Population Demographics, Distribution, and Environmental History of Asian Carp in a Great Plains River

Total Page:16

File Type:pdf, Size:1020Kb

Population Demographics, Distribution, and Environmental History of Asian Carp in a Great Plains River University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Natural Resources Natural Resources, School of Fall 12-2020 Population Demographics, Distribution, and Environmental History of Asian Carp in a Great Plains River Jake Werner University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/natresdiss Part of the Earth Sciences Commons, Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, and the Other Environmental Sciences Commons Werner, Jake, "Population Demographics, Distribution, and Environmental History of Asian Carp in a Great Plains River" (2020). Dissertations & Theses in Natural Resources. 327. https://digitalcommons.unl.edu/natresdiss/327 This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. POPULATION DEMOGRAPHICS, DISTRIBUTION, AND ENVIRONMENTAL HISTORY OF ASIAN CARP IN A GREAT PLAINS RIVER by Jacob P. Werner A THESIS Presented to the Faculty of The Graduate College of the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Natural Resource Sciences Under the Supervision of Professors Martin J. Hamel and Mark A. Pegg Lincoln, Nebraska November, 2020 POPULATION DEMOGRAPHICS, DISTRIBUTION, AND ENVIRONMENTAL HISTORY OF ASIAN CARP IN A GREAT PLAINS RIVER Jacob P. Werner, M.S. University of Nebraska, 2020 Advisers: Martin J. Hamel and Mark A. Pegg Silver Carp Hypophthalmichthys molitrix, Bighead Carp H. nobilis, and Black Carp Mylopharyngodon piceus, collectively known as Asian carp, are a group of invasive fishes in the U.S.A. that have garnered much attention over the last couple decades. Most research devoted to this group of fishes has been focused in the Mississippi River basin with little investigation in the Missouri River drainage, particularly in tributary systems. The Kansas River is a major tributary to the Missouri River that has multiple anthropogenic barriers creating varying levels of connectivity within the Kansas River itself, and with the Missouri River. Information on various life-history traits of Asian carp are needed before a management plan can be formed. Here, we investigated 1) population demographics, 2) distribution with environmental DNA (eDNA), and 3) environmental history using otolith microchemistry of Asian carp in the lower Kansas River. Silver Carp exhibited spatiotemporal differences in population demographics. Individuals captured above the lowermost barrier had longer lengths-at-age, longer total lengths, and occurred at lower relative abundance than individuals captured below the barrier. No Silver Carp nor Bighead Carp were detected above the second barrier on the river with physical sampling or with the eDNA assay. However, Black Carp were detected near the confluence with the Missouri River with the eDNA analysis. Otolith microchemistry results indicated the population of Silver Carp in the Kansas River is comprised of predominantly residential individuals. Few carp exhibited natal origin signatures from the Missouri River. Transient individuals within the population exhibited short durations of signatures indicative of the Missouri River, suggesting that movements into the Missouri River are brief. These results highlight the importance of tributary habitat for Asian carp in the Missouri River drainage. Management efforts within the Kansas River could be an effective means of population control and mitigating secondary introductions. Additionally, management efforts focused in particular reaches of the Kansas River could affect the greater Missouri River population. iv ACKNOWLEDGEMENTS I would first like to thank my wife, Christina, for all of her love and support throughout my graduate school experience and in my pursuit of a career in fisheries. Her encouragement and positive attitude pushed me to accomplish my goals. I am truly grateful for her support and understanding, and am thankful to have her by my side throughout this journey. I would like to thank my advisor, Dr. Marty Hamel, for helping develop my knowledge and skill set in fisheries techniques, and for providing the opportunity to progress as a researcher. I want to thank my committee members, Dr. Mark Pegg, Dr. Kevin Pope, Dr. Chris Chizinski, and Chris Steffen for providing guidance and feedback throughout my graduate school tenure. Your perspectives, insights, and knowledge kept me headed in the right direction and helped develop my understanding of applied ecology and statistical methods. I want to thank Dr. Samodha Fernando for your guidance with the genetic work. I would like to thank the Kansas Department of Wildlife, Parks and Tourism for the funding for my project. I