To Address a Proposed Federal Radiation Research Agenda

Total Page:16

File Type:pdf, Size:1020Kb

To Address a Proposed Federal Radiation Research Agenda Proceedings of the Public Meeting March 10-11, 1980 To Address a Proposed Federal Radiation Research Agenda Volume 2 Science Projection Papers Interagency Radiation Research Committee (Successor to the Committee on Federal Research into the Biological Effects of Ionizing Radiation) This book w« preowed at an account D' wwV tuonwed by an agency of irx United Slates GtvornTiefti Neither the United Stare* Government not any agency thereof. nc any ol Ihcn fmpIovHK mak« anv wefuinew of any informtiio'). apparatus P'Muct w cocn} :a<5ctnu(). ' recretenii that <tt uie «XJ><J not infringe prruateN awn«d (iflMs. n«tFr«fYe herein to my werif corrtfT'Mciai product, procett, or «<VK* by Itade name. irao>fra't. manufacturef. o> OtfWiVue do not neceuarilv ronititute O* imply fts enrJorK'nerif., reco*nrntntlftiQr*. en t&voting bii t^e Un''£ c» any agency lhereof. The view* and opin-on* of authori «n(»i>neO iwrcm da ru e'leel thow of the U"itsd Slate* Government or any agc^y thereo* These Proceedings have been published by the Interagency Radiation Research Committee. The Radiation Research Planning Group, Office of the Director, National Cancer Institute (NCI), has prepared the materials in collaboration with the Office of the Director, National Institutes of Health (NIH). Dr. Donald S. Fredrickson, Director, National Institutes of Health Dr. Vincent T. DeVita, Jr., Director, National Cancer Institute Dr. Oddvar F. Nygaard, Special Assistant to the Director, NCI Dr. Charles U. Lowe, Special Assistant to the Director, NIH Dr. Elliott H. Stonehill, Research Planning Officer, NCI Dr. Victor H. Zeve, Special Assistant to the Deputy Director, NCI Staff Assistants: Ms. Mary Purcell, Miss Patricia Wathen, Mrs. Violet Zitomer Interagency Radiation Research Committee SUBCOMMITTEE TO DEVELOP A FEDERAL STRATEGY FOR RESEARCH INTO THE BIOLOGICAL EFFECTS OF IONIZING RADIATION Co-Chairmen: Dr. Donald S. Fredrickson, National Institutes of Health Mr. Frank Arsenault, Nuclear Regulatory Commission Executive Secretary: Dr. Elliott H. Stonehill, NCI Dr. Charles M. Barnes Dr. William A. Mills National Aeronautics and Environmental Protection Agency Space Administration Dr. Oddvar F. Nygaard Dr. Monte Blau National Cancer Institute Veterans Administration Dr. Philip Schambra Dr. Randall S. Caswell National Institute of Environmental National Bureau of Standards Health Sciences Dr. Charles W. Edington Dr. Charlotte Silverman Department of Energy Bureau of Radiological Health, Dr. Clark W. Heath Food and Drug Administration Centers for Disease Control Dr. Edwin T. Still Dr. Charles U. Lowe Department of Defense National Institutes of Health Dr. Paul Strudler Mr. Samuel C. Marcus National Institute for Occupational National Center for Health Safety and Health, Statistics Centers for Disease Control This project has been supported in part with funds from the Department of Health and Human Services contracts N01-C0-75390 and 263-79C-0021. The contents of this publication do not necessarily reflect the views or policies of the Department, nor does mention of names, products, or organizations imply endorsement or criticism by the U. S. Government. Contents, Volume 2 Preface vii Program for Tuesday, March 11, 1980. x Science Projection Paper A: Diagnostic Procedures. Elliott Lasser 1 Cluster "A" Report, November 7,1979 45 Discussion following the presentation 47 Document submitted by James E. Youker, M.D., American College of Radiology 49 Document submitted by Donald K. Mitchell, The Washington Management Group, Inc 58 Science Projection Paper B: Technology Development. Warren K. Sinclair, Ph.D 59 Cluster "B" Report, November 7,1979 81 Discussion following the presentation 85 Document submitted by F. S. Goulding, Lawrence Berkeley Laboratory 89 Science Projection Paper C: Therapy. David A. Pistenma, M.D 91 Cluster "C" Report, November 7,1979 113 Discussion following the presentation 115 Science Projection Paper D: Pathways to Man. John H. Harley, Ph.D 117 Cluster "D" Report, November 7,1979 139 Discussion following the presentation 143 Document submitted by Carl J. Johnson, M.D., M.P.H., Jefferson County Health Department 145 Document submitted by Mary B. Thorman, Convener, Clearwater Chapter Sunshine Action Group 151 Science Projection Paper E: Ecosystems and Environment. Philip Gustafson, Ph.D 155 Cluster "E" Report, November 