Desiccation-Tolerant Plants in Dry Environments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cephalobus Litoralis: Biology and Tolerance to Desiccation
Journal of Nematology 20(2):327-329. 1988. © The Society of Nematologists 1988. Cephalobus litorali . Biology and Tolerance to Desiccation M. SAEED, S. A. KHAN, V. A. SAEED, AND H. A. KHAN1 Abstract: Cephalobus litoralis (Akhtar, 1962) Andr~ssy, 1984 reproduced parthenogenetically and completed its life cycle in 72-90 hours. Each female deposited 200-300 eggs. The nematodes showed synchronized movements in the rhythms of the anterior parts of the body. The nematodes were coiled when dried in culture medium or in slowly evaporating water droplets on the tops of culture plates, but in pellets they assumed irregular postures. Nematodes in pellets stored at high humidity could be reactivated after storage for 28 days. Key words: behavior, Cephalobus litoralis, coiling, desiccation tolerance, life cycle, parthenogenesis, synchronized movement. Cephalobus litoralis (Akhtar) Andrfissy, by a modified Baermann funnel method. 1984 was described in 1962 by Akhtar (1) A single gravid female was placed in a cav- as Paracephalobus litoralis based on only two ity slide containing water. After oviposi- female specimens collected from soil tion, a single egg was transferred to a petri around the roots of sugarcane (Saccharum dish containing finely blended pea meal o~cinarum L.) in the agricultural farms of paste (PMP) and water. All experiments the Pakistan Council of Scientific and In- were conducted with nematodes from sin- dustrial Research (PCSIR), Lahore, Paki- gle egg progeny raised in this manner. stan. It had not been reported elsewhere For mass rearing, nematodes were cul- until the authors found it in Karachi. In tured in 14-cm-d petri dishes containing 1967 Andrfissy (3) transferred Eucephalo- pea meal paste. -
Modelling Panspermia in the TRAPPIST-1 System
October 13, 2017 Modelling panspermia in the TRAPPIST-1 system James A. Blake1,2*, David J. Armstrong1,2, Dimitri Veras1,2 Abstract The recent ground-breaking discovery of seven temperate planets within the TRAPPIST-1 system has been hailed as a milestone in the development of exoplanetary science. Centred on an ultra-cool dwarf star, the planets all orbit within a sixth of the distance from Mercury to the Sun. This remarkably compact nature makes the system an ideal testbed for the modelling of rapid lithopanspermia, the idea that micro-organisms can be distributed throughout the Universe via fragments of rock ejected during a meteoric impact event. We perform N-body simulations to investigate the timescale and success-rate of lithopanspermia within TRAPPIST-1. In each simulation, test particles are ejected from one of the three planets thought to lie within the so-called ‘habitable zone’ of the star into a range of allowed orbits, constrained by the ejection velocity and coplanarity of the case in question. The irradiance received by the test particles is tracked throughout the simulation, allowing the overall radiant exposure to be calculated for each one at the close of its journey. A simultaneous in-depth review of space microbiological literature has enabled inferences to be made regarding the potential survivability of lithopanspermia in compact exoplanetary systems. 1Department of Physics, University of Warwick, Coventry, CV4 7AL 2Centre for Exoplanets and Habitability, University of Warwick, Coventry, CV4 7AL *Corresponding author: [email protected] Contents Universe, and can propagate from one location to another. This interpretation owes itself predominantly to the works of William 1 Introduction1 Thompson (Lord Kelvin) and Hermann von Helmholtz in the 1.1 Mechanisms for panspermia...............2 latter half of the 19th Century. -
Plant Boea Hygrometrica That Confers Osmotic and Alkaline Tolerance in Arabidopsis Thaliana
Identification of a Retroelement from the Resurrection Plant Boea hygrometrica That Confers Osmotic and Alkaline Tolerance in Arabidopsis thaliana Yan Zhao1., Tao Xu1., Chun-Ying Shen1, Guang-Hui Xu1, Shi-Xuan Chen1, Li-Zhen Song1,2, Mei-Jing Li1, Li-Li Wang1, Yan Zhu1, Wei-Tao Lv1, Zhi-Zhong Gong3, Chun-Ming Liu2, Xin Deng1* 1 Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China, 2 Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China, 3 State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China Abstract Functional genomic elements, including transposable elements, small RNAs and non-coding RNAs, are involved in regulation of gene expression in response to plant stress. To identify genomic elements that regulate dehydration and alkaline tolerance in Boea hygrometrica, a resurrection plant that inhabits drought and alkaline Karst areas, a genomic DNA library from B. hygrometrica was constructed and subsequently transformed into Arabidopsis using binary bacterial artificial chromosome (BIBAC) vectors. Transgenic lines were