Hypophthalmichthys Nobilis (Richardson 1845)

Total Page:16

File Type:pdf, Size:1020Kb

Hypophthalmichthys Nobilis (Richardson 1845) Asian Carps of the Genus Hypophthalmichthys (Pisces, Cyprinidae) ― A Biological Synopsis and Environmental Risk Assessment Cindy S. Kolar U.S. Geological Survey Upper Midwest Environmental Sciences Center 2630 Fanta Reed Road La Crosse, Wisconsin 54603-1223 Duane C. Chapman U.S. Geological Survey Columbia Environmental Research Center 4200 New Haven Road Columbia, Missouri 65201-8709 Walter R. Courtenay, Jr., Christine M. Housel, James D. Williams U.S. Geological Survey Center for Aquatic Resources Studies 7920 NW 71st Street Gainesville, Florida 32653-3071 and Dawn P. Jennings U.S. Fish and Wildlife Service North Florida Field Office 6620 Southpoint Drive South, Suite 310 Jacksonville, Florida 32216-0958 April 12, 2005 Report to U.S. Fish and Wildlife Service per Interagency Agreement 94400-3-0128 ii Contents Introduction..................................................................................................................................... 1 Genus and Species Description and Distinguishing Characteristics............................................... 2 Genus: Hypophthalmichthys (Bleeker 1860).................................................................. 2 Diagnostic Characteristics ..........................................................................................3 Species: Bighead Carp, Hypophthalmichthys nobilis (Richardson 1845) ....................... 3 Diagnostic Characteristics ..........................................................................................4 Species: Silver Carp, Hypophthalmichthys molitrix (Valenciennes 1844)...................... 5 Diagnostic Characteristics ..........................................................................................5 Species: Largescale Silver Carp, Hypophthalmichthys harmandi (Sauvage 1884)......... 8 Diagnostic Characteristics ..........................................................................................8 Hybrids of Hypophthalmichthys spp................................................................................ 9 Native Range................................................................................................................................. 10 Bighead Carp ................................................................................................................. 10 Silver Carp ..................................................................................................................... 12 Largescale Silver Carp................................................................................................... 13 Habitats, Migrations, and Local Movements................................................................. 14 Bighead Carp ................................................................................................................. 14 Silver Carp ..................................................................................................................... 17 Largescale Silver Carp................................................................................................... 19 Biology and Natural History......................................................................................................... 19 Temperature Tolerance .................................................................................................. 19 Bighead Carp ............................................................................................................19 Silver Carp ................................................................................................................20 Largescale Silver Carp..............................................................................................20 Salinity Tolerance .......................................................................................................... 21 Bighead Carp ............................................................................................................21 Silver Carp ................................................................................................................21 Largescale Silver Carp..............................................................................................22 Reproductive Biology .................................................................................................... 22 Fecundity...................................................................................................................22 Bighead Carp ..................................................................................................... 22 Silver Carp ......................................................................................................... 22 Largescale Silver Carp....................................................................................... 23 Sexual Maturity and Mating Behavior......................................................................23 Bighead Carp ..................................................................................................... 23 Silver Carp ......................................................................................................... 23 Largescale Silver Carp....................................................................................... 24 Spawning...................................................................................................................24 Bighead Carp ..................................................................................................... 24 Silver Carp ......................................................................................................... 25 Bighead and Silver Carps................................................................................... 26 Largescale Silver Carp....................................................................................... 27 Early Development ...................................................................................................27 Bighead Carp ..................................................................................................... 27 Silver Carp ......................................................................................................... 28 ii Largescale Silver Carp....................................................................................... 29 Feeding Habits ............................................................................................................... 