excellent Health) ‒ All voltages, currents, and temperatures as expected. ‒ Cross-Track and Biaxial Modes fully functioning. ‒ All channels remain operational. • CERES-FORE (FM-4) – Nominal Operations (Good Health) ‒ All voltages, currents, and temperatures as expected. ‒ Cross-Track is Nominal. Biaxial Mode is Nominal when used. ‒ The shortwave channel failed on March 30, 2005; the other two channels remain operational. -
The Decade of Light: Innovations in Space Communications and Navigation Technologies
Journal of Space Operations & Communicator (ISSN 2410-0005) Vol. 16, No. 1, Year 2019 The Decade of Light: Innovations in Space Communications and Navigation Technologies Philip Liebrecht Donald Cornwell David Israel Gregory Heckler NASA Headquarters NASA Headquarters Goddard Space Flight Center NASA Headquarters 300 E Street SW 300 E Street SW 8800 Greenbelt Road 300 E Street SW Washington, D.C Washington, D.C. Greenbelt, Md. 20771 Washington, D.C. 202-358-1701 202-358-0570 301-286-5294 202-358-1626 [email protected] [email protected] [email protected] [email protected] INTRODUCTION NASA’s Space Communications and Navigation (SCaN) program office’s vision of a fully interoperable network of space communications assets is known as the Decade of Light. Through relentless advancement of current technologies, NASA is progressing toward a future of seamless mission enabling space communications and navigation. This futuristic, interoperable system will include the development of optical communications, wideband Ka-band, hybrid optical and radio frequency (RF) antennas, user- initiated services (UIS), a cognitive network with disruption-tolerant networking (DTN) capabilities and autonomous navigation. This vision, although vastly complex, will introduce dramatic increases in performance and is already being worked at NASA Headquarters, NASA’s Goddard Space Flight Center, NASA’s Glenn Research Center, and Jet Propulsion Laboratory. Teams from around the country continue to investigate and strive for innovative solutions to the many complex challenges space communications and navigation faces. CURRENT CAPABILITIES For the past 50 years, NASA has primarily used RF to communicate mission data from satellites orbiting in our solar system to data users on Earth. -
Communications Enabling Science from the 2050 Heliophysics System Observatory 1 2 3 4 2 Authors: S
Heliophysics 2050 White Papers (2021) 4119.pdf Communications Enabling Science from the 2050 Heliophysics System Observatory 1 2 3 4 2 Authors: S. J. Schonfeld , W. D. Pesnell , J. L. Verniero , Y. J. Rivera , A. J. Halford , S. K. 5 4 Vines , S. A. Spitzer 2 6 7 Cosigners: A. K. Higginson , B. L. Alterman , M. J. Weberg 1 2 3 I nstitute for Scientific Research, Boston College, N ASA Goddard Space Flight Center, U niversity of 4 5 California, Berkeley, U niversity of Michigan, J ohns Hopkins University Applied Physics Laboratory, 6 7 S outhwest Research Institute, N RC postdoc at U.S. NRL The difficulties associated with receiving telemetry from satellites severely limits the volume of scientific data that can be downlinked to scientists on the ground. Current missions must employ many techniques to reduce the data they transmit, such as compressing and pruning datasets, to meet the current restrictions of limited telemetry budgets. Yet future Heliophysics System Observatory missions will produce ever larger data volumes with higher resolution and cadence observations from constellations of satellites spread throughout the heliosphere1. In addition, heliophysics missions often produce data for the Space Weather community that requires a low latency between observation and downlink. In light of current limitations, the infrastructure to receive NASA satellite telemetry must be expanded and modernized to support future science needs and the data-rich missions of the 2050 Heliophysics System Observatory. The current communications landscape: Communications with NASA science missions are primarily routed through the Deep Space Network (DSN), Near Earth Network (NEN), and Space Network (SN) using S, X, and Ka band radio transmissions. -
Orbiting Carbon Observatory SCIENCE WRITERS’ GUIDE
National Aeronautics and Space Administration Orbiting Carbon Observatory SCIENCE WRITERS’ GUIDE December 2008 Orbiting Carbon Observatory SCIENCE WRITERS’ GUIDE CONTACT INFORMATION AND MEDIA RESOURCES Please call the individuals listed below from the Public Affairs Offices at NASA or Orbital before contacting scientists or engineers at these organizations. NASA Jet Propulsion Laboratory Alan Buis, 818-354-0474, [email protected] NASA Headquarters Steve Cole, 202-358-0918, [email protected] NASA Kennedy Space Center George Diller, 321-867-2468, [email protected] Orbital Sciences Corporation Barron Beneski, 703-406-5528, [email protected] NASA Web sites http://oco.jpl.nasa.gov http://www.nasa.gov/oco WRITERS Alan Buis Kathryn Hansen Gretchen Cook-Anderson Rosemary Sullivant DESIGN Deborah McLean Orbiting Carbon Observatory SCIENCE WRITERS’ GUIDE Cover image credit: NASA TABLE OF CONTENTS Science Overview............................................................................ 2 Instrument..................................................................................... 4 Feature Stories The Human Factor: Understanding the Sources of Rising Carbon Dioxide ...................................................... 6 The Orbiting Carbon Observatory and the Mystery of the Missing Sinks ........................................................... 8 Toward a New Generation of Climate Models.................... 10 NASA Mission Meets the Carbon Dioxide Measurement Challenge ....................................................