want to thank Jeff Koch, Ben Neely, Jeff Conley, Luke Kowalewski, Connor Ossowski, and Ernesto Flores for their assistance with field sampling. I would also like to thank the folks with the U.S. Fish and Wildlife Service, Jeremy Hammen, Jason Goeckler, Zach Sanders, Jahn Kallis, and the rest of the crewmembers, for their assistance with field sampling and for providing their specialized gear to help capture Asian carp. I would also like to extend my thanks to our technicians, Katie Schrag, Charlie DeShazer, and Quade Brees for their hard work in the field and v sustained positivity through long days and the onslaught of flying Silver Carp. This project would not have been possible without the collaboration and hard work from the multiple agencies and numerous people involved. I want to thank my friend and lab mate, Quintin Dean, for your insightful perspectives, dad jokes, and positivity throughout our graduate school experience. Your hard work and dedication set an example that helped all those around you succeed in their endeavors, and that’s what I appreciates about you. I am thankful for the community provided here at the University of Nebraska – Lincoln. Thank you to Alex Engel, Zach Horstman, Esther Perisho, Dave Keiter, Lindsay Ohlman, Henry Hansen, Lyndsie Wszola, Brittany Buchanan, Erin Wood, Mikaela Cherry, and the many others that I was privileged enough to share experiences with along the way. Thank you to all the members of the Pegg, Pope, and Fernando labs for our experiences both in and out of the classrooms. Lastly, I would like to thank my parents and family for their support throughout my education experience. Their passion for the outdoors and respect for our natural resources greatly influenced my career path into the field of ecology. I would truly not be here without their love and encouragement. vi TABLE OF CONTENTS CHAPTER 1: GENERAL INTRODUCTION AND STUDY OBJECTIVE….……..…...1 DATA GAP: POPULATION DEMOGRAPHICS……...……….………………..6 DATA GAP: DISTRIBUTION AND UPSTREAM EXTENT…………...…...….7 DATA GAP: ENVIRONMENTAL HISTORY……………………………...…...9 LITERATURE CITED…………………………………………………………..11 CHAPTER 2: POPULATION DEMOGRAPHICS OF SILVER CARP AND BIGHEAD CARP IN THE LOWER KANSAS RIVER, A LARGE TRIBUTARY TO THE MISSOURI RIVER……………………………………………………………..….……19 ABSTRACT……………………………………………………………………..19 INTRODUCTION…………………………………….………………………....20 METHODS……………………………………………………………..………..23 Study Area……………………………………....……………………….23 Field Sampling…………….......…………………………………………24 Laboratory Methods……………………………………………………...25 Data Analysis…………………………………………………………….26 RESULTS………………………………………..………………………………28 DISCUSSION………………………………………………………..…………..30 LITERATURE CITED…………………………………………………………..37 CHAPTER 3: EFFICACY OF ENVIRONMENTAL DNA FOR ASSESSING THE DISTRIBUTION OF INVASIVE ASIAN CARP IN A LARGE TURBID RIVER…….56 ABSTRACT………………………………………………….…………………..56 INTRODUCTION………………………………………………….……………57 METHODS…………………………………………………………………..…..59 Study Area……………………………………………………………….59 Sample Collection………………………………………………………..60 DNA Extraction: Filtration………………………………………………61 DNA Extraction: Centrifugation…………………………………………62 PCR Amplification and Evaluation……………………………………...63 vii Data Analysis…………………………………………………………….64 RESULTS AND DISCUSSION…………………………..……………………..64 LITERATURE CITED…………………………………………………………..69 CHAPTER 4: ENVIRONMENTAL HISTORY OF SILVER CARP IN THE LOWER KANSAS RIVER, KANSAS: INSIGHT FROM OTOLITH MICROCHEMISTRY ANALYSIS…………………………………………………………………….………..78 ABSTRACT……………………………………………………………………..78 INTRODUCTION………………………………………….……………………79 METHODS…………………………………………………..…………………..81 Study Area………………………………………………………….…....81 Microchemistry Data Collection…………………………………………82 Data Analysis…………………………………………………………….85 RESULTS……………………………………..…………………………………88 Water Chemistry…………………………………………………………88 Otolith Chemistry………………………………………………………...88 DISCUSSION…………………………..………………………………………..91 LITERATURE CITED…………………………………………………………..97 CHAPTER 5: MANAGEMENT AND RESEARCH RECOMMENDATION………..111 MANAGEMENT RECOMMENDATIONS………………….………………..112 Population Control……………………………………………………...112 Monitoring for Asian Carp in Segment 3………………………………114 Movement Deterrents…………………………………………………..116 FUTURE RESEARCH NEEDS…………………………………………..……117 CONCLUSIONS…………………………………………………...…………..120 LITERATURE CITED…………………………………………………………121 APPENDIX A…………………………………………………………………………..124 APPENDIX B…………………………………………………………………………..136 APPENDIX C…………………………………………………………………………..140 viii LIST OF TABLES Table 2-1: Median, first, and third quartiles of catch per unit effort (number/hour) of
Recommended publications
  • Carp, Bighead (Hypophthalmichthys Nobilis)
