Magnetic Resonance Imaging

Total Page:16

File Type:pdf, Size:1020Kb

Magnetic Resonance Imaging 2015 Magnetic Resonance Imaging QUALITY CONTROL MANUAL Radiologist’s Section MRI Technologist’s Section Medical Physicist/MRI Scientist’s Section 2015 Magnetic Resonance Imaging QUALITY CONTROL MANUAL Radiologist’s Section MRI Technologist’s Section Medical Physicist/MRI Scientist’s Section American College of Radiology Committee on Quality Assurance in Magnetic Resonance Imaging Ron Price, PhD, FACR, chairman Jerry Allison, PhD, FACR Geoffrey Clarke, PhD, FACR Michael Dennis, PhD R. Edward Hendrick, PhD, FACR Carl Keener, PhD Jeff Masten, MS Moriel Nessaiver, PhD Joe Och, MS Donna Reeve, MS Priscilla Butler, MS, ACR Staff Member Dina Hernandez, RT, ACR Staff Member Leonard Lucey, JD, ACR Staff Member Pam Wilcox, MBA, ACR Staff Member © Copyright 2015, American College of Radiology. All rights reserved. Contents PREFACE . .vi REVISIONS . 3 Radiologist’s Section INTRODUCTION ..............................................4 DEFINITIONS. 6 A. Quality Assurance . 6 B. Quality Assurance Committee .........................6 C. Quality Control . 6 RADIOLOGISTS’ RESPONSIBILITIES ............................8 A. The Supervising Radiologist ...........................8 B. All MRI Radiologists (Interpreting Physicians) . 8 C. Interpretive Quality Assurance .........................9 D. Radiologist’s Leadership Role in MRI Quality Control . 9 E. MRI Quality Assurance Procedures Manual .............10 OTHER PROFESSIONALS’ RESPONSIBILITIES ..................12 A. The Responsibilities of the Qualified Medical Physicist or MRI Scientist .........................................12 B. Baseline Measurements and Action Limits. 12 C. Purchase Specifications and Acceptance Testing ......12 D. MRI QC Technologist’s Responsibilities . .13 E. Quality Control of Hard-Copy and Soft-Copy Images ...14 CONCLUSION ...............................................15 REFERENCES ...............................................16 A. Downloadable from ACR Website .....................16 B. Other Publications . .16 MRI Technologist’s Section REVISIONS. 19 INTRODUCTION .............................................20 IMPORTANT POINTS .........................................22 A. Quality Control Testing Frequency ....................22 Magnetic Resonance Imaging Quality Control Manual iii Contents B. Designated Quality Control Technologist(s) . .22 C. Quality Control Log . .23 D. Quality Control Data Review . .23 E. Alternative Phantoms ................................23 F. Alternative Procedures ................................24 G. Action Limits .........................................24 TECHNOLOGIST’S WEEKLY MRI QUALITY CONTROL . .25 A. Setup and Table Position Accuracy ....................26 B. Axial Image Data: Prescan Parameters . 29 C. Image Data Measurements ...........................32 FILM PRINTER QUALITY CONTROL ...........................47 VISUAL CHECKLIST ..........................................51 REFERENCES . .52 APPENDIX ..................................................53 Medical Physicist/MRI Scientist’s Section REVISIONS . .56 ROLE OF THE QUALIFIED MEDICAL PHYSICIST OR MRI SCIENTIST IN THE IMAGE QC PROGRAM ................................57 A. Changes Since 2004 Version ..........................58 ESTABLISHING THE QUALITY CONTROL PROGRAM ...........60 A. Phantom Section .....................................60 B. Methods and Action Limits for Weekly Quality Control Tests. .61 C. Establishing Action Limits for Weekly MR Image Quality Control Tests .........................................62 ANNUAL MRI SYSTEM PERFORMANCE EVALUATION ..........70 A. Magnetic Field Homogeneity .........................72 1. Spectral Peak Option ...............................74 2. Bandwidth-Difference Option. .74 3. Phase Map Option. .77 4. Phase-Difference Map Option. .80 iv Magnetic Resonance Imaging Quality Control Manual Contents B. Slice-Position Accuracy ...............................87 C. Slice-Thickness Accuracy. .88 D. Radiofrequency Coil Checks ..........................90 1. Volume Coil Tests . .96 2. Surface Coil Tests ..................................103 3. RF Array Coils. .105 E. Soft-Copy (Monitor) Quality Control ..................109 F. MR Safety Program Assessment. .111 REFERENCES . .113 APPENDIX .................................................116 A. MRI Equipment Evaluation Summary Form ...........116 B. MRI Safety Program Assessment Checklist ............116 