Craig Dawson, AIS Program Director DATE: June 12, 2014, Board Workshop SUBJECT: AIS Economic Study

Total Page:16

File Type:pdf, Size:1020Kb

Craig Dawson, AIS Program Director DATE: June 12, 2014, Board Workshop SUBJECT: AIS Economic Study M E M O R A N D U M TO: MCWD Board of Managers FROM: Craig Dawson, AIS Program Director DATE: June 12, 2014, Board Workshop SUBJECT: AIS Economic Study Background: The Board of Managers authorized the District to engage with the University of Minnesota’s Applied Economics Department to do an economic study “to estimate the economic costs and benefits of management practices designed to limit the spread of aquatic invasive species (AIS).” The purpose of such a study was to provide more informed decision-making on alternative courses of action in preventing or controlling the presence of AIS. The work performed by the University team has two parts. The first is a review of academic literature on the subject, which was presented to the Board at its January 9, 2014, workshop. Based on that review and direction from the workshop discussion, the second part investigates expenditures with associated with preventing and managing AIS. This investigation focuses on Great Lakes states as well as the State of Florida, as the latter has the most experience and expenditures for preventing and controlling AIS. As the University team has found out, in the existing literature and available information it is difficult to find the types of data or experiences to analyze the management questions the District had hoped to more easily guide decision-making. Draft Report for Discussion: A draft of the full report, “Economic Aspects of Aquatic Invasive Species”, is included in the agenda packet. As mentioned above, the Board has already reviewed the first part of the report. The second part of the report, “Expenditures on Treatment and Control”, begins on page 38. Conclusions and final recommendations for the District begin on page 65. In Part 2 of the report, the “analysis of AIS expenditures reflects data from public and private organizations. It does not address the added costs to private individuals nor public infrastructure, such as: increased costs in maintenance and repair for boats, docks, and lift equipment; increased maintenance and replacement costs for pipes to use lakewater (e.g., for watering lawns, etc.); the value of people’s time to perform maintenance, transport equipment for repairs, etc.; and finally, costs for public infrastructure, for example increased need to clean/maintain pipe outlets, increased need to maintain public launches and public beaches (and attendant disposal costs).” That said, the public cost for AIS treatment, not prevention, ranged from $289 to $376 per acre per year, and the cost per boat inspection was $29. Dr. Steve Taff will make a brief presentation on the report and respond to questions from the Board. The draft report included in the agenda packet is still subject to minor revisions based on corrections noted by the University team and from the discussion with the Board at the June 12 workshop. There should be some discussion about undertaking a Phase 2 of this study, based on what further research may be warranted. The 2014 budget and workplan include $50,000 to perform such additional work. Economic Aspects of Aquatic Invasive Species A report to the Minnehaha Creek Watershed District Baishali Bakshi, Frances Homans, Steven J. Taff1 June 3, 2014 1 Graduate Research Assistant, Natural Resources Science and Management Program; Professor, Department of Applied Economics; and Associate Professor, Department of Applied Economics, University of Minnesota, respectively. Contents Overall Introduction ................................................................................................................... 4 Part 1: Literature Review ........................................................................................................... 6 Introduction to Part 1 ............................................................................................................. 6 Study Organization................................................................................................................. 7 Economic Impact of Invasive Carp ...................................................................................... 10 Ecological Characteristics ................................................................................................ 10 Economic Costs ................................................................................................................ 11 Control Strategies ............................................................................................................. 12 Economic Impact of Invasive Crustaceans .......................................................................... 14 Ecological Characteristics ................................................................................................ 15 Economic Costs: .............................................................................................................. 16 Control Strategies ............................................................................................................. 16 Economic Impact of Other Invasive Fish............................................................................. 17 Sea Lamprey: ....................................................................................................................... 18 Ecological Characteristics ................................................................................................ 19 Economic Costs ................................................................................................................ 