Development of an Anthropomorphic Dynamic Heart Phantom
Total Page:16
File Type:pdf, Size:1020Kb
i Development of an Anthropomorphic Dynamic Heart Phantom by Sherif Tarek Ramadan A thesis submitted in conformity with the requirements for the degree of Master of Health Science Institute of Biomaterials and Biomedical Engineering University of Toronto © Copyright by Sherif Tarek Ramadan 2017 ii Development of an Anthropomorphic Dynamic Heart Phantom Sherif Tarek Ramadan Master of Health Science Institute of Biomaterials and Biomedical Engineering University of Toronto 2017 Abstract Dynamic anthropomorphic heart phantoms are a developing technology which offer a methodology for optimizing current computed tomography coronary angiography techniques. This work focuses on the development of a myocardial tissue analogue material that can be utilized as a synthetic heart for Toronto General Hospitals(TGH) current dynamic phantom. First, the mechanical properties of myocardial tissue are studied to determine the static (young’s modulus) and viscoelastic (storage/loss modulus, tan delta) properties of the tissue. A dioctyl phthalate and poly(vinyl) chloride material is then developed which mimics the obtained properties and the computed tomography(CT) attenuation of myocardium. The material is then utilized to create a heart/coronary artery model which can be integrated with the phantom in a cardiac CT simulation scan. Through this study it is seen that the phantom provides: a visual simulation to myocardium, motion profiles of the coronary arteries and hearts, and can be used as a plaque analysis tool. iii Acknowledgments I would like to start by thanking my parents, Tarek and Manal, who have supported me tirelessly throughout the completion of this thesis. To my brother, Khaled, who always pushes me to be better and has been my greatest role model. My family are an important part of my life and I would not be here without them. I would also like to thank my supervisors Professor Hani Naguib and Dr. Narinder Paul. Their guidance throughout my thesis has been invaluable. I have had the privilege to work with and be mentored by leaders in both the medical and engineering fields, a fact I do not take for granted. Their fruitful discussions and daily communication has been deeply enriching and has helped me to develop both professionally and personally. Moreover, I would like to thank the entire SAPL Lab. Everyone in the lab is extremely welcoming and helped me feel part of a family from my first day. With their expertise and guidance, I learned more than I could have ever achieved on my own. A special shout out to Carlton Hoy who I first worked under when I entered the SAPL lab and helped me start to become a researcher. Additionally, I would like to thank Ali Ursani and the TRIIO Lab for their help throughout this work. Ali worked tirelessly to help me utilize and understand the TGH dynamic heart phantom. His willingness to stay after hours and help perform CT scans and work on the phantom was invaluable and a demonstration of his excellent character. I would also like to thank him for his enthusiasm and energy which make working with him a pleasure. Finally, I would like to thank my committee members Dr. Walid Farhat and Dr. Terry Yau. Your feedback and questions helped to guide my research and ensure it is applicable in a much wider context. iv Table of Contents List of Tables ................................................................................................................................ vii List of Figures .............................................................................................................................. viii Chapter 1 ..........................................................................................................................................1 1 Introduction .................................................................................................................................1 1.1 Coronary Artery Disease and Radiological Care .................................................................1 1.2 Computed Tomography and Medical Phantoms..................................................................3 1.3 Dynamic Heart Phantoms ....................................................................................................5 1.3.1 Fluid flow and Mathematical Phantoms ..................................................................5 1.3.2 Computed Tomography Optimization Phantoms ....................................................6 1.4 Motivation - Toronto General Hospitals Tissue Realistic Anthropomorphic Dynamic Coronary Artery Phantom (TREAD-CAP) ........................................................................10 1.5 Thesis Objectives and Organization ..................................................................................12 1.5.1 Chapter 2 ................................................................................................................13 1.5.2 Chapter 3 ................................................................................................................14 1.5.3 Chapter 4 ................................................................................................................14 1.6 Novelty/Contributions........................................................................................................15 1.7 References ..........................................................................................................................16 Chapter 2 ........................................................................................................................................20 2 Myocardial Tissue Characterization .........................................................................................21 2.1 Introduction ........................................................................................................................21 2.2 Methods..............................................................................................................................23 2.2.1 Tissue Sample Preparation .....................................................................................23 2.2.2 Dynamic Mechanical Analysis ..............................................................................25 2.2.3 Frequency Response ..............................................................................................26 v 2.2.4 Static Tensile Testing .............................................................................................29 2.2.5 Statistical Analysis .................................................................................................30 2.3 Results ................................................................................................................................30 2.3.1 Dynamic Mechanical Analysis ..............................................................................30 2.3.2 Tensile Testing .......................................................................................................32 2.4 Discussion ..........................................................................................................................35 2.5 Conclusion .........................................................................................................................38 2.6 References ..........................................................................................................................38 2.7 Appendix A ........................................................................................................................43 Chapter 3 ........................................................................................................................................45 3 DEHP- Polyvinyl Chloride synthetic analogues .......................................................................46 3.1 Introduction ........................................................................................................................46 3.2 Methodology ......................................................................................................................48 3.2.1 Sample Preparation ................................................................................................48 3.2.2 Fourier Transform Infrared Spectroscopy .............................................................48 3.2.3 Static Tensile Testing .............................................................................................48 3.2.4 Dynamic Mechanical Analysis ..............................................................................49 3.2.5 Computed Tomography .........................................................................................49 3.2.6 Optimization ..........................................................................................................50 3.3 Results ................................................................................................................................50 3.3.1 Fourier Transform Infrared Spectroscopy .............................................................50 3.3.2 Static Tensile Testing .............................................................................................52 3.3.3 Dynamic Mechanical Analysis ..............................................................................54 3.3.4 Computed Tomography .........................................................................................57 3.3.5 Optimization Parameters ........................................................................................58 vi 3.4 Discussion ..........................................................................................................................61