C. Hard-Copy (Film) Quality Control Operating Levels ....116 Magnetic Resonance Imaging Quality Control Manual v Preface PREFACE The Magnetic Resonance Imaging Accreditation Program of the American College of Radiology was established to attest to the quality of the performance of magnetic resonance imaging at accredited facilities. Accreditation received through this program assures patients, referring physicians and others that magnetic resonance imaging studies at accredited sites are only performed by well-trained and competent personnel using properly functioning equipment. All sites accredited by the American College of Radiology in magnetic resonance imaging have agreed to carry out a continuous program of magnetic resonance imaging equipment quality control. The Committee on MRI Accreditation has received many inquires regarding what would constitute an adequate magnetic resonance imaging equipment quality control program and what the appropriate roles of various health care professionals at these clinics should be. This manual is designed to assist facilities in testing and maintaining their magnetic resonance imaging equipment in accordance with the broad principles delineated in the ACR-AAPM Technical Standard for Diagnostic Medical Physics Performance Monitoring of Magnetic Resonance Imaging Equipment [Res. 34–2014]. The committee has applied these principles to describe which personnel are responsible for which specific tasks and delineate methods for evaluating equipment performance with many tests using the American College of Radiology’s magnetic resonance imaging phantom. Members of the ACR Subcommittee on MRI Accreditation physics who generously donated their time and experience to produce the ACR Magnetic Resonance Imaging Quality Control Manual are listed on the title page. Special thanks goes to Pamela Wilcox, executive vice president of Quality & Safety, and Leonard Lucey, senior director of accreditation, who have kept this project and the other ACR accreditation programs on track over the years. Anthony Scuderi, M.D. Chairman, ACR Committee on MRI Accreditation vi Magnetic Resonance Imaging Quality Control Manual 2015 Magnetic Resonance Imaging QUALITY CONTROL MANUAL Radiologist’s Section Contents REVISIONS ...................................................3 INTRODUCTION ..............................................4 DEFINITIONS .................................................6 A. Quality Assurance ...................................6 B. Quality Assurance Committee ........................6 C. Quality Control ......................................6 RADIOLOGISTS’ RESPONSIBILITIES ............................8 A. The Supervising Radiologist ..........................8 B. All MRI Radiologists (Interpreting Physicians) .........8 C. Interpretive Quality Assurance ........................9 D. Radiologist’s Leadership Role in MRI Quality Control ...9 E. MRI Quality Assurance Procedures Manual .......... 10 OTHER PROFESSIONALS’ RESPONSIBILITIES ................. 12 A. The Responsibilities of the Qualified Medical Physicist or MRI Scientist ....................................... 12 B. Baseline Measurements and Action Limits ........... 12 C. Purchase Specifications and Acceptance Testing .... 12 D. MRI QC Technologist’s Responsibilities ............. 13 E. Quality Control of Hard-Copy and Soft-Copy Images . 14 CONCLUSION .............................................. 15 REFERENCES .............................................. 16 A. Downloadable from ACR Website ................... 16 B. Other Publications ................................. 16 2 Magnetic Resonance Imaging Quality Control Manual I. Revisions REVISIONS Date Page(s) Section Description of Revisions RADIOLOGIST’S SECTION RADIOLOGIST’S Magnetic Resonance Imaging Quality Control Manual Return to Table of Contents – 3 II. Introduction INTRODUCTION Magnetic resonance imaging (MRI) is now a mature and widely used imaging method. There is significant variability, however, in the quality of MRI exams performed at different sites. Achieving the full potential of MRI requires careful attention to quality assurance (QA), both in regard to equipment performance and to the execution of imaging studies. In response to the concerns of both referring physicians and those institutions reimbursing for the costs of performing MRI, the American College of Radiology (ACR) has initiated a voluntary MRI accreditation program. This program has followed the approach of the ACR Mammography Accreditation Program, which has established practices and standards for QA and quality control (QC) in mammography. The MRI Accreditation Program looks at the general practice of clinical MRI. Specific clinical examinations and QC data are required. Sites are asked to send their best examinations for selected clinical studies for peer-review. As part of the program, QC data must be collected using a head phantom test object. During this time, the ACR has also developed specific standards related to MRI and appropriateness criteria. With improved standards, widely accepted acknowledgment of the worth of accreditation, and a growing body of