7, 1979 171 Discussion following the presentation 173 Science Projection Paper F: Physics. Mitio Inokuti, Ph.D 175 Cluster "F" Report, November 7, 1979 203 Discussion following the presentation 207 Science Projection Paper G: Chemistry. Michael G. Simic, Ph.D 213 Cluster "G" Report, November 7,1979 227 Discussion following the presentation 229 Science Projection Paper H: Molecular Effects: Interactions with Chemicalsand Viruses. Philip C. Hanawalt, Ph.D 233 Cluster "H" Report, November 7,1979 253 Discussion following the presentation 255 Science Projection Paper I: Mutagenesis, Transformation, Cell-Killing. Paul Todd, Ph.D 257 Cluster "I" Report, November 7, 1979 267 Discussion following the presentation 269 Contents, Volume 2 (Continued) Science Projection Paper J: Somatic Effects - Cancer. Fredric J. Burns, Ph.D 273 Cluster "J" Report, November 7, 1979 287 Discussion following the presentation 289 Document submitted by R. J. Michael Fry, Ph.D., Oak Ridge National Laboratory 291 Document submitted by Warren K. Sinclair, Ph.D., National Council on Radiation Protection and Measurements 295 Science Projection Paper K: Somatic Effects - Non-Cancer. Victor P. Bond, M.D., Ph.D 299 Cluster "K" Report, November 7,1979 307 Document submitted by Robert L. Brent, M.D., Ph.D., Thomas Jefferson University 311 Science Projection Paper L: Genetics. Douglas Grahn 361 Cluster "L" Report, November 7, 1979 383 Discussion following the presentation 385 Science Projection Paper M: Epidemiology. Genevieve Matanoski, M.D., Dr.P.H 389 Cluster "M" Report, November 7, 1979 415 Discussion following the presentation 419 Document submitted by Jeffrey V. Sutherland, The Rocky Flats Monitoring Committee 423 Science Projection Paper N: Space Radiobiology. S. P. Vinograd, M.D 433 Cluster "N" Report, November 29,1979 ? 457 Discussion following the presentation 463 Appendix: Index of Cluster Participants at the November 1979 Meetings 467 Author Index 479 Contents, Volume 1 Preface vii Program for Monday, March 10, 1980 , ix Donald S. Fredrickson, M.D.: Welcome and Introductory Remarks 1 Arthur C. Upton, M.D.: Background and Significance of Current Ionizing Radiation Research Effort 5 Issue Paper No. 1. Gilbert W. Beebe, Ph.D. What knowledge is considered certain regarding human somatic effects of ionizing radiation? 9 Discussion following the presentation 27 Document submitted by Rosalie Bertell, Ph.D., Ministry of Concern for Public Health, Buffalo, N. Y 29 Document submitted by Sally Wurtz, Ph.D.; Citizens' Hearings for Radiation Victims 67 Issue Paper No. 2. James V. Neel, M.D. What knowledge is considered certain regarding human genetic effects of ionizing radiation? 81 Discussion following the presentation 107 Issue Paper No. 3. R. J. Michael Fry, M.D. What are the limits of extrapolation in applying results from experimental radiation studies on cellular and animal systems to human populations? Ill Discussion following the presentation 135 Issue Paper No. 4. Eric J. Hall, D.Sc. What is the current knowledge about the effects of differences in schedules of delivery of a given dose of ionizing radiation (dose rate, fractionation) and "quality" of radiation (LET) on biological systems and how can this information be used to predict the effects of low doses of radiation in man? 137 Discussion following 'he presentation 153 Document submitted by Irwin D. J. Bross, Ph.D.; Roswell Park Memorial Institute : 159 Issue Paper No. 5. Mortimer M. Elkind, Ph.D. What is our current knowledge from animal and cellular systems about the combined effects of ionizing radiation and exposure to other agents (chemical, pharmacological, physical, viral, etc.) and is this knowledge adequate to predict human responses? 171 Discussion following the presentation 185 Document submitted by Byron S. Berlin, M.D., State of Michigan Department of Public Health, Lansing, Michigan 187 Document submitted by Professor Howard S. Ducoff, University of Illinois 189 Issue Paper No. 6. Harvey M. Patt, Ph.D. What is the state of knowledge about differences in response to ionizing radiation as a result of biological factors such as age, sex, and genetically determined variations? 191 Discussion following the presentation 207 Contents, Volume 1 (Continued) Issue Paper No. 7. John Rundo, Ph.D. What is the potential for significant exposure to internal radiation from environmentally dispersed radionuclides and what research is needed to reduce the effects of such exposure? 