19 Control Strategies ............................................................................................................. 20 Economic Impact of Invasive Mussels ................................................................................ 20 Ecological characteristics ................................................................................................. 21 Economic Costs ................................................................................................................ 22 Control strategies ............................................................................................................. 23 Economic Impact of Milfoil ................................................................................................. 24 Economic Costs .................................................................................................................... 24 Control Strategies ............................................................................................................. 25 2 Economic Impact of Other Invasive Weeds......................................................................... 25 Ecological characteristics ................................................................................................. 26 Economic costs................................................................................................................. 26 Control Strategies ............................................................................................................. 27 Conclusions .......................................................................................................................... 29 References for Part I............................................................................................................. 31 Part 2: Expenditures on Treatment and Control ....................................................................... 38 Introduction to Part 2 ........................................................................................................... 38 Indiana .................................................................................................................................. 39 Minnesota ............................................................................................................................. 41 New York ............................................................................................................................. 52 Wisconsin ............................................................................................................................. 57 Florida .................................................................................................................................. 60 Comparison of all states ....................................................................................................... 64 Conclusions amd Final Recommendations .......................................................................... 65 Contact Information ............................................................................................................. 68 References for Part 2 ............................................................................................................ 69 3 Overall Introduction This is a collaborative project between the Minnehaha Creek Watershed District (MCWD) and the University of Minnesota to conduct an initial assessment of the economic impact of aquatic invasive species (AIS) and reported AIS control strategies relevant to the Upper Midwest (Great Lakes) region of the United States. This project has two main parts: (1) a literature review of existing research on the economic impact of AIS, focusing on the Great Lakes region (Part 1); and (2) an assessment of the costs of AIS management (control) and intervention (prevention) measures for the Great Lakes states (Part 2). To properly assess the economic costs/values of AIS control, we would ideally like to estimate both the probabilities of success/failure and
Recommended publications
  • Carp, Bighead (Hypophthalmichthys Nobilis)
    Bighead Carp (Hypophthalmichthys nobilis) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, February 2011 Revised, June 2018 Web Version, 8/16/2018 Photo: A. Benson, USGS. Public domain. Available: https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=551. (June 2018). 1 Native Range and Status in the United States Native Range From Jennings (1988): “The bighead carp is endemic to eastern China, […] in the lowland rivers of the north China plain and South China, including the Huai (Huai Ho), Yangtze, Pearl, West (Si Kiang), Han Chiang and Min rivers (Herre 1934; Mori 1936; Chang 1966; Chunsheng et al. 1980).” Status in the United States From Nico et al. (2018): “This species has been recorded from within, or along the borders of, at least 18 states. There is evidence of reproducing populations in the middle and lower Mississippi and Missouri rivers and the species is apparently firmly established in the states of Illinois and Missouri (Burr et al. 1996; Pflieger 1997). Pflieger (1997) received first evidence of natural reproduction, capture of young 1 bighead carp, in Missouri in 1989. Burr and Warren (1993) reported on the taking of a postlarval fish in southern Illinois in 1992. Subsequently, Burr et al. (1996) noted that bighead carp appeared to be using the lower reaches of the Big Muddy, Cache, and Kaskaskia rivers in Illinois as spawning areas. Tucker et al. (1996) also found young-of-the-year in their 1992 and 1994 collections in the Mississippi River of Illinois and Missouri. Douglas et al. (1996) collected more than 1600 larvae of this genus from a backwater outlet of the Black River in Louisiana in 1994.
