Polyvinyl Chloride As a Multimodal Tissue-Mimicking Material With
Polyvinyl chloride as a multimodal tissue-mimicking material with tuned mechanical and medical imaging properties Weisi Li School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning 110042, China and Mechanical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109 Barry Belmont, Joan M. Greve, Adam B. Manders, Brian C. Downey, Xi Zhang, and Zhen Xu Biomedical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109 Dongming Guo School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning 110042, China Albert Shih Mechanical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109 and Biomedical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109 (Received 26 July 2015; revised 2 August 2016; accepted for publication 23 August 2016; published 22 September 2016) Purpose: The mechanical and imaging properties of polyvinyl chloride (PVC) can be adjusted to meet the needs of researchers as a tissue-mimicking material. For instance, the hardness can be adjusted by changing the ratio of softener to PVC polymer, mineral oil can be added for lubrication in needle insertion, and glass beads can be added to scatter acoustic energy similar to biological tissue. Through this research, the authors sought to develop a regression model to design formulations of PVC with targeted mechanical and multimodal medical imaging properties. Methods: The design of experiment was conducted by varying three factors—(1) the ratio of softener to PVC polymer, (2) the mass fraction of mineral oil, and (3) the mass fraction of glass beads—and measuring the mechanical properties (elastic modulus, hardness, viscoelastic relaxation time constant, and needle insertion friction force) and the medical imaging properties [speed of sound, acoustic attenuation coefficient, magnetic resonance imaging time constants T1 and T2, and the transmittance of the visible light at wavelengths of 695 nm (Tλ695) and 532 nm (Tλ532)] on twelve soft PVC samples.
[Show full text]