211 Discussion following the presentation 229 Issue Paper No. 8. Abraham Lilienfeld, M.D. What are the opportunities and limits in applying epidemiological methods to determine the effects of ionizing radiation on humans? 233 Discussion following the presentation 247 Document submitted by Carol Winston, City of Broomfield, Colorado 251 Document submitted by Allen Brodsky, Sc.D.; CRC Press, Inc 253 Issue Paper No. 9. Hymer L. Friedell, M.D., Ph.D. How does man-made ionizing radiation contribute to the welfare of mankind? 259 Discussion following the presentation 279 Issue Papers No. 10A and 10B. Sidney Wolfe, M.D. and Paul Slovic, Ph.D. What kinds of information must be developed to foster enlightened public discussion on control of man-made ionizing
Recommended publications
  • Development of an Anthropomorphic Dynamic Heart Phantom
    i Development of an Anthropomorphic Dynamic Heart Phantom by Sherif Tarek Ramadan A thesis submitted in conformity with the requirements for the degree of Master of Health Science Institute of Biomaterials and Biomedical Engineering University of Toronto © Copyright by Sherif Tarek Ramadan 2017 ii Development of an Anthropomorphic Dynamic Heart Phantom Sherif Tarek Ramadan Master of Health Science Institute of Biomaterials and Biomedical Engineering University of Toronto 2017 Abstract Dynamic anthropomorphic heart phantoms are a developing technology which offer a methodology for optimizing current computed tomography coronary angiography techniques. This work focuses on the development of a myocardial tissue analogue material that can be utilized as a synthetic heart for Toronto General Hospitals(TGH) current dynamic phantom. First, the mechanical properties of myocardial tissue are studied to determine the static (young’s modulus) and viscoelastic (storage/loss modulus, tan delta) properties of the tissue. A dioctyl phthalate and poly(vinyl) chloride material is then developed which mimics the obtained properties and the computed tomography(CT) attenuation of myocardium. The material is then utilized to create a heart/coronary artery model which can be integrated with the phantom in a cardiac CT simulation scan. Through this study it is seen that the phantom provides: a visual simulation to myocardium, motion profiles of the coronary arteries and hearts, and can be used as a plaque analysis tool. iii Acknowledgments I would like to start by thanking my parents, Tarek and Manal, who have supported me tirelessly throughout the completion of this thesis. To my brother, Khaled, who always pushes me to be better and has been my greatest role model.
    [Show full text]
  • Radiation Protection Guidance for Diagnostic X Rays
    Disclaimer - For assistance accessing this document or additional information, please contact [email protected]. EPA 520/4-76-019 FEDERAL GUIDANCE REPORT NO. 9 RADIATION PROTECTION GUIDANCE FOR DIAGNOSTIC X RAYS ENVIRONMENTAL PROTECTION AGENCY INTERAGENCY WORKING GROUP ON MEDICAL RADIATION FEDERAL GUIDANCE REPORT NO. 9 RADIATION PROTECTION GUIDANCE FOR DIAGNOSTIC X RAYS Interagency Working Group on Medical Radiation U.S. Environmental Protection Agency Washington, D.C. 20460 October 1976 PREFACE The authority of the Federal Radiation Council to provide radiation protection guidance was transferred to the Environmental Protection Agency on December 2, 1970, by Reorganization Plan No. 3. Prior to this transfer, the Federal Radiation Council developed reports which provided the basis for guidance recommended to the President for use by Federal agencies in developing standards for a wide range of radiation exposure circumstances. This report, which was prepared in cooperation with an Interagency Working Group on Medical Radiation formed on July 5, 1974, constitutes a similar objective to provide the basis for recommendations to reduce unnecessary radiation exposure due to medical uses of diagnostic x rays. The Interagency Working Group developed its recommendations with the help of two subcommittees. The Subcommittee on Prescription of Exposure to X rays examined factors to eliminate clinically unproductive examinations and the Subcommittee on Technic of Exposure Prevention examined factors to assure the use of optimal technic in performing x-ray examinations. Both subcommittees also considered the importance of appropriate and properly functioning equipment in producing radiographs of the required diagnostic quality with minimal exposure. Reports by these subcommittees were made available for public comment.