    [Show full text]
  • Aging Techniques & Population Dynamics of Blue Suckers (Cycleptus Elongatus) in the Lower Wabash River
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications Summer 2020 Aging Techniques & Population Dynamics of Blue Suckers (Cycleptus elongatus) in the Lower Wabash River Dakota S. Radford Eastern Illinois University Follow this and additional works at: https://thekeep.eiu.edu/theses Part of the Aquaculture and Fisheries Commons Recommended Citation Radford, Dakota S., "Aging Techniques & Population Dynamics of Blue Suckers (Cycleptus elongatus) in the Lower Wabash River" (2020). Masters Theses. 4806. https://thekeep.eiu.edu/theses/4806 This Dissertation/Thesis is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. AGING TECHNIQUES & POPULATION DYNAMICS OF BLUE SUCKERS (CYCLEPTUS ELONGATUS) IN THE LOWER WABASH RIVER By Dakota S. Radford B.S. Environmental Biology Eastern Illinois University A thesis prepared for the requirements for the degree of Master of Science Department of Biological Sciences Eastern Illinois University May 2020 TABLE OF CONTENTS Thesis abstract .................................................................................................................... iii Acknowledgements ............................................................................................................ iv List of Tables .......................................................................................................................v
    [Show full text]
  • Asian Carp Status Report
    Canadian Science Advisory Secretariat National Capital Region Science Advisory Report 2005/001 ASIAN CARP STATUS REPORT Figure 1: Map of DFO’s six administrative regions. § Photo credits (from top to bottom): Grass Carp, Ontario Federation of Anglers and Hunters; Bighead Carp, David Riecks, University of Illinois; Silver Carp, [email protected]; and Black Carp, Leo G. Nico. Context The intentional or accidental release of non-native species into Canadian waters poses a threat to native species and overall biodiversity. Non-native species can alter habitat, compete with native species for food or habitat, prey upon native species, and act as vectors for new diseases or parasites that could spread to native species. There is also a risk of introducing non-native genes into native populations through hybridisation. Any of these effects could have further widespread, detrimental impacts on native species and communities. Four species of Asian carp (grass carp (Ctenopharyngodon idella), bighead carp (Hypophthalmichthys nobilis), silver carp (H. molitrix), and black carp (Mylopharyngodon piceus)) have been imported into the United States for use in aquaculture, and for the biological control of aquatic vegetation and parasites. Although all species were brought in for culture, and often triploid strains were developed and maintained, all four species have escaped into the wild. Self-sustaining populations of three of these species (grass, bighead and silver carps) have been established, particularly in the Mississippi drainage. Grass and bighead carps are the two species reported to be imported live into Canada for the live food fish industry, particularly in Toronto, Montreal and Vancouver. Black carp has been historically reported as imported and silver carp has been observed for sale, but not officially reported.
    [Show full text]
  • Hypophthalmichthys Molitrix and H. Nobilis)
    carpsAB_covers 6/30/15 9:33 AM Page 1 BIGHEADED CARPS (Hypophthalmichthys molitrix and H. nobilis) An Annotated Bibliography on Literature Composed from 1970 to 2014 Extension Service Forest and Wildlife Research Center The information given here is for educational purposes only. References to commercial products, trade names, or suppliers are made with the understanding that no endorsement is implied and that no discrimination against other products or suppliers is intended. Copyright 2015 by Mississippi State University. All rights reserved. This publication may be copied and distributed without alteration for nonprofit educational purposes provided that credit is given to the Mississippi State University Extension Service. By Andrew Smith, Extension Associate Biologist, MSU Center for Resolving Human-Wildlife Conflicts. We are an equal opportunity employer, and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, Compiled by Andrew L. Smith national origin, disability status, protected veteran status, or any other characteristic protected by law. Edited by Steve Miranda, PhD, and Wes Neal, PhD Publication 2890 Extension Service of Mississippi State University, cooperating with U.S. Department of Agriculture. Published in furtherance of Acts of Congress, May 8 and June 30, 1914. GARY B. JACKSON, Director (500-06-15) carpsAB_covers 6/30/15 9:33 AM Page 3 Bigheaded Carps (Hypophthalmichthys molitrix and H. nobilis): An Annotated Bibliography on Literature Composed from 1970 to 2014 Compiled by Andrew L. Smith Mississippi State University Extension Service Center for Resolving Human-Wildlife Conflicts Department of Wildlife, Fisheries, and Aquaculture Forest and Wildlife Research Center Edited by Steve Miranda, PhD Wes Neal, PhD Andrew L.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Bigheaded Carps in Mississippi