Recommended publications
  • Development of an Anthropomorphic Dynamic Heart Phantom
    i Development of an Anthropomorphic Dynamic Heart Phantom by Sherif Tarek Ramadan A thesis submitted in conformity with the requirements for the degree of Master of Health Science Institute of Biomaterials and Biomedical Engineering University of Toronto © Copyright by Sherif Tarek Ramadan 2017 ii Development of an Anthropomorphic Dynamic Heart Phantom Sherif Tarek Ramadan Master of Health Science Institute of Biomaterials and Biomedical Engineering University of Toronto 2017 Abstract Dynamic anthropomorphic heart phantoms are a developing technology which offer a methodology for optimizing current computed tomography coronary angiography techniques. This work focuses on the development of a myocardial tissue analogue material that can be utilized as a synthetic heart for Toronto General Hospitals(TGH) current dynamic phantom. First, the mechanical properties of myocardial tissue are studied to determine the static (young’s modulus) and viscoelastic (storage/loss modulus, tan delta) properties of the tissue. A dioctyl phthalate and poly(vinyl) chloride material is then developed which mimics the obtained properties and the computed tomography(CT) attenuation of myocardium. The material is then utilized to create a heart/coronary artery model which can be integrated with the phantom in a cardiac CT simulation scan. Through this study it is seen that the phantom provides: a visual simulation to myocardium, motion profiles of the coronary arteries and hearts, and can be used as a plaque analysis tool. iii Acknowledgments I would like to start by thanking my parents, Tarek and Manal, who have supported me tirelessly throughout the completion of this thesis. To my brother, Khaled, who always pushes me to be better and has been my greatest role model.
    [Show full text]
  • Radiology Order Form
    RADIOLOGY ORDER FORM SCHEDULING PHONE: 206-598-7200 SCHEDULING FAX: 206-597-4004 RAD CONSULT LINE: 206-598-0101 UW RADIOLOGY RECORDS: Tel: 206-598-6206 Fax: 206-598-7690 NW RADIOLOGY RECORDS: Tel: 206-668-1748 Fax: 206-688-1398 UW Medical Center - Montlake UW Medicine Roosevelt Clinic UW Medicine Eastside Specialty Center 1959 NE Pacific Street, Seattle, WA 98195 4245 Roosevelt Way NE, Seattle, WA 98105 3100 Northup Way, Bellevue, WA 98004 2nd Floor Radiology Front Desk: 206-598-6200 2nd Floor Radiology Front Desk: 206-598-6868 ESC Front Desk: 425-646-7777 Opt. 2 UW Medical Center - Northwest Northwest Outpatient Medical Center First Available Appointment 1550 N 115th St, Seattle, WA 98133 10330 Meridian Ave N, Seattle, WA 98133 (ANY LOCATION) 2nd Floor Radiology Front Desk: 206-668-1302 Suite 130 Radiology Front Desk: 206-668-6050 Routine Urgent STAT Last Name: First Name: Date of Birth: _ Daytime phone: Evening phone: Gender: M F Weight:___________ Insurance Carrier: RQI/Authorization #: Interpreter/Language: __ Insurance ID#: Auto Workers’ Comp Date of Injury: ______ Claim # __ EXAM INFORMATION HISTORY/REASON FOR EXAM: EXACT AREA OF INTEREST: EXAM INFORMATION QUESTIONS TO BE ANSWERED BY IMAGING: ICD-10: MRI CT ULTRASOUND Contrast as clinically indicated, or No Contrast Contrast as clinically indicated, or No Contrast MAMMOGRAPHY DEXA FLUOROSCOPY TOMOSYNTHESIS PET/CT NUCLEAR MEDICINE INTERVENTIONAL RADIOLOGY X-RAY NOTES: (Please indicate if exam is considered “clinically urgent”) (Walk-In Only) TOMOSYNTHESIS Prior Related Imaging Type:_________________________ Facility:_________________________ Date:___________________ Reporting Routine call report # Patient to return with CD STAT call report # Other: __________ ________________________ ______________________ ____________ _______ ______ Provider Signature (required) Provider Name (please print) Phone Date Time (Provider signature required.