    [Show full text]
  • Neurological Critical Care: the Evolution of Cerebrovascular Critical Care Cherylee W
    50TH ANNIVERSARY ARTICLE Neurological Critical Care: The Evolution of Cerebrovascular Critical Care Cherylee W. J. Chang, MD, FCCM, KEY WORDS: acute ischemic stroke; cerebrovascular disease; critical FACP, FNCS1 care medicine; history; intracerebral hemorrhage; neurocritical care; Jose Javier Provencio, MD, FCCM, subarachnoid hemorrhage FNCS2 Shreyansh Shah, MD1 n 1970, when 29 physicians first met in Los Angeles, California, to found the Society of Critical Care Medicine (SCCM), there was little to offer for the acute management of a patient suffering from an acute cerebrovascular Icondition except supportive care. Stroke patients were not often found in the ICU. Poliomyelitis, and its associated neuromuscular respiratory failure, cre- ated a natural intersection of neurology with critical care; such was not the case for stroke patients. Early textbooks describe that the primary decision in the emergency department was to ascertain whether a patient could swallow. If so, the patient was discharged with the advice that nothing could be done for the stroke. If unable to swallow, a nasogastric tube was inserted and then the patient was discharged with the same advice. In the 50 intervening years, many advances in stroke care have been made. Now, acute cerebrovascular patients are not infrequent admissions to an ICU for neurologic monitoring, observa- tion, and aggressive therapy (Fig. 1). HISTORY Over 50 years ago, stroke, previously called “apoplexy” which means “struck down with violence” or “to strike suddenly,” was a clinical diagnosis that was confirmed by autopsy as a disease of the CNS of vascular origin (1). In the 1960s, approximately 25% of stroke patients died within 24 hours and nearly half died within 2 to 3 weeks.
    [Show full text]
  • A Comparative Study Between High-Definition Volumetric Imaging Computed Tomography and Multi-Slice Computed Tomography in the De
    Journal of the South African Veterinary Association ISSN: (Online) 2224-9435, (Print) 1019-9128 Page 1 of 7 Original Research A comparative study between high-definition volumetric imaging computed tomography and multi-slice computed tomography in the detection of acute thoraco-lumbar disc extrusions in dogs Authors: Computed tomography (CT) is commonly used to image intervertebral disc extrusion 1,2 Ross C. Elliott (IVDE) in dogs. The current gold standard for CT imaging is the use of multi-slice CT Chad F. Berman1,2 Remo G. Lobetti2 (MS CT) units. Smaller high-definition volumetric imaging (HDVI) mobile CT has been marketed for veterinary practice. This unit is described as an advanced flat panel. The Affiliations: goal of this manuscript was to evaluate the ability of the HDVI CT in detecting IVDE 1Department of Companion Animal and Clinical Studies, without the need for CT myelography, compared with the detection of acute disc Onderstepoort, South Africa extrusions with a MS CT without the need for MS CT myelogram. Retrospective blinded analyses of 219 dogs presented for thoraco-lumbar IVDE that had a HDVI CT (n = 123) or 2 Bryanston Veterinary MS CT (n = 96) were performed at a single referral hospital. A total of 123 cases had HDVI Hospital, Johannesburg, South Africa CT scans with surgically confirmed IVDE. The IVDE was identified in 88/123 (72%) dogs on pre-contrast HDVI CT. The remaining 35/128 (28%) cases required a HDVI CT myelogram Corresponding author: to identify the IVDE. Ninety-six cases had MS CT scans with surgically confirmed IVDE. Ross Elliott, The IVDE was identified in 78/96 (81%) dogs on the pre-contrast MS CT.