    BIGHEADED CARPS IN MISSISSIPPI Extension Service Forest and Wildlife Research Center Copyright 2015 by Mississippi State University. All rights reserved. This publication may be copied and distributed without alteration for nonprofit educational purposes provided that credit is given to the Mississippi State University Extension Service. By Andrew Smith, Extension Associate Biologist, MSU Center for Resolving Human-Wildlife Conflicts. We are an equal opportunity employer, and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, national origin, disability status, protected veteran status, or any other characteristic protected by law. Publication 2891 Extension Service of Mississippi State University, cooperating with U.S. Department of Agriculture. Published in furtherance of Acts of Congress, May 8 and June 30, 1914. GARY B. JACKSON, Director (500-06-15) “Bigheaded carps” is a name assigned to a group of closely related fish that includes silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis). Bigheaded carps were introduced into the United States in Arkansas in 1973 for biological control of phytoplankton in eutrophic (high-nutrient-level) water bodies. By the mid-1970s, silver carp were being distributed and raised at six state, federal, and private facilities for aquaculture production and biological control in manmade aquatic facilities (aquaculture ponds and sewage treatment lagoons). Silver carp (top) and bighead carp. Asian Carp Regional Coordinating Committee
    [Show full text]
  • Proceedings of the Asian Carp Working Group Meeting, May 24
    Proceedings of the Asian Carp Working Group Meeting May 24, 2004 Columbia, Missouri Hosted by: U.S. Fish and Wildlife Service Carterville Fishery Resources Office 9053 Route 148 Marion, Illinois 62959 Facilitated by: Parks Consulting Group January 2005 Image credits: silver carp (top left) Fish Market a.s. (Czech Republic); bighead carp (bottom right) David Riecks, UIUC/IL-IN Sea Grant. The information contained in this report is provided as documentation of the Asian Carp Working Group meeting held May 24, 2004, in Columbia, Missouri, and does not necessarily reflect the position of the U.S. Fish & Wildlife Service. Table of Contents Acknowledgements....................................................................................................................iii Executive Summary................................................................................................................... iv Asian Carp Working Group Meeting Objectives........................................................................ 1 Problem Statement.............................................................................................................. 1 Background......................................................................................................................... 2 Purpose and Expectations ................................................................................................... 3 Approach............................................................................................................................. 3
    [Show full text]
  • Aquaculture Research and Its Relation to Development in China
    AQUACULTURE RESEARCH AND ITS RELATION TO DEVELOPMENT IN CHINA S.F. Li Shanghai Fisheries University, Shanghai, China E-mail: [email protected] ABSTRACT China has a long history in aquaculture that goes back 2500 years. However, key advances followed the artificial breeding of carp in the 1950s. This chapter focuses on the development from the 1980s to the present, discussing the major issues in the developments, current and future trends and challenges, and the roles of Shanghai Fisheries University and the WorldFish Center in addressing these concerns. STATUS Pond culture is the most important practice contributing to total aquaculture production from Dramatic development since 1980s freshwaters. Pond culture has an estimated share of 60 to 70 per cent of total freshwater aquaculture The history of fish farming in China goes back at least production, in which Taihu Lake area in the Yangtze 2500 years, and it has long held prominence in the River Delta and Zhong-Nan-Shuan area in the Pearl rich Chinese civilization. But it was only after the 1950s River Delta are the traditional centers of fish culture. that aquaculture has been rapidly developed. The Culture in open-waters (lakes, reservoirs, channels) and breakthrough in the artificial breeding of the silver carp, in paddies contributes most of the remaining output. bighead carp and grass carp achieved from 1958 to 1960 The most commonly farmed species are silver carp changed the traditional practice of collecting wild fry (Hypophthalmichthys molitrix), bighead carp (Aristichthys from the rivers. Meanwhile, in the 1960s Chinese nobilis), grass carp (Ctenopharyngodon idellus), black scientists summarized the experience of Chinese carp (Mylopharyngodon piceus), common carp (Cyprinus freshwater fish culture into eight words; water, seed, carpio), crucian carp (Carassius auratus), blunt snout feeds, density, polyculture, rotation, disease, and bream (Megalobrama amblycephala), mud carp (Cirrhina management.