screened under osmotic and alkaline conditions, leading to the identification of Clone L1-4 that conferred osmotic and alkaline tolerance. Sequence analyses revealed that L1-4 contained a 49-kb retroelement fragment from B. hygrometrica, of which only a truncated sequence was present in L1-4 transgenic Arabidopsis plants. Additional subcloning revealed that activity resided in a 2-kb sequence, designated Osmotic and Alkaline Resistance 1 (OAR1). In addition, transgenic Arabidopsis lines carrying an OAR1-homologue also showed similar stress tolerance phenotypes. Physiological and molecular analyses demonstrated that OAR1-transgenic plants exhibited improved photochemical efficiency and membrane integrity and biomarker gene expression under both osmotic and alkaline stresses. -
Advances in Understanding of Desiccation Tolerance of Lichens and Lichen-Forming Algae
plants Review Advances in Understanding of Desiccation Tolerance of Lichens and Lichen-Forming Algae Francisco Gasulla *, Eva M del Campo, Leonardo M. Casano and Alfredo Guéra * Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, 28802 Madrid, Spain; [email protected] (E.M.d.C.); [email protected] (L.M.C.) * Correspondence: [email protected] (F.G.); [email protected] (A.G.) Abstract: Lichens are symbiotic associations (holobionts) established between fungi (mycobionts) and certain groups of cyanobacteria or unicellular green algae (photobionts). This symbiotic association has been essential in the colonization of terrestrial dry habitats. Lichens possess key mechanisms involved in desiccation tolerance (DT) that are constitutively present such as high amounts of polyols, LEA proteins, HSPs, a powerful antioxidant system, thylakoidal oligogalactolipids, etc. This strategy allows them to be always ready to survive drastic changes in their water content. However, several studies indicate that at least some protective mechanisms require a minimal time to be induced, such as the induction of the antioxidant system, the activation of non-photochemical quenching including the de-epoxidation of violaxanthin to zeaxanthin, lipid membrane remodeling, changes in the proportions of polyols, ultrastructural changes, marked polysaccharide remodeling of the cell wall, etc. Although DT in lichens is achieved mainly through constitutive mechanisms, the induction of protection mechanisms might allow them to face desiccation stress in a better condition. The proportion and relevance of constitutive and inducible DT mechanisms seem to be related to the ecology at which lichens are adapted to. Citation: Gasulla, F.; del Campo, E.M; Casano, L.M.; Guéra, A. -
Evolutionary Processes Transpiring in the Stages of Lithopanspermia Ian Von Hegner
Evolutionary processes transpiring in the stages of lithopanspermia Ian von Hegner To cite this version: Ian von Hegner. Evolutionary processes transpiring in the stages of lithopanspermia. 2020. hal- 02548882v2 HAL Id: hal-02548882 https://hal.archives-ouvertes.fr/hal-02548882v2 Preprint submitted on 5 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HAL archives-ouvertes.fr | CCSD, April 2020. Evolutionary processes transpiring in the stages of lithopanspermia Ian von Hegner Aarhus University Abstract Lithopanspermia is a theory proposing a natural exchange of organisms between solar system bodies as a result of asteroidal or cometary impactors. Research has examined not only the physics of the stages themselves but also the survival probabilities for life in each stage. However, although life is the primary factor of interest in lithopanspermia, this life is mainly treated as a passive cargo. Life, however, does not merely passively receive an onslaught of stress from surroundings; instead, it reacts. Thus, planetary ejection, interplanetary transport, and planetary entry are only the first three factors in the equation. The other factors are the quality, quantity, and evolutionary strategy of the transported organisms. -
A Comparison of the Dinosaur Communities from the Middle
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 July 2018 doi:10.20944/preprints201807.0610.v1 Peer-reviewed version available at Geosciences 2018, 8, 327; doi:10.3390/geosciences8090327 1 Review 2 A comparison of the dinosaur communities from 3 the Middle Jurassic of the Cleveland (Yorkshire) 4 and Hebrides (Skye) basins, based on their ichnites 5 6 Mike Romano 1*, Neil D. L. Clark 2 and Stephen L. Brusatte 3 7 1 Independent Researcher, 14 Green Lane, Dronfield, Sheffield S18 2LZ, England, United Kingdom; 8 [email protected] 9 2 Curator of Palaeontology, The Hunterian, University of Glasgow, University Avenue, Glasgow 10 G12 8QQ, Scotland, United Kingdom; [email protected] 11 3 Chancellor's Fellow in Vertebrate Palaeontology, School of Geosciences, University of Edinburgh, 12 Grant Institute, The King's Buildings, James Hutton Road, Edinburgh EH9 3FE, Scotland, United Kingdom; 13 [email protected] 14 * Correspondence: [email protected]; Tel.: 01246 417330 15 16 Abstract: 17 Despite the Hebrides and Cleveland basins being geographically close, research has not 18 previously been carried out to determine faunal similarities and assess the possibility of links 19 between the dinosaur populations. The palaeogeography of both areas during the Middle Jurassic 20 shows that there were no elevated landmasses being eroded to produce conglomeratic material in 21 the basins at that time. The low-lying landscape and connected shorelines may have provided 22 connectivity between the two dinosaur populations. 