    [Show full text]
  • Pneumoencephalographic Planimetry in Neurological Diseaset
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.32.3.241 on 1 June 1969. Downloaded from J. Nearol. Neurosurg. Psychiat., 1969, 32, 241-248 Pneumoencephalographic planimetry in neurological diseaset H. E. BOOKER, C. G. MATTHEWS, AND W. R. WHITEHURST2 From the Epilepsy Center and Department of Neurology, University of Wisconsin, Madison, Wisconsin, U.S.A. The outline of the ventricular system on the In the present investigation planographic rather pneumoencephalogram (PEG) can be easily than linear measures of ventricular size were used. measured and lends itself to quantification. Several The subjects were not selected on the basis of a methods have been developed which utilize linear particular aetiology nor on the basis of presence or measures of the ventricles, or ratios of ventricle to absence of asymmetry of the lateral ventricles. skull size. Planographic measurements of the area of Detailed clinical and electroencephalographic data the ventricles have been employed in a few studies, were available on all subjects for purposes of but have generally been dismissed as too cumber- diagnostic classification, and, in addition, a stan- some for use (Bruijn, 1959). dardized battery of neuropsychological tests pro- While a number of previous investigators have viding quantitative measurement of intellectual and Protected by copyright. related quantitative PEG findings to clinical motor-sensory status was administered to the neurological and psychometric data, most studies majority of the subjects. PEG data on a group of have suffered from one or more limitations. Studies subjects without clinical, neurological, or electro- reporting measurements on a large number of PEGs encephalographic evidence of neurological disease have usually been limited in amount and specificity were also included for comparison purposes.
    [Show full text]
  • Image Quality Evaluation Using Integrated Visual Grading Regression for Optimisation of Computed Tomography Imaging: a Dental Implantology Study
    This thesis work submitted to Charles Sturt University for the Doctor of Philosophy Degree Dr. Ahmed Hazim Muhammed Ali AL- Humairi BDS, MDSc, PG Cert. Ed Image Quality Evaluation Using Integrated Visual Grading Regression for Optimisation of Computed Tomography Imaging: A Dental Implantology Study March, 2019 1 Table of Contents 1. Abstract 2. Abstract 13 3. Chapter One 4. Background 15 5. 6. 1.1 7. Introduction 16 8. 9. 1.2 Aim and hypothesis 19 Chapter Two Literature review 21 2.1 Introduction 22 2.2 Multi-detector (MDCT) and cone beam (CBCT) 23 computed tomography 2.3 Technical characteristics of CBCT 23 2.4 General application of MDCT and CBCT in dentistry 24 2.5 Application of and MDCT and CBCT in dental 31 implantology 2.6 Ionising radiation dose 32 2.7 Effects of ionising radiation 33 2.8 Patient radiation dose in dentistry 34 2.9 Image quality 42 2.10 Image acquisition and reconstruction 42 2.11 Aspects of image quality in dentistry 45 2.12 Objective image quality 45 2.13 Subjective image quality 46 2.14 Image quality evaluation methods 47 2.15 Physical image quality 47 2.16 Receiver-operating characteristics (ROC) 50 2.17 Visual grading analysis (VGA) 50 2.18 Limitations of image quality evaluation methods 53 2.19 Dose and image quality optimisation 54 2.20 Dose and image quality optimisation for CT and CBCT in 56 dentistry 2 2.21 The need for reliable method of evaluating image quality 59 for CCT and CBCT in dentistry Chapter Three Methodology 61 3.1 Introduction 62 3.2 Phantoms 62 3.2.1 3M skull phantom 62 3.2.2 Dry human
    [Show full text]
  • Personalized Dynamic Phantom of the Right and Left Ventricles Based on Patient-Specific Anatomy for Echocardiography Studies &Am
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM Personalized dynamic phantom of the right and left ventricles based on patient-specific anatomy for echocardiography studies – preliminary results João Gomes-Fonseca1,2, Pedro Morais1,2,3,4, Sandro Queirós1,2,4,5, Fernando Veloso1,2,6, António C.M. Pinho6, Jaime C. Fonseca5, Jorge Correia-Pinto1,2,7, João L. Vilaça8 1Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal 2ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal 3Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Faculdade de Engenharia, Universidade do Porto, Portugal 4Lab on Cardiovascular Imaging and Dynamics, Department of Cardiovascular Sciences, KULeuven – University of Leuven, Leuven, Belgium 5Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal 6Department of Mechanical Engineering, School of Engineering, University of Minho, Guimarães, Portugal 7Department of Pediatric Surgery, Hospital of Braga, Braga, Portugal 82Ai – Polytechnic Institute of Cávado and Ave, Barcelos, Portugal Abstract — Dynamic phantoms of the heart are becoming a reality, with their use spread across both medical and research I. INTRODUCTION fields. Their purpose is to mimic the cardiac anatomy, as well as hantom (or imaging phantom) is an object designed to be its motion. This work aims to create a dynamic, ultrasound- imaged by a medical imaging equipment. It is used to compatible, realistic and flexible phantom of the left and right Pstudy, assess and tune the parameters of the imaging ventricles, with application in the diagnosis, planning, treatment equipment and/or software.