    [Show full text]
  • Maryland Aquatic Nuisance Species Management Plan
    Maryland Aquatic Nuisance Species Management Plan November 2016 Approved by the Aquatic Nuisance Species Task Force 1 This Aquatic Nuisance Species Management Plan was prepared by the Maryland Department of Natural Resources Invasive Species Matrix Team in partnership with Maryland agencies and organizations invested in invasive species management, and with input from the general public. Suggested citation : MDDNR (Maryland Department of Natural Resources). 2016. Maryland Aquatic Nuisance Species Management Plan. Annapolis. 77 pp + Appendices. 2 3 ACKNOWLEDGMENTS This Aquatic Nuisance Species Management Plan began development with the Maryland Department of Natural Resources' Invasive Species Matrix Team and a subcommittee formed by Jonathan McKnight, Joe Love, Mark Lewandowski, Jay Killian, Kerrie Kyde, Nancy Butowski, and Susan Rivers. It was greatly improved by the efforts of reviewers from State and Federal agencies, Don MacLean, the Aquatic Nuisance Species Task Force, and the general public. The Mid-Atlantic Panel on Aquatic Invasive Species importantly helped to inform the development of this Plan. 4 MARYLAND AQUATIC NUISANCE SPECIES MANAGEMENT PLAN EXECUTIVE SUMMARY An aquatic nuisance species (ANS) is a non-native species whose introduction does or is likely to cause economic or environmental harm or harm to human health. While many aquatic species may be introduced to a water body, very few become established, and fewer are regarded as ANS. In the Chesapeake Bay watershed, there are 120 introduced and established aquatic species
    [Show full text]
  • Black Carp US ARMY CORPS of ENGINEERS Building Strong®
    black carp US ARMY CORPS OF ENGINEERS Building Strong® Common Name black carp Genus & Species Mylopharyngodon piceus Family Cyprinidae (minnows and carps) Order Cypriniformes (carps, minnows, loaches, suckers) Class Actinopterygii (ray-finned fishes) Diagnosis: The black carp is in the minnow family, Cyprinidae, and shares many physical characteristics with other members of this group. The dorsal fin is short and pointed consisting of 7-8 rays and is located above the pelvic fins. The anal fin is set back further, closer to the caudal fin than most native minnows of the area. The black carp most closely resembles the grass carp with large dark edged scales that form a cross-hatched pattern on an olive to dark brown body. It can be distinguished from the grass carp by the pharyngeal teeth which are shaped like human molars in contrast to the deeply grooved pharyngeal teeth of the grass carp. Ecology: Black carp populations may adversely affect native mollusk populations as their main diet at maturity consists primarily of snails, mussels, and clams. They are also known to scavenge for fish eggs, aquatic insects, and benthic crustaceans. As juveniles, black carp will feed primarily on zooplankton. Sexual maturation occurs anywhere from 6-11 years in age. Rapid growth of these fish occurs from fry through maturity and female fecundity is especially high; producing up to over 1 million eggs per spawning event. Eggs are laid in mass over the river bottom and once fertilized are carried downstream to more stagnant waters. Spawning occurs once water temperatures have increased to 26-30°C.