23 The dinosaur fauna of the Hebrides and Cleveland basins has been assessed based primarily 24 on the abundant ichnites found in both areas as well as their skeletal remains. -
Gesneriaceae
Xu et al. Bot Stud (2017) 58:56 DOI 10.1186/s40529-017-0207-5 ORIGINAL ARTICLE Open Access Three new species of Paraboea (Gesneriaceae) from limestone karsts of China based on morphological and molecular evidence Wei‑Bin Xu1, Jing Guo2, Bo Pan1, Meng‑Qi Han3, Yan Liu1* and Kuo‑Fang Chung4* Abstract Background: The limestone karsts of Southeast Asia and South China are a major biodiversity hotspot of global terrestrial biomes. With more than 130 described species, Paraboea has become one of the most characteristic plant groups in the Southeast Asian limestone fora. During the course of extensive feld work on the limestone formations of southern and southwestern China, three unknown species of Paraboea were collected. Results: Molecular phylogenetic analyses based on nuclear ITS and chloroplast trnL-F sequences strongly con‑ frm the placements of the three new species in Paraboea sensu Puglisi et al. (Taxon 65:277–292. https://doi. org/10.12705/652.5, 2016). Moreover, these three novelties can be distinguished from known Paraboea species with distinct morphological characters, further supporting their recognition as new species. Conclusions: With the support of detailed morphological studies and molecular phylogenetic analyses, Paraboea dushanensis, P. sinovietnamica and P. xiangguiensis are recognized as three species new to science. Keywords: Limestone fora, Loxocarpinae, Paraboea dushanensis, Paraboea sinovietnamica, Paraboea xiangguiensis, Sino-Vietnamese limestone karsts (SVLK) Background Malesia as far east as Sulawesi (Middleton et al. 2010). As currently circumscribed, the Asian gesneriad genus Since the last major revision by Xu et al. (2008) in which Paraboea (C.B.Clarke) Ridl. comprises ca. 130 species of 89 species and 5 varieties were recognized, Paraboea has rosulate or caulescent herbs characterized by the abaxi- been expanded to include the ca. -
Who Or What Is Gaia? Blood Music – the Earth from Myth to Movement
FACT SHEET NUMBER #2 WHO OR WHAT IS GAIA? BLOOD MUSIC – THE EARTH FROM MYTH TO MOVEMENT John Croft Update 1st April 2014 This Factsheet by John Croft is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Permissions beyond the scope of this license may be available at [email protected]. ABSTRACT: The realisation that the Earth is not just a passive home for life, but has many properties as a living system, enables us to connect modern science and ancient spiritualities, into an ethic for a common social movement. The care of the whole is thus deeply connected to the care of each part. TABLE OF CONTENTS WHO OR WHAT IS GAIA? .................................................................................................................................. 2 GAIA THEORY AND THE ORIGIN OF LIFE .................................................................................................. 20 GAIA AND INDUSTRIAL CULTURE .............................................................................................................. 24 GAIA AS A MOVEMENT .................................................................................................................................. 41 CONCLUSION .................................................................................................................................................... 43 __________________________________________________________________________________________ Dragon Dreaming Factsheet Number #2 Page 1 of 51 THE REDISCOVERY OF GAIA Viewed from -
Progress on Southeast Asia's Flora Projects