    [Show full text]
  • Esotropia: Unusual Complication of Myelography and Pneumoencephalography
    278 Esotropia: Unusual Complication of Myelography and Pneumoencephalography Harris Newmark 111,1 Norman Levin,2 Richard K. APV and Jack D. Wax2 Myelography and pneumoencephalography are invasive years later showed occasional diplopia on left gaze. The patient procedures with many complications. We report two cases was asymptomatic 10 years later. of esotropia that developed 8 and 7 days after a Pantopaque myelogram and a pneumoencephalogram, respectively. For­ Discussion tunately, the esotropia was temporary in both cases. This rare complication, of which very few radiologists are aware, These cases are interesting in that they illustrate that was presumably secondary to the lumbar puncture per­ esotropia can be a complication of myelography and pneu­ formed for the procedure. moencephalography, although it is extremely rare. It has been reported to be a complication in 0.25%-1.00% of lumbar punctures [1 , 2], but we believe it is much rarer Case Reports since none of us, or any of our colleagues, could recall a Case 1 similar episode. The probable pathogenesis is that cerebrospinal fluid A 27-year-old man had a lumbar myelogram for a suspected leaks through the dura at the puncture site. The cerebro­ herniated nucleus pulposus at L5-S1 which caused right-sided leg spinal fluid pressure is less in the lumbar region than in the pain . The lumbar puncture was performed with ease on the first attempt with an 18 gauge spinal needle. The cerebrospinal fluid intracranial area after this procedure. Subsequently the was clear and the laboratory test results were normal except for a brain stem shifts caudally and the cranial nerves are slightly slight elevation of protein.
    [Show full text]
  • A-Scan Echoencephalography in Measurement of the Cerebral Ventricles
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.31.3.245 on 1 June 1968. Downloaded from J. Neurol. Neurosurg. Psychiat., 1968, 31, 245-249 A-scan echoencephalography in measurement of the cerebral ventricles ANAND G. GARG AND ALEX. R. TAYLOR From the Department ofNeurological Surgery, Royal Victoria Hospital, Belfast, Northern Ireland The first attempts at ultrasonic visualization of the METHOD cerebral ventricles were made by Dussik (1948), The ventricular measurements obtained at echoen- Ballantine, Ludwig, Bolt, and Hueter (1950), and cephalography were compared with the x-ray measure- Hueter and Bolt (1951), using the transmission ments made at pneumoencephalography. method. The possible use of the pulse-echo method ANATOMICAL CONSIDERATIONS The third and lateral (echoencephalography) for the diagnosis of hy- ventricles are supratentorial structures. The third ventricle lies between the two thalmi, communicating drocephalus was suggested by Leksell (1956). Later in front with the lateral ventricles through the inter- Kikuchi, Uchida, Tanaka, and Wagai (1957) and de ventricular foramina and behind with the aqueduct of Vlieger and Ridder (1959) recorded echoes from the the midbrain. The septum lucidum and the third ventricle walls of the lateral ventricles. According to Gordon lie in the central plane of the brain. Protected by copyright. (1959), and de Vlieger and Ridder (1959), the width The lateral ventricle is a C-shaped cavity lying within of the third ventricle can also be measured. ter the cerebral hemisphere. It consists of a central body and Braak, Crezde, Grandia, and de Vleger (1961) used three horns-anterior, posterior, and temporal-running pneumoencephalography to study the origin of into the frontal, occipital, and temporal lobes respec- ventricular echoes.