    [Show full text]
  • Management and Control Plan for Bighead, Black, Grass, and Silver Carps in the United States
    Bighead carp Silver carp Management and Control Plan for Bighead, Black, Grass, and Silver Carps in the United States Submitted to the Aquatic Nuisance Species Task Force Prepared by the Asian Carp Working Group October 2007 Black carp Grass carp © Photo courtesy of Brian Johnson, U.S. Army Corps of Engineers Suggested citation for this document: Conover, G., R. Simmonds, and M. Whalen, editors. 2007. Management and control plan for bighead, black, grass, and silver carps in the United States. Asian Carp Working Group, Aquatic Nuisance Species Task Force, Washington, D.C. 223 pp. Cover sketches courtesy of Matthew Thomas, Kentucky Department of Fish and Wildlife Resources. 2 ASIAN CARP WORKING GROUP MEMBERS Name Affiliation John Andersen The Nature Conservancy Mike Armstrong Arkansas Game and Fish Commission Jimmy Avery Mississippi State University Valerie Barko Missouri Department of Conservation Kim Bogenschutz Iowa Department of Natural Resources Joel Brammeier Lake Michigan Federation Beth Brownson Ontario Ministry of Natural Resources Sarah Calloway U.S. Forest Service Duane Chapman U.S. Geological Survey Matt Cochran FishPro/Cochran and Wilken, Inc. Mike Conlin Illinois Department of Natural Resources Greg Conover1 U.S. Fish and Wildlife Service Mark Cornish U.S. Army Corps of Engineers Becky Cudmore Department of Fisheries and Oceans Canada John Dettmers Illinois Natural History Survey Carole Engle University of Arkansas at Pine Bluff Thad Finley Farm Cat Livehaulers Jeff Finley U.S. Fish and Wildlife Service Tom Flatt Indiana Department of Natural Resources Mike Freeze Keo Fish Farm Jim Garvey Southern Illinois University Chris Goddard Great Lakes Fishery Commission Mike Goehle U.S.
    [Show full text]
  • Effects of Turbidity and Acidity on Predator-Prey Interactions
    Journal of Environmental Science and Public Health doi: 10.26502/jesph.96120061 Volume 3, Issue 2 Research Article Effects of Turbidity and Acidity on Predator-Prey Interactions Shixu Zhu1 and Yixin Zhang1,2,3* 1Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China 2Huai’an Research Institute of New-Type Urbanization of Xi’an Jiaotong-Liverpool University, Huai’an, China 3Suzhou Urban and Environmental Research Institute of Xi’an Jiaotong-Liverpool University, Suzhou, China * Corresponding Author: Yixin Zhang, Department of Health and Environmental Sciences, Xi’an Jiaotong- Liverpool University, Suzhou, China, Tel: +86 18860927511; Fax: +34 966 749 635; E-mail: [email protected] Received: 28 March 2019; Accepted: 12 April 2019; Published: 14 June 2019 Abstract Predator-prey interactions are influenced by environmental condition changes, such as increased turbidity and acidification caused by human disturbance. These anthropogenic factors can affect trophic interactions from pisciovorous fish, invertivorous fish, and shredder invertebrates to leaf litter leaching. In this study, we investigated effects of increased turbidity and acidification on predator-prey interaction through a four-level detritus-based food chain, which are top predator (pisciovorous fish), intermediate predator (invertivorous fish), shredder invertebrates, and allochthonous leaf litter. The experiment had a top predator-snakehead (Channa argus), an intermediate predator-black carp (Mylopharyngodon piceus), shredder prey-a freshwater crustacean isopods (Asellus sp.), and allochthonous leaf litter sakura (Cerasus sp.). The pisciovorous snakehead was caged, providing non-lethal predation effect on black carp. The effects of turbidity condition changes with different Nephelometric Turbidity Unit (high level: 60 NTU, and low: 10 NTU) and acidic condition changes (weakly acidic: pH 6.0 and normal: pH 7.5) on leaf litter weight loss.
    [Show full text]