Gardens' Bulletin Singapore 71 (2): 267–319. 2019 267 doi: 10.26492/gbs71(2).2019-02 Progress on Southeast Asia’s Flora projects D.J. Middleton1, K. Armstrong2, Y. Baba3, H. Balslev4, K. Chayamarit5, R.C.K. Chung6, B.J. Conn7, E.S. Fernando8, K. Fujikawa9, R. Kiew6, H.T. Luu10, Mu Mu Aung11, M.F. Newman12, S. Tagane13, N. Tanaka14, D.C. Thomas1, T.B. Tran15, T.M.A. Utteridge16, P.C. van Welzen17, D. Widyatmoko18, T. Yahara14 & K.M. Wong1 1Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569 Singapore [email protected] 2New York Botanical Garden, 2900 Southern Boulevard, Bronx, New York, 10458, USA 3Auckland War Memorial Museum Tāmaki Paenga Hira, Private Bag 92018, Auckland 1142, New Zealand 4Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University Building 1540, Ny Munkegade 114, Aarhus C DK 8000, Denmark 5The Forest Herbarium, National Park, Wildlife and Plant Conservation Department, 61 Phahonyothin Rd., Chatuchak, Bangkok 10900, Thailand 6Herbarium, Forest Research Institute Malaysia, Kepong, Selangor 52109, Malaysia 7School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia 8Department of Forest Biological Sciences, College of Forestry & Natural Resources, University of the Philippines - Los Baños, College, 4031 Laguna, Philippines 9Kochi Prefectural Makino Botanical Garden, 4200-6 Godaisan, Kochi, 7818125, Japan 10Southern Institute of Ecology, Vietnam Academy of Science and Technology, 01 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam 11Forest -
Effect of Relative Humidity on Respiration and Metabolism in the Moss Physcomitrella Patens
University of South Dakota USD RED Honors Thesis Theses, Dissertations, and Student Projects Spring 2018 Effect of Relative Humidity on Respiration and Metabolism in the Moss Physcomitrella Patens Cami Brenner University of South Dakota Follow this and additional works at: https://red.library.usd.edu/honors-thesis Recommended Citation Brenner, Cami, "Effect of Relative Humidity on Respiration and Metabolism in the Moss Physcomitrella Patens" (2018). Honors Thesis. 9. https://red.library.usd.edu/honors-thesis/9 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, and Student Projects at USD RED. It has been accepted for inclusion in Honors Thesis by an authorized administrator of USD RED. For more information, please contact [email protected]. EFFECT OF RELATIVE HUMIDITY ON RESPIRATION AND METABOLISM IN THE MOSS PHYSCOMITRELLA PATENS by Cami Brenner A Thesis Submitted in Partial Fulfillment Of the Requirements for the University Honors Program Department of Biology The University of South Dakota May 2018 The members of the honors Thesis Committee appointed to examine the thesis of Cami Brenner find it satisfactory and recommend it be accepted. Dr. Karen L. Koster Professor of Biology Director of the Committee Dr. Bernard M.W Wone Assistant Professor of Biology Dr. David Swanson Professor of Biology ABSTRACT Effect of Relative Humidity on Respiration and Metabolism in the Moss Physcomitrella Patens Cami Brenner Director: Dr. Karen L. Koster, Ph.D. The goal of this research was to test the effect of relative humidity on respiration and metabolism in the moss species Physcomitrella patens. Although this moss does not usually survive rapid desiccation, tolerance of extreme water loss can be induced by very slow drying and acclimation for 6-10 days at high relative humidity (RH). -
Cell Structure and Function in the Bacteria and Archaea
4 Chapter Preview and Key Concepts 4.1 1.1 DiversityThe Beginnings among theof Microbiology Bacteria and Archaea 1.1. •The BacteriaThe are discovery classified of microorganismsinto several Cell Structure wasmajor dependent phyla. on observations made with 2. theThe microscope Archaea are currently classified into two 2. •major phyla.The emergence of experimental 4.2 Cellscience Shapes provided and Arrangements a means to test long held and Function beliefs and resolve controversies 3. Many bacterial cells have a rod, spherical, or 3. MicroInquiryspiral shape and1: Experimentation are organized into and a specific Scientificellular c arrangement. Inquiry in the Bacteria 4.31.2 AnMicroorganisms Overview to Bacterialand Disease and Transmission Archaeal 4.Cell • StructureEarly epidemiology studies suggested how diseases could be spread and 4. Bacterial and archaeal cells are organized at be controlled the cellular and molecular levels. 5. • Resistance to a disease can come and Archaea 4.4 External Cell Structures from exposure to and recovery from a mild 5.form Pili allowof (or cells a very to attach similar) to surfacesdisease or other cells. 1.3 The Classical Golden Age of Microbiology 6. Flagella provide motility. Our planet has always been in the “Age of Bacteria,” ever since the first 6. (1854-1914) 7. A glycocalyx protects against desiccation, fossils—bacteria of course—were entombed in rocks more than 3 billion 7. • The germ theory was based on the attaches cells to surfaces, and helps observations that different microorganisms years ago. On any possible, reasonable criterion, bacteria are—and always pathogens evade the immune system. have been—the dominant forms of life on Earth. -
Susceptibility to Desiccation and Soil Factors Affecting the Survival of Rhizobium Japonicum Strains Radhi Kathum Al-Rashidi Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1978 Susceptibility to desiccation and soil factors affecting the survival of Rhizobium japonicum strains Radhi Kathum Al-Rashidi Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons, Agriculture Commons, and the Agronomy and Crop Sciences