29 Bighead Carp ............................................................................................................29 Silver Carp ................................................................................................................33 Largescale Silver Carp..............................................................................................37 Growth Rate and Longevity........................................................................................... 38 Bighead Carp ............................................................................................................38 Silver Carp ................................................................................................................40 Largescale Silver Carp..............................................................................................41 Response to Physical Stimuli......................................................................................... 42 Bighead Carp ............................................................................................................42 Silver Carp ................................................................................................................42 Largescale Silver Carp..............................................................................................44 Associated Diseases and Parasites................................................................................................ 44 Bighead Carp ................................................................................................................. 44 Silver Carp ..................................................................................................................... 48 Largescale Silver Carp................................................................................................... 55 Disease Transmittal to Native Fishes............................................................................. 56 Human Uses of Hypophthalmichthys............................................................................................ 57 Use as Human Food....................................................................................................... 57 Capture Fisheries for Hypophthalmichthys...............................................................57 Culture of Carps........................................................................................................58 Bighead Carp ............................................................................................................59 Silver Carp ................................................................................................................60 Largescale Silver Carp..............................................................................................61 Control of Algae ............................................................................................................ 61 Bighead Carp ............................................................................................................61 Silver Carp ................................................................................................................62
Recommended publications
  • The Bighead Carp Are Coming from Asia and Swimming up the Mississippi River, and the Bighead Carp Coming up the Minnesota River
    Where they are mostly hiding out? Bighead Carp Invaders Invasive species: The Bighead carp are coming from Asia and swimming up the Mississippi River, and The Bighead Carp coming up the Minnesota River. (Hypophthalmichthys nobilis) This is an emergency to the pubic about the invasive Bighead carp. Recent research says that these invaders are taking a big toll on the ecosystem. “Why?” some people asked. Read on to learn more. How can you get rid of them? Carp Taco Recipe Serbian Carp Recipe EAT THEM!!!!! • 1 pound ground carp • 2 pounds carp Carp Taco Recipe • 3 tablespoons veggie oil • ¼ pound butter • 1 package taco seasoning • 2 finely chopped onions • 1/2 cup water • Sliced tomato or salsa • 3 tablespoons tomato paste • 12 flour tortillas • ¼ pound chopped mushrooms • Shredded lettuce • Salt • Grated cheddar cheese • Red pepper • Taco sauce • Flour • Sour cream • Water Roll carp in flour seasoned with salt Before shredding the fish, remove the mud vain, or reddish-brown section of and red Pepper. Sear in butter. After Serbian Carp Recipe the fish. Cook the shredded fish in the oil removing carp, sauté onions and until its color changes. Add the taco mushrooms. Add tomato paste and a seasonings and water. Cook until nearly little water. Put carp in and stew until dry, stirring occasionally. Heat tortilla in well done. a deep fry pan, turning them brown on both sides. They should still be soft and pliable when warm. Fill each tortilla with fish. Add the rest of the ingredients, and top it with sour cream. .
    [Show full text]
  • Present Status of Fish Biodiversity and Abundance in Shiba River, Bangladesh
    Univ. J. zool. Rajshahi. Univ. Vol. 35, 2016, pp. 7-15 ISSN 1023-6104 http://journals.sfu.ca/bd/index.php/UJZRU © Rajshahi University Zoological Society Present status of fish biodiversity and abundance in Shiba river, Bangladesh D.A. Khanom, T Khatun, M.A.S. Jewel*, M.D. Hossain and M.M. Rahman Department of Fisheries, University of Rajshahi, Rajshahi 6205, Bangladesh Abstract: The study was conducted to investigate the abundance and present status of fish biodiversity in the Shiba river at Tanore Upazila of Rajshahi district, Bangladesh. The study was conducted from November, 2016 to February, 2017. A total of 30 species of fishes were recorded belonging to nine orders, 15 families and 26 genera. Cypriniformes and Siluriformes were the most diversified groups in terms of species. Among 30 species, nine species under the order Cypriniformes, nine species of Siluriformes, five species of Perciformes, two species of Channiformes, two species of Mastacembeliformes, one species of Beloniformes, one species of Clupeiformes, one species of Osteoglossiformes and one species of Decapoda, Crustacea were found. Machrobrachium lamarrei of the family Palaemonidae under Decapoda order was the most dominant species contributing 26.29% of the total catch. In the Shiba river only 6.65% threatened fish species were found, and among them 1.57% were endangered and 4.96% were vulnerable. The mean values of Shannon-Weaver diversity (H), Margalef’s richness (D) and Pielou’s (e) evenness were found as 1.86, 2.22 and 0.74, respectively. Relationship between Shannon-Weaver diversity index (H) and pollution indicates the river as light to moderate polluted.