    Bighead Carp (Hypophthalmichthys nobilis) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, February 2011 Revised, June 2018 Web Version, 8/16/2018 Photo: A. Benson, USGS. Public domain. Available: https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=551. (June 2018). 1 Native Range and Status in the United States Native Range From Jennings (1988): “The bighead carp is endemic to eastern China, […] in the lowland rivers of the north China plain and South China, including the Huai (Huai Ho), Yangtze, Pearl, West (Si Kiang), Han Chiang and Min rivers (Herre 1934; Mori 1936; Chang 1966; Chunsheng et al. 1980).” Status in the United States From Nico et al. (2018): “This species has been recorded from within, or along the borders of, at least 18 states. There is evidence of reproducing populations in the middle and lower Mississippi and Missouri rivers and the species is apparently firmly established in the states of Illinois and Missouri (Burr et al. 1996; Pflieger 1997). Pflieger (1997) received first evidence of natural reproduction, capture of young 1 bighead carp, in Missouri in 1989. Burr and Warren (1993) reported on the taking of a postlarval fish in southern Illinois in 1992. Subsequently, Burr et al. (1996) noted that bighead carp appeared to be using the lower reaches of the Big Muddy, Cache, and Kaskaskia rivers in Illinois as spawning areas. Tucker et al. (1996) also found young-of-the-year in their 1992 and 1994 collections in the Mississippi River of Illinois and Missouri. Douglas et al. (1996) collected more than 1600 larvae of this genus from a backwater outlet of the Black River in Louisiana in 1994.
    [Show full text]
  • Aging Techniques & Population Dynamics of Blue Suckers (Cycleptus Elongatus) in the Lower Wabash River
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications Summer 2020 Aging Techniques & Population Dynamics of Blue Suckers (Cycleptus elongatus) in the Lower Wabash River Dakota S. Radford Eastern Illinois University Follow this and additional works at: https://thekeep.eiu.edu/theses Part of the Aquaculture and Fisheries Commons Recommended Citation Radford, Dakota S., "Aging Techniques & Population Dynamics of Blue Suckers (Cycleptus elongatus) in the Lower Wabash River" (2020). Masters Theses. 4806. https://thekeep.eiu.edu/theses/4806 This Dissertation/Thesis is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. AGING TECHNIQUES & POPULATION DYNAMICS OF BLUE SUCKERS (CYCLEPTUS ELONGATUS) IN THE LOWER WABASH RIVER By Dakota S. Radford B.S. Environmental Biology Eastern Illinois University A thesis prepared for the requirements for the degree of Master of Science Department of Biological Sciences Eastern Illinois University May 2020 TABLE OF CONTENTS Thesis abstract .................................................................................................................... iii Acknowledgements ............................................................................................................ iv List of Tables .......................................................................................................................v
    [Show full text]
  • Asian Carp Status Report
    Canadian Science Advisory Secretariat National Capital Region Science Advisory Report 2005/001 ASIAN CARP STATUS REPORT Figure 1: Map of DFO’s six administrative regions. § Photo credits (from top to bottom): Grass Carp, Ontario Federation of Anglers and Hunters; Bighead Carp, David Riecks, University of Illinois; Silver Carp, [email protected]; and Black Carp, Leo G. Nico. Context The intentional or accidental release of non-native species into Canadian waters poses a threat to native species and overall biodiversity. Non-native species can alter habitat, compete with native species for food or habitat, prey upon native species, and act as vectors for new diseases or parasites that could spread to native species. There is also a risk of introducing non-native genes into native populations through hybridisation. Any of these effects could have further widespread, detrimental impacts on native species and communities. Four species of Asian carp (grass carp (Ctenopharyngodon idella), bighead carp (Hypophthalmichthys nobilis), silver carp (H. molitrix), and black carp (Mylopharyngodon piceus)) have been imported into the United States for use in aquaculture, and for the biological control of aquatic vegetation and parasites. Although all species were brought in for culture, and often triploid strains were developed and maintained, all four species have escaped into the wild. Self-sustaining populations of three of these species (grass, bighead and silver carps) have been established, particularly in the Mississippi drainage. Grass and bighead carps are the two species reported to be imported live into Canada for the live food fish industry, particularly in Toronto, Montreal and Vancouver. Black carp has been historically reported as imported and silver carp has been observed for sale, but not officially reported.