    [Show full text]
  • Neuroradiology Back to the Future: Brain Imaging
    Published December 8, 2011 as 10.3174/ajnr.A2936 50TH ANNIVERSARY PERSPECTIVES Neuroradiology Back to the Future: Brain Imaging E.G. Hoeffner SUMMARY: The beginning of neuroradiology can be traced to the early 1900s with the use of skull S.K. Mukherji radiographs. Ventriculography and pneumoencephalography were introduced in 1918 and 1919, re- spectively, and carotid angiography, in 1927. Technical advances were made in these procedures A. Srinivasan during the next 40 years that lead to improved diagnosis of intracranial pathology. Yet, they remained D.J. Quint invasive procedures that were often uncomfortable and associated with significant morbidity. The introduction of CT in 1971 revolutionized neuroradiology. Ventriculography and pneumoencephalogra- phy were rendered obsolete. The imaging revolution continued with the advent of MR imaging in the early 1980s. Noninvasive angiographic techniques have curtailed the use of conventional angiography, and physiologic imaging gives us a window into the function of the brain. In this historical review, we will trace the origin and evolution of the advances that have led to the quicker, less invasive diagnosis and resulted in more rapid therapy and improved outcomes. ABBREVIATIONS: CPA ϭ cerebellopontine angle; EDH ϭ epidural hematoma; LP ϭ lumbar punc- ture; NMR ϭ nuclear magnetic resonance; SDH ϭ subdural hematoma fforts to image the CNS began with skull radiographs duced by trauma, surgery, or infection.3 Skull radiographs Eshortly after Roentgen’s discovery of x-rays.1-3 In the early were also used to diagnose fractures and foreign bodies.9 20th century, contrast studies of the brain, by using air for Obtaining a single skull radiograph took minutes, with the contrast, were developed with the introduction of ventriculog- radiograph being produced on a glass plate with a slowly re- raphy and pneumoencephalography.4,5 Shortly thereafter, ce- sponding photographic emulsion.
    [Show full text]
  • Brain Spect with Tl-201 Ddc
    BRAIN SPECT WITH TL-201 DDC INIS-mf —11361 BRAIN SPECT WITH TL-201 DDC BRAIN SPECT WITH TL-201 DDC ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam, op gezag van de Rector Magnificus Prof, dr S.K. Thoden van Velzen, in het openbaar te verdedigen in de Aula der Universiteit (Oude Lutherse Kerk, ingang Singel 411, hoek Spui), op donderdag 21 april 1988 te 13.30 uur door Johan Frederik de Brume geboren te 's Gravenhage AMSTERDAM 1988 Promotor : Prof, dr J.B. van der Schoot Copromotor : Dr E.A. van Royen To my parents Joey, Joost and Duco The publication of this thesis was financially supported by: The Netherlands Heart Foundation CIL, BV, Mallinckrodt General Electric Medical Systems Printed in the Netherlands Rodopi B.V., Amsterdam ISBN: 90-900-2127-2 Contents Chapter 1: Introduction 1 Chapter 2: Current methods in neuroimaging and cerebral blood flow measurements 5 2.1. Angiography and digital subtraction angiography 5 2.2. Duplex sonography 7 2.3. Technetium-99m pertechnetate brainscintigraphy 8 2.4. Regional cerebral blood flow measurements with Xenon-133 8 2.5. Computed tomography and Xenon-enhanced computed tomography 9 2.6. Nuclear magnetic resonance imaging 13 2.7. Positron emission tomography 15 2.8. Single-photon emission computed tomography 16 2.9. Regional cerebral blood flow imaging and blood- brain barrier 25 2.10. Cerebral blood flow tracers for SPECT 27 2.11. Possible applications of SPECT brain studies 32 Chapter 3: Functional brain imaging with 1-123 amphetamine First experience in the Netherlands 53 Chapter 4: Thallium-201 diethyldithiocarbamate 69 4.1.
    [Show full text]
  • Pet/Ct) Imaging
    The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields. The American College of Radiology will periodically define new practice parameters and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice parameters and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each practice parameter and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review and approval. The practice parameters and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice parameter and technical standard by those entities not providing these services is not authorized. Adopted 2017 (Resolution 26)* ACR–SPR–STR PRACTICE PARAMETER FOR THE PERFORMANCE OF CARDIAC POSITRON EMISSION TOMOGRAPHY - COMPUTED TOMOGRAPHY (PET/CT) IMAGING PREAMBLE This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care1.
    [Show full text]