    [Show full text]
  • Disease List for Aquaculture Health Certificate
    Quarantine Standard for Designated Species of Imported/Exported Aquatic Animals [Attached Table] 4. Listed Diseases & Quarantine Standard for Designated Species Listed disease designated species standard Common name Disease Pathogen 1. Epizootic haematopoietic Epizootic Perca fluviatilis Redfin perch necrosis(EHN) haematopoietic Oncorhynchus mykiss Rainbow trout necrosis virus(EHNV) Macquaria australasica Macquarie perch Bidyanus bidyanus Silver perch Gambusia affinis Mosquito fish Galaxias olidus Mountain galaxias Negative Maccullochella peelii Murray cod Salmo salar Atlantic salmon Ameirus melas Black bullhead Esox lucius Pike 2. Spring viraemia of Spring viraemia of Cyprinus carpio Common carp carp, (SVC) carp virus(SVCV) Grass carp, Ctenopharyngodon idella white amur Hypophthalmichthys molitrix Silver carp Hypophthalmichthys nobilis Bighead carp Carassius carassius Crucian carp Carassius auratus Goldfish Tinca tinca Tench Sheatfish, Silurus glanis European catfish, wels Negative Leuciscus idus Orfe Rutilus rutilus Roach Danio rerio Zebrafish Esox lucius Northern pike Poecilia reticulata Guppy Lepomis gibbosus Pumpkinseed Oncorhynchus mykiss Rainbow trout Abramis brama Freshwater bream Notemigonus cysoleucas Golden shiner 3.Viral haemorrhagic Viral haemorrhagic Oncorhynchus spp. Pacific salmon septicaemia(VHS) septicaemia Oncorhynchus mykiss Rainbow trout virus(VHSV) Gadus macrocephalus Pacific cod Aulorhynchus flavidus Tubesnout Cymatogaster aggregata Shiner perch Ammodytes hexapterus Pacific sandlance Merluccius productus Pacific
    [Show full text]
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • Water Situation in China – Crisis Or Business As Usual?
    Water Situation In China – Crisis Or Business As Usual? Elaine Leong Master Thesis LIU-IEI-TEK-A--13/01600—SE Department of Management and Engineering Sub-department 1 Water Situation In China – Crisis Or Business As Usual? Elaine Leong Supervisor at LiU: Niclas Svensson Examiner at LiU: Niclas Svensson Supervisor at Shell Global Solutions: Gert-Jan Kramer Master Thesis LIU-IEI-TEK-A--13/01600—SE Department of Management and Engineering Sub-department 2 This page is left blank with purpose 3 Summary Several studies indicates China is experiencing a water crisis, were several regions are suffering of severe water scarcity and rivers are heavily polluted. On the other hand, water is used inefficiently and wastefully: water use efficiency in the agriculture sector is only 40% and within industry, only 40% of the industrial wastewater is recycled. However, based on statistical data, China’s total water resources is ranked sixth in the world, based on its water resources and yet, Yellow River and Hai River dries up in its estuary every year. In some regions, the water situation is exacerbated by the fact that rivers’ water is heavily polluted with a large amount of untreated wastewater, discharged into the rivers and deteriorating the water quality. Several regions’ groundwater is overexploited due to human activities demand, which is not met by local. Some provinces have over withdrawn groundwater, which has caused ground subsidence and increased soil salinity. So what is the situation in China? Is there a water crisis, and if so, what are the causes? This report is a review of several global water scarcity assessment methods and summarizes the findings of the results of China’s water resources to get a better understanding about the water situation.