    [Show full text]
  • Hypophthalmichthys Molitrix and H. Nobilis)
    carpsAB_covers 6/30/15 9:33 AM Page 1 BIGHEADED CARPS (Hypophthalmichthys molitrix and H. nobilis) An Annotated Bibliography on Literature Composed from 1970 to 2014 Extension Service Forest and Wildlife Research Center The information given here is for educational purposes only. References to commercial products, trade names, or suppliers are made with the understanding that no endorsement is implied and that no discrimination against other products or suppliers is intended. Copyright 2015 by Mississippi State University. All rights reserved. This publication may be copied and distributed without alteration for nonprofit educational purposes provided that credit is given to the Mississippi State University Extension Service. By Andrew Smith, Extension Associate Biologist, MSU Center for Resolving Human-Wildlife Conflicts. We are an equal opportunity employer, and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, Compiled by Andrew L. Smith national origin, disability status, protected veteran status, or any other characteristic protected by law. Edited by Steve Miranda, PhD, and Wes Neal, PhD Publication 2890 Extension Service of Mississippi State University, cooperating with U.S. Department of Agriculture. Published in furtherance of Acts of Congress, May 8 and June 30, 1914. GARY B. JACKSON, Director (500-06-15) carpsAB_covers 6/30/15 9:33 AM Page 3 Bigheaded Carps (Hypophthalmichthys molitrix and H. nobilis): An Annotated Bibliography on Literature Composed from 1970 to 2014 Compiled by Andrew L. Smith Mississippi State University Extension Service Center for Resolving Human-Wildlife Conflicts Department of Wildlife, Fisheries, and Aquaculture Forest and Wildlife Research Center Edited by Steve Miranda, PhD Wes Neal, PhD Andrew L.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Bigheaded Carps in Mississippi
    BIGHEADED CARPS IN MISSISSIPPI Extension Service Forest and Wildlife Research Center Copyright 2015 by Mississippi State University. All rights reserved. This publication may be copied and distributed without alteration for nonprofit educational purposes provided that credit is given to the Mississippi State University Extension Service. By Andrew Smith, Extension Associate Biologist, MSU Center for Resolving Human-Wildlife Conflicts. We are an equal opportunity employer, and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, national origin, disability status, protected veteran status, or any other characteristic protected by law. Publication 2891 Extension Service of Mississippi State University, cooperating with U.S. Department of Agriculture. Published in furtherance of Acts of Congress, May 8 and June 30, 1914. GARY B. JACKSON, Director (500-06-15) “Bigheaded carps” is a name assigned to a group of closely related fish that includes silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis). Bigheaded carps were introduced into the United States in Arkansas in 1973 for biological control of phytoplankton in eutrophic (high-nutrient-level) water bodies. By the mid-1970s, silver carp were being distributed and raised at six state, federal, and private facilities for aquaculture production and biological control in manmade aquatic facilities (aquaculture ponds and sewage treatment lagoons). Silver carp (top) and bighead carp. Asian Carp Regional Coordinating Committee
    [Show full text]
  • Proceedings of the Asian Carp Working Group Meeting, May 24
    Proceedings of the Asian Carp Working Group Meeting May 24, 2004 Columbia, Missouri Hosted by: U.S. Fish and Wildlife Service Carterville Fishery Resources Office 9053 Route 148 Marion, Illinois 62959 Facilitated by: Parks Consulting Group January 2005 Image credits: silver carp (top left) Fish Market a.s. (Czech Republic); bighead carp (bottom right) David Riecks, UIUC/IL-IN Sea Grant. The information contained in this report is provided as documentation of the Asian Carp Working Group meeting held May 24, 2004, in Columbia, Missouri, and does not necessarily reflect the position of the U.S. Fish & Wildlife Service. Table of Contents Acknowledgements....................................................................................................................iii Executive Summary................................................................................................................... iv Asian Carp Working Group Meeting Objectives........................................................................ 1 Problem Statement.............................................................................................................. 1 Background......................................................................................................................... 2 Purpose and Expectations ................................................................................................... 3 Approach............................................................................................................................. 3
    [Show full text]
  • Aquaculture Research and Its Relation to Development in China