    [Show full text]
  • RADIOGRAPHY to Prepare Individuals to Become Registered Radiologic Technologists
    RADIOGRAPHY To prepare individuals to become Registered Radiologic Technologists. THE WORKFORCE CAPITAL This two-year, advanced medical program trains students in radiography. Radiography uses radiation to produce images of tissues, organs, bones and vessels of the body. The radiographer is an essential member of the health care team who works in a variety of settings. Responsibili- ties include accurately positioning the patient, producing quality diagnostic images, maintaining equipment and keeping computerized records. This certificate program of specialized training focuses on each of these responsibilities. Graduates are eligible to apply for the national credential examination to become a registered technologist in radiography, RT(R). Contact Student Services for current tuition rates and enrollment information. 580.242.2750 Mission, Goals, and Student Learning Outcomes Program Effectiveness Data Radiography Program Guidelines (Policies and Procedures) “The programs at Autry prepare you for the workforce with no extra training needed after graduation.” – Kenedy S. autrytech.edu ENDLESS POSSIBILITIES 1201 West Willow | Enid, Oklahoma, 73703 | 580.242.2750 | autrytech.edu COURSE LENGTH Twenty-four-month daytime program î August-July î Monday-Friday Academic hours: 8:15am-3:45pm Clinical hours: Eight-hour shifts between 7am-5pm with some ADMISSION PROCEDURES evening assignments required Applicants should contact Student Services at Autry Technology Center to request an information/application packet. Applicants who have a completed application on file and who have met entrance requirements will be considered for the program. Meeting ADULT IN-DISTRICT COSTS the requirements does not guarantee admission to the program. Qualified applicants will be contacted for an interview, and class Year One: $2732 (Additional cost of books and supplies approx: $1820) selection will be determined by the admissions committee.
    [Show full text]
  • Acr–Nasci–Sir–Spr Practice Parameter for the Performance and Interpretation of Body Computed Tomography Angiography (Cta)
    The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields. The American College of Radiology will periodically define new practice parameters and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice parameters and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each practice parameter and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review and approval. The practice parameters and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice parameter and technical standard by those entities not providing these services is not authorized. Revised 2021 (Resolution 47)* ACR–NASCI–SIR–SPR PRACTICE PARAMETER FOR THE PERFORMANCE AND INTERPRETATION OF BODY COMPUTED TOMOGRAPHY ANGIOGRAPHY (CTA) PREAMBLE This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care1.