    [Show full text]
  • Forecasting the Impacts of Silver and Bighead Carp on the Lake Erie Food Web
    Transactions of the American Fisheries Society ISSN: 0002-8487 (Print) 1548-8659 (Online) Journal homepage: http://www.tandfonline.com/loi/utaf20 Forecasting the Impacts of Silver and Bighead Carp on the Lake Erie Food Web Hongyan Zhang, Edward S. Rutherford, Doran M. Mason, Jason T. Breck, Marion E. Wittmann, Roger M. Cooke, David M. Lodge, John D. Rothlisberger, Xinhua Zhu & Timothy B. Johnson To cite this article: Hongyan Zhang, Edward S. Rutherford, Doran M. Mason, Jason T. Breck, Marion E. Wittmann, Roger M. Cooke, David M. Lodge, John D. Rothlisberger, Xinhua Zhu & Timothy B. Johnson (2016) Forecasting the Impacts of Silver and Bighead Carp on the Lake Erie Food Web, Transactions of the American Fisheries Society, 145:1, 136-162, DOI: 10.1080/00028487.2015.1069211 To link to this article: http://dx.doi.org/10.1080/00028487.2015.1069211 © 2016 The Author(s). Published with View supplementary material license by American Fisheries Society© Hongyan Zhang, Edward S. Rutherford, Doran M. Mason, Jason T. Breck, Marion E. Wittmann, Roger M. Cooke, David M. Lodge, Published online: 30 Dec 2015. Submit your article to this journal John D. Rothlisberger, Xinhua Zhu, Timothy B. Johnson Article views: 1095 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=utaf20 Download by: [University of Strathclyde] Date: 02 March 2016, At: 02:30 Transactions of the American Fisheries Society 145:136–162, 2016 Published with license by American Fisheries Society 2016 ISSN: 0002-8487 print / 1548-8659 online DOI: 10.1080/00028487.2015.1069211 ARTICLE Forecasting the Impacts of Silver and Bighead Carp on the Lake Erie Food Web Hongyan Zhang* Cooperative Institute for Limnology and Ecosystems Research, School of Natural Resources and Environment, University of Michigan, 4840 South State Road, Ann Arbor, Michigan 48108, USA Edward S.
    [Show full text]
  • Carp, Bighead (Hypophthalmichthys Nobilis)
    Bighead Carp (Hypophthalmichthys nobilis) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, February 2011 Revised, June 2018 Web Version, 8/16/2018 Photo: A. Benson, USGS. Public domain. Available: https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=551. (June 2018). 1 Native Range and Status in the United States Native Range From Jennings (1988): “The bighead carp is endemic to eastern China, […] in the lowland rivers of the north China plain and South China, including the Huai (Huai Ho), Yangtze, Pearl, West (Si Kiang), Han Chiang and Min rivers (Herre 1934; Mori 1936; Chang 1966; Chunsheng et al. 1980).” Status in the United States From Nico et al. (2018): “This species has been recorded from within, or along the borders of, at least 18 states. There is evidence of reproducing populations in the middle and lower Mississippi and Missouri rivers and the species is apparently firmly established in the states of Illinois and Missouri (Burr et al. 1996; Pflieger 1997). Pflieger (1997) received first evidence of natural reproduction, capture of young 1 bighead carp, in Missouri in 1989. Burr and Warren (1993) reported on the taking of a postlarval fish in southern Illinois in 1992. Subsequently, Burr et al. (1996) noted that bighead carp appeared to be using the lower reaches of the Big Muddy, Cache, and Kaskaskia rivers in Illinois as spawning areas. Tucker et al. (1996) also found young-of-the-year in their 1992 and 1994 collections in the Mississippi River of Illinois and Missouri. Douglas et al. (1996) collected more than 1600 larvae of this genus from a backwater outlet of the Black River in Louisiana in 1994.