    AQUACULTURE RESEARCH AND ITS RELATION TO DEVELOPMENT IN CHINA S.F. Li Shanghai Fisheries University, Shanghai, China E-mail: [email protected] ABSTRACT China has a long history in aquaculture that goes back 2500 years. However, key advances followed the artificial breeding of carp in the 1950s. This chapter focuses on the development from the 1980s to the present, discussing the major issues in the developments, current and future trends and challenges, and the roles of Shanghai Fisheries University and the WorldFish Center in addressing these concerns. STATUS Pond culture is the most important practice contributing to total aquaculture production from Dramatic development since 1980s freshwaters. Pond culture has an estimated share of 60 to 70 per cent of total freshwater aquaculture The history of fish farming in China goes back at least production, in which Taihu Lake area in the Yangtze 2500 years, and it has long held prominence in the River Delta and Zhong-Nan-Shuan area in the Pearl rich Chinese civilization. But it was only after the 1950s River Delta are the traditional centers of fish culture. that aquaculture has been rapidly developed. The Culture in open-waters (lakes, reservoirs, channels) and breakthrough in the artificial breeding of the silver carp, in paddies contributes most of the remaining output. bighead carp and grass carp achieved from 1958 to 1960 The most commonly farmed species are silver carp changed the traditional practice of collecting wild fry (Hypophthalmichthys molitrix), bighead carp (Aristichthys from the rivers. Meanwhile, in the 1960s Chinese nobilis), grass carp (Ctenopharyngodon idellus), black scientists summarized the experience of Chinese carp (Mylopharyngodon piceus), common carp (Cyprinus freshwater fish culture into eight words; water, seed, carpio), crucian carp (Carassius auratus), blunt snout feeds, density, polyculture, rotation, disease, and bream (Megalobrama amblycephala), mud carp (Cirrhina management.
    [Show full text]
  • Maryland Aquatic Nuisance Species Management Plan
    Maryland Aquatic Nuisance Species Management Plan November 2016 Approved by the Aquatic Nuisance Species Task Force 1 This Aquatic Nuisance Species Management Plan was prepared by the Maryland Department of Natural Resources Invasive Species Matrix Team in partnership with Maryland agencies and organizations invested in invasive species management, and with input from the general public. Suggested citation : MDDNR (Maryland Department of Natural Resources). 2016. Maryland Aquatic Nuisance Species Management Plan. Annapolis. 77 pp + Appendices. 2 3 ACKNOWLEDGMENTS This Aquatic Nuisance Species Management Plan began development with the Maryland Department of Natural Resources' Invasive Species Matrix Team and a subcommittee formed by Jonathan McKnight, Joe Love, Mark Lewandowski, Jay Killian, Kerrie Kyde, Nancy Butowski, and Susan Rivers. It was greatly improved by the efforts of reviewers from State and Federal agencies, Don MacLean, the Aquatic Nuisance Species Task Force, and the general public. The Mid-Atlantic Panel on Aquatic Invasive Species importantly helped to inform the development of this Plan. 4 MARYLAND AQUATIC NUISANCE SPECIES MANAGEMENT PLAN EXECUTIVE SUMMARY An aquatic nuisance species (ANS) is a non-native species whose introduction does or is likely to cause economic or environmental harm or harm to human health. While many aquatic species may be introduced to a water body, very few become established, and fewer are regarded as ANS. In the Chesapeake Bay watershed, there are 120 introduced and established aquatic species
    [Show full text]
  • Black Carp US ARMY CORPS of ENGINEERS Building Strong®
    black carp US ARMY CORPS OF ENGINEERS Building Strong® Common Name black carp Genus & Species Mylopharyngodon piceus Family Cyprinidae (minnows and carps) Order Cypriniformes (carps, minnows, loaches, suckers) Class Actinopterygii (ray-finned fishes) Diagnosis: The black carp is in the minnow family, Cyprinidae, and shares many physical characteristics with other members of this group. The dorsal fin is short and pointed consisting of 7-8 rays and is located above the pelvic fins. The anal fin is set back further, closer to the caudal fin than most native minnows of the area. The black carp most closely resembles the grass carp with large dark edged scales that form a cross-hatched pattern on an olive to dark brown body. It can be distinguished from the grass carp by the pharyngeal teeth which are shaped like human molars in contrast to the deeply grooved pharyngeal teeth of the grass carp. Ecology: Black carp populations may adversely affect native mollusk populations as their main diet at maturity consists primarily of snails, mussels, and clams. They are also known to scavenge for fish eggs, aquatic insects, and benthic crustaceans. As juveniles, black carp will feed primarily on zooplankton. Sexual maturation occurs anywhere from 6-11 years in age. Rapid growth of these fish occurs from fry through maturity and female fecundity is especially high; producing up to over 1 million eggs per spawning event. Eggs are laid in mass over the river bottom and once fertilized are carried downstream to more stagnant waters. Spawning occurs once water temperatures have increased to 26-30°C.