    [Show full text]
  • MRC Review of Positron Emission Tomography (PET) Within the Medical Imaging Research Landscape
    MRC Review of Positron Emission Tomography (PET) within The Medical Imaging Research Landscape August 2017 Content 1 Introduction 3 2 The medical imaging research landscape in the UK 4 2.1 Magnetic resonance imaging (MRI) 4 2.2 PET, including PET-MRI 6 2.3 Magnetoencephalography 7 3 Scientific uses and demand for PET imaging 8 3.1 Clinical practice 8 3.2 Research use of PET 8 3.3 Demand for PET 10 4 Bottlenecks 11 4.1 Cost 11 4.2 Radiochemistry requirements 12 4.3 Capacity 13 4.4 Analysis and modelling 13 5 Future Opportunities 14 5.1 Mitigating the high costs 14 5.2 Capacity building 14 5.3 Better Networking 15 6 Discussion and conclusions 16 Appendix 1 Experts consulted in the review 17 Appendix 2 Interests of other funders 18 Appendix 3 Usage and cost of PET in research 21 Appendix 4 Summary of facilities and capabilities across UK PET centres of excellence 23 2 1. Introduction This report aims to provide a review of Positron Emission Tomography (PET) within the medical imaging research landscape and a high level strategic review of the UK’s capabilities and needs in this area. The review was conducted by face-to-face and telephone interviews with 35 stakeholders from UK centres of excellence, international experts, industry and other funders (list at appendix 1). Data were also collected on facilities, resources and numbers of scans conducted across the centres of excellence using a questionnaire. The review has focused predominantly on PET imaging, but given MRC’s significant recent investment in other imaging modalities (7T Magnetic Resonance Imaging (MRI), hyperpolarised MRI) through the Clinical Research Infrastructure (CRI) Initiative, these are also considered more briefly.
    [Show full text]
  • A Comparative Study Between High-Definition Volumetric Imaging Computed Tomography and Multi-Slice Computed Tomography in the De
    Journal of the South African Veterinary Association ISSN: (Online) 2224-9435, (Print) 1019-9128 Page 1 of 7 Original Research A comparative study between high-definition volumetric imaging computed tomography and multi-slice computed tomography in the detection of acute thoraco-lumbar disc extrusions in dogs Authors: Computed tomography (CT) is commonly used to image intervertebral disc extrusion 1,2 Ross C. Elliott (IVDE) in dogs. The current gold standard for CT imaging is the use of multi-slice CT Chad F. Berman1,2 Remo G. Lobetti2 (MS CT) units. Smaller high-definition volumetric imaging (HDVI) mobile CT has been marketed for veterinary practice. This unit is described as an advanced flat panel. The Affiliations: goal of this manuscript was to evaluate the ability of the HDVI CT in detecting IVDE 1Department of Companion Animal and Clinical Studies, without the need for CT myelography, compared with the detection of acute disc Onderstepoort, South Africa extrusions with a MS CT without the need for MS CT myelogram. Retrospective blinded analyses of 219 dogs presented for thoraco-lumbar IVDE that had a HDVI CT (n = 123) or 2 Bryanston Veterinary MS CT (n = 96) were performed at a single referral hospital. A total of 123 cases had HDVI Hospital, Johannesburg, South Africa CT scans with surgically confirmed IVDE. The IVDE was identified in 88/123 (72%) dogs on pre-contrast HDVI CT. The remaining 35/128 (28%) cases required a HDVI CT myelogram Corresponding author: to identify the IVDE. Ninety-six cases had MS CT scans with surgically confirmed IVDE. Ross Elliott, The IVDE was identified in 78/96 (81%) dogs on the pre-contrast MS CT.
    [Show full text]
  • 2019 Radiology Cpt Codes
    2019 RADIOLOGY CPT CODES BONE DENSITOMETRY 1 Bone Density/DEXA 77080 CT 1 CT Abd & Pelvis W/ Contrast 74177 1 CT Enterography W/ Contrast 74177 1 CT Max/Facial W/O Contrast 70486 # CT Sinus Complete W/O Contrast 70486 1 CT Abd & Pelvis W W/O Contrast 74178 1 CT Extremity Lower W/ Contrast 73701 1 CT Neck W/ Contrast 70491 # CT Sinus Limited W/O Contrast 76380 1 CT Abd & Pelvis W/O Contrast 74176 1 CT Extremity Lower W/O Contrast 73700 1 CT Neck W/O Contrast 70490 # CT Spine Cervical W/ Contrast 72126 1 CT Abd W/ Contrast 74160 1 CT Extremity Upper W/ Contrast 73201 1 CT Orbit/ IAC W/ Contrast 70481 # CT Spine Cervical W/O Contrast 72125 1 CT Abd W/O Contrast 74150 1 CT Extremity Upper W/O Contrast 73200 1 CT Orbit/ IAC W/O Contrast 70480 # CT Spine Lumbar W/ Contrast 72132 1 CT Abd W W/O Contrast 74170 1 CT Head W/ Contrast 70460 1 CT Orbit/ IAC W W/O Contrast 70482 # CT Spine Lumbar W/O Contrast 72131 1 CT Chest W/ Contrast 71260 1 CT Head W/O Contrast 70450 1 CT Pelvis W/ Contrast 72193 # CT Spine Thoracic W/ Contrast 72129 1 CT Chest W/O Contrast 71250 1 CT Head W W/O Contrast 70470 1 CT Pelvis W/O Contrast 72192 # CT Spine Thoracic W/O Contrast 72128 1 CT Chest W W/O Contrast 71270 1 CT Max/Facial W/ Contrast 70487 1 CT Pelvis W W/O Contrast 72194 # CT Stone Protocol W/O Contrast 74176 CTA 1 Cardiac Calcium Score only 75571 1 CT Angiogram Abd & Pelvis W W/O Contrast 74174 1 CT Angiogram Head W W/O Contrast 70496 # CT / CTA Heart W Contrast 75574 1 CT Angiogram Abdomen W W/O Contrast 74175 1 CT Angiogram Chest W W/O Contrast 71275
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Image Quality Evaluation Using Integrated Visual Grading Regression for Optimisation of Computed Tomography Imaging: a Dental Implantology Study
    This thesis work submitted to Charles Sturt University for the Doctor of Philosophy Degree Dr. Ahmed Hazim Muhammed Ali AL- Humairi BDS, MDSc, PG Cert. Ed Image Quality Evaluation Using Integrated Visual Grading Regression for Optimisation of Computed Tomography Imaging: A Dental Implantology Study March, 2019 1 Table of Contents 1. Abstract 2. Abstract 13 3. Chapter One 4. Background 15 5. 6. 1.1 7. Introduction 16 8. 9. 1.2 Aim and hypothesis 19 Chapter Two Literature review 21 2.1 Introduction 22 2.2 Multi-detector (MDCT) and cone beam (CBCT) 23 computed tomography 2.3 Technical characteristics of CBCT 23 2.4 General application of MDCT and CBCT in dentistry 24 2.5 Application of and MDCT and CBCT in dental 31 implantology 2.6 Ionising radiation dose 32 2.7 Effects of ionising radiation 33 2.8 Patient radiation dose in dentistry 34 2.9 Image quality 42 2.10 Image acquisition and reconstruction 42 2.11 Aspects of image quality in dentistry 45 2.12 Objective image quality 45 2.13 Subjective image quality 46 2.14 Image quality evaluation methods 47 2.15 Physical image quality 47 2.16 Receiver-operating characteristics (ROC) 50 2.17 Visual grading analysis (VGA) 50 2.18 Limitations of image quality evaluation methods 53 2.19 Dose and image quality optimisation 54 2.20 Dose and image quality optimisation for CT and CBCT in 56 dentistry 2 2.21 The need for reliable method of evaluating image quality 59 for CCT and CBCT in dentistry Chapter Three Methodology 61 3.1 Introduction 62 3.2 Phantoms 62 3.2.1 3M skull phantom 62 3.2.2 Dry human
    [Show full text]
  • Diagnostic Radiography Is the Production of High Quality Images for the Purpose of Diagnosis of Injury Or Disease
    A Career in Medical Imaging What is Diagnostic Radiography / Medical Imaging? Diagnostic Radiography is the production of high quality images for the purpose of diagnosis of injury or disease. It is a pivotal aspect of medicine and a patient's diagnosis and ultimate treatment is often dependent on the images produced. Diagnostic Radiography uses both ionising and non-ionising radiation in the imaging process. The equipment used is at the high end of technology and computerisation within medicine. What does a Diagnostic Radiographer / Medical Imaging Technologist do? A Diagnostic Radiographer/Medical Imaging Technologist is a key member of the health care team. They are responsible for producing high quality medical images that assist medical specialists and practitioners to describe, diagnose, monitor and treat a patient’s injury or illness. Much of the medical equipment used to gain the images is highly technical and involves state of the art computerisation. A Diagnostic Radiographer/Medical Imaging Technologist needs to have the scientific and technological background to understand and use the equipment within a modern Radiology department as well as compassion and strong interpersonal skills. They need to be able to demonstrate care and understanding and have a genuine interest in a patient's welfare. The Diagnostic Radiographer/Medical Imaging Technologist will also need to be able to explain to the patient the need for the preparation and post examination care as well as the procedure to be undertaken. The Diagnostic Radiographer/Medical Imaging Technologist is able to work in a highly advanced technical profession that requires excellent people skills. It is an exciting and rewarding profession to embark on and great opportunities await the graduate.
    [Show full text]
  • X-Ray (Radiography) - Bone Bone X-Ray Uses a Very Small Dose of Ionizing Radiation to Produce Pictures of Any Bone in the Body
    X-ray (Radiography) - Bone Bone x-ray uses a very small dose of ionizing radiation to produce pictures of any bone in the body. It is commonly used to diagnose fractured bones or joint dislocation. Bone x-rays are the fastest and easiest way for your doctor to view and assess bone fractures, injuries and joint abnormalities. This exam requires little to no special preparation. Tell your doctor and the technologist if there is any possibility you are pregnant. Leave jewelry at home and wear loose, comfortable clothing. You may be asked to wear a gown. What is Bone X-ray (Radiography)? An x-ray exam helps doctors diagnose and treat medical conditions. It exposes you to a small dose of ionizing radiation to produce pictures of the inside of the body. X-rays are the oldest and most often used form of medical imaging. A bone x-ray makes images of any bone in the body, including the hand, wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg (shin), ankle or foot. What are some common uses of the procedure? A bone x-ray is used to: diagnose fractured bones or joint dislocation. demonstrate proper alignment and stabilization of bony fragments following treatment of a fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, infection, arthritis, abnormal bone growths and bony changes seen in metabolic conditions. assist in the detection and diagnosis of bone cancer. locate foreign objects in soft tissues around or in bones. How should I prepare? Most bone x-rays require no special preparation.
    [Show full text]
  • Contrast-Enhanced Ultrasound Approach to the Diagnosis of Focal Liver Lesions: the Importance of Washout
    Contrast-enhanced ultrasound approach to the diagnosis of focal liver lesions: the importance of washout Hyun Kyung Yang1, Peter N. Burns2, Hyun-Jung Jang1, Yuko Kono3, Korosh Khalili1, Stephanie R. Wilson4, Tae Kyoung Kim1 REVIEW ARTICLE 1Joint Department of Medical Imaging, University of Toronto, Toronto; 2Department of https://doi.org/10.14366/usg.19006 pISSN: 2288-5919 • eISSN: 2288-5943 Medical Biophysics, Sunnybrook Research Institute, University of Toronto, Toronto, Canada; Ultrasonography 2019;38:289-301 3Departments of Medicine and Radiology, University of California, San Diego, CA, USA; 4Diagnostic Imaging, Department of Radiology, University of Calgary, Calgary, Canada Received: January 15, 2019 Contrast-enhanced ultrasound (CEUS) is a powerful technique for differentiating focal liver Revised: March 13, 2019 lesions (FLLs) without the risks of potential nephrotoxicity or ionizing radiation. In the diagnostic Accepted: March 17, 2019 algorithm for FLLs on CEUS, washout is an important feature, as its presence is highly suggestive Correspondence to: Tae Kyoung Kim, MD, PhD, FRCPC, of malignancy and its characteristics are useful in distinguishing hepatocellular from non- Department of Medical Imaging, hepatocellular malignancies. Interpreting washout on CEUS requires an understanding that Toronto General Hospital, 585 University Avenue, Toronto, ON M5G microbubble contrast agents are strictly intravascular, unlike computed tomography or magnetic 2N2, Canada resonance imaging contrast agents. This review explains the definition and types of washout on Tel. +1-416-340-3372 CEUS in accordance with the 2017 version of the CEUS Liver Imaging Reporting and Data System Fax. +1-416-593-0502 E-mail: [email protected] and presents their applications to differential diagnosis with illustrative examples.
    [Show full text]