    [Show full text]
  • Aging Techniques & Population Dynamics of Blue Suckers (Cycleptus Elongatus) in the Lower Wabash River
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications Summer 2020 Aging Techniques & Population Dynamics of Blue Suckers (Cycleptus elongatus) in the Lower Wabash River Dakota S. Radford Eastern Illinois University Follow this and additional works at: https://thekeep.eiu.edu/theses Part of the Aquaculture and Fisheries Commons Recommended Citation Radford, Dakota S., "Aging Techniques & Population Dynamics of Blue Suckers (Cycleptus elongatus) in the Lower Wabash River" (2020). Masters Theses. 4806. https://thekeep.eiu.edu/theses/4806 This Dissertation/Thesis is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. AGING TECHNIQUES & POPULATION DYNAMICS OF BLUE SUCKERS (CYCLEPTUS ELONGATUS) IN THE LOWER WABASH RIVER By Dakota S. Radford B.S. Environmental Biology Eastern Illinois University A thesis prepared for the requirements for the degree of Master of Science Department of Biological Sciences Eastern Illinois University May 2020 TABLE OF CONTENTS Thesis abstract .................................................................................................................... iii Acknowledgements ............................................................................................................ iv List of Tables .......................................................................................................................v
    [Show full text]
  • Polycyclic Aromatic Hydrocarbons in the Estuaries of Two Rivers of the Sea of Japan
    International Journal of Environmental Research and Public Health Article Polycyclic Aromatic Hydrocarbons in the Estuaries of Two Rivers of the Sea of Japan Tatiana Chizhova 1,*, Yuliya Koudryashova 1, Natalia Prokuda 2, Pavel Tishchenko 1 and Kazuichi Hayakawa 3 1 V.I.Il’ichev Pacific Oceanological Institute FEB RAS, 43 Baltiyskaya Str., Vladivostok 690041, Russia; [email protected] (Y.K.); [email protected] (P.T.) 2 Institute of Chemistry FEB RAS, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia; [email protected] 3 Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan; [email protected] * Correspondence: [email protected]; Tel.: +7-914-332-40-50 Received: 11 June 2020; Accepted: 16 August 2020; Published: 19 August 2020 Abstract: The seasonal polycyclic aromatic hydrocarbon (PAH) variability was studied in the estuaries of the Partizanskaya River and the Tumen River, the largest transboundary river of the Sea of Japan. The PAH levels were generally low over the year; however, the PAH concentrations increased according to one of two seasonal trends, which were either an increase in PAHs during the cold period, influenced by heating, or a PAH enrichment during the wet period due to higher run-off inputs. The major PAH source was the combustion of fossil fuels and biomass, but a minor input of petrogenic PAHs in some seasons was observed. Higher PAH concentrations were observed in fresh and brackish water compared to the saline waters in the Tumen River estuary, while the PAH concentrations in both types of water were similar in the Partizanskaya River estuary, suggesting different pathways of PAH input into the estuaries.
    [Show full text]
  • Spatial Distribution of Nematode Communities Along the Salinity Gradient in the Two Estuaries of the Sea of Japan
    Russian Journal of Nematology, 2019, 27 (1), 1 – 12 Spatial distribution of nematode communities along the salinity gradient in the two estuaries of the Sea of Japan Alexandra A. Milovankina and Natalia P. Fadeeva Far Eastern Federal University, Sukhanov Street 8, 690950, Vladivostok, Russia e-mail: [email protected] Accepted for publication 15 May 2019 Summary. Spatial distribution and structure of nematode assemblages in two estuaries (long lowland Razdolnaya and mountain Sukhodol rivers, the Sea of Japan) were investigated. Sampling was conducted from freshwater to marine benthic habitats. The meiobenthic community was strongly dominated by nematodes. In both estuaries, the spatial distribution of nematode density, composition and feeding types related to the salinity gradient. From a total of 57 nematode species, 42 and 40 nematode species were identified in each estuary, respectively. The changes in the taxonomic structure of nematode fauna were found along the salinity gradient. Differences in nematodes community observed along each estuarine gradient were much lower than between the two estuaries. Only four species Anoplostoma cuticularia, Axonolaimus seticaudatus, Cyatholaimus sp. and Parodontophora timmica, were present in all sampling zones of both estuaries. Most of the recorded species were euryhaline, described previously in shallow coastal bays; only five freshwater species have been described previously from the freshwater habitat of Primorsky Krai. Key words: community structure, euryhaline nematodes, free-living nematodes, Razdolnaya River estuary, Sukhodol River estuary. Free-living nematodes are an important are available from several estuaries (Fadeeva, 2005; component of both marine and estuarine ecosystems Shornikov & Zenina, 2014; Milovankina et al., (Giere, 2009; Mokievsky, 2009). It has been shown 2018).