    [Show full text]
  • Management and Control Plan for Bighead, Black, Grass, and Silver Carps in the United States
    Bighead carp Silver carp Management and Control Plan for Bighead, Black, Grass, and Silver Carps in the United States Submitted to the Aquatic Nuisance Species Task Force Prepared by the Asian Carp Working Group October 2007 Black carp Grass carp © Photo courtesy of Brian Johnson, U.S. Army Corps of Engineers Suggested citation for this document: Conover, G., R. Simmonds, and M. Whalen, editors. 2007. Management and control plan for bighead, black, grass, and silver carps in the United States. Asian Carp Working Group, Aquatic Nuisance Species Task Force, Washington, D.C. 223 pp. Cover sketches courtesy of Matthew Thomas, Kentucky Department of Fish and Wildlife Resources. 2 ASIAN CARP WORKING GROUP MEMBERS Name Affiliation John Andersen The Nature Conservancy Mike Armstrong Arkansas Game and Fish Commission Jimmy Avery Mississippi State University Valerie Barko Missouri Department of Conservation Kim Bogenschutz Iowa Department of Natural Resources Joel Brammeier Lake Michigan Federation Beth Brownson Ontario Ministry of Natural Resources Sarah Calloway U.S. Forest Service Duane Chapman U.S. Geological Survey Matt Cochran FishPro/Cochran and Wilken, Inc. Mike Conlin Illinois Department of Natural Resources Greg Conover1 U.S. Fish and Wildlife Service Mark Cornish U.S. Army Corps of Engineers Becky Cudmore Department of Fisheries and Oceans Canada John Dettmers Illinois Natural History Survey Carole Engle University of Arkansas at Pine Bluff Thad Finley Farm Cat Livehaulers Jeff Finley U.S. Fish and Wildlife Service Tom Flatt Indiana Department of Natural Resources Mike Freeze Keo Fish Farm Jim Garvey Southern Illinois University Chris Goddard Great Lakes Fishery Commission Mike Goehle U.S.
    [Show full text]
  • Effects of Turbidity and Acidity on Predator-Prey Interactions
    Journal of Environmental Science and Public Health doi: 10.26502/jesph.96120061 Volume 3, Issue 2 Research Article Effects of Turbidity and Acidity on Predator-Prey Interactions Shixu Zhu1 and Yixin Zhang1,2,3* 1Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China 2Huai’an Research Institute of New-Type Urbanization of Xi’an Jiaotong-Liverpool University, Huai’an, China 3Suzhou Urban and Environmental Research Institute of Xi’an Jiaotong-Liverpool University, Suzhou, China * Corresponding Author: Yixin Zhang, Department of Health and Environmental Sciences, Xi’an Jiaotong- Liverpool University, Suzhou, China, Tel: +86 18860927511; Fax: +34 966 749 635; E-mail: [email protected] Received: 28 March 2019; Accepted: 12 April 2019; Published: 14 June 2019 Abstract Predator-prey interactions are influenced by environmental condition changes, such as increased turbidity and acidification caused by human disturbance. These anthropogenic factors can affect trophic interactions from pisciovorous fish, invertivorous fish, and shredder invertebrates to leaf litter leaching. In this study, we investigated effects of increased turbidity and acidification on predator-prey interaction through a four-level detritus-based food chain, which are top predator (pisciovorous fish), intermediate predator (invertivorous fish), shredder invertebrates, and allochthonous leaf litter. The experiment had a top predator-snakehead (Channa argus), an intermediate predator-black carp (Mylopharyngodon piceus), shredder prey-a freshwater crustacean isopods (Asellus sp.), and allochthonous leaf litter sakura (Cerasus sp.). The pisciovorous snakehead was caged, providing non-lethal predation effect on black carp. The effects of turbidity condition changes with different Nephelometric Turbidity Unit (high level: 60 NTU, and low: 10 NTU) and acidic condition changes (weakly acidic: pH 6.0 and normal: pH 7.5) on leaf litter weight loss.
    [Show full text]