    [Show full text]
  • Pathogen Susceptibility of Silver Carp (Hypophthalmichthys Molitrix) and Bighead Carp (Hypophthalmichthys Nobilis) in the Wabash River Watershed
    Pathogen Susceptibility of Silver Carp (Hypophthalmichthys molitrix) and Bighead Carp (Hypophthalmichthys nobilis) in the Wabash River Watershed FINAL REPORT Kensey Thurner PhD Student Maria S Sepúlveda, Reuben Goforth, Cecon Mahapatra Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907 Jon Amberg, US Geological Service, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603 Eric Leis, US Fish and Widlife Service, La Crosse Fish Health Center, Onalaska, WI 54650 9/22/2014 Silver Carp (top) and Bighead Carp (bottom) caught in the Tippecanoe River, Photos by Alison Coulter Final Report 9/22/2014 - Page 2 Executive Summary The Pathogen Susceptibility of Silver Carp (Hypophthalmichthys molitrix) and Bighead Carp (Hypophthalmichthys nobilis) in the Wabash River Watershed project was undertaken to address the lack of available information regarding pathogens in the highly invasive Silver and Bighead Carps, collectively known as bigheaded carps. Very little is known about the prevalence and effects of parasites, bacteria and viruses on the health of invasive bigheaded carp populations in the United States or the effects of bigheaded carps on the disease risk profile for sympatric, native fish of the U.S. The main objectives of this project were to conduct a systematic survey of parasites, bacteria and viruses of Asian carps and a representative number of native Indiana fish species in the upper and middle Wabash and the lower Tippecanoe Rivers, Indiana; to determine the susceptibility of Asian carps to a representative number of natural pathogens using in vitro approaches; and to involve anglers in the development of a cost effective state-wide surveillance program for documentation of viral diseases of fish.
    [Show full text]
  • Biological Control of Invasive Fish and Aquatic Invertebrates: a Brief Review with Case Studies
    Management of Biological Invasions (2019) Volume 10, Issue 2: 227–254 CORRECTED PROOF Review Biological control of invasive fish and aquatic invertebrates: a brief review with case studies Przemyslaw G. Bajer1,*, Ratna Ghosal1,+, Maciej Maselko2, Michael J. Smanski2, Joseph D. Lechelt1, Gretchen Hansen3 and Matthew S. Kornis4 1University of Minnesota, Minnesota Aquatic Invasive Species Research Center, Dept. of Fisheries, Wildlife, and Conservation Biology, 135 Skok Hall, 2003 Upper Buford Circle, St. Paul, MN 55108, USA 2University of Minnesota, Dept. of Biochemistry, Molecular Biology and Biophysics, 1479 Gortner Ave., Room 344, St. Paul MN 55108, USA 3Minnesota Department of Natural Resources, 500 Lafayette Road, St. Paul, MN 55155, USA 4U.S. Fish and Wildlife Service, Great Lakes Fish Tag and Recovery Laboratory, Green Bay Fish and Wildlife Conservation Office, 2661 Scott Tower Drive, New Franken, WI 54229, USA +Current Address: Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Gujarat 380009, India Author e-mails: [email protected] (PGB), [email protected] (RG), [email protected] (MM), [email protected] (MJS), [email protected] (JDL), [email protected] (GH), [email protected] (MSK) *Corresponding author Citation: Bajer PG, Ghosal R, Maselko M, Smanski MJ, Lechelt JD, Hansen G, Abstract Kornis MS (2019) Biological control of invasive fish and aquatic invertebrates: a We review various applications of biocontrol for invasive fish and aquatic brief review with case studies. invertebrates. We adopt a broader definition of biocontrol that includes traditional Management of Biological Invasions 10(2): methods like predation and physical removal (biocontrol by humans), and modern 227–254, https://doi.org/10.3391/mbi.2019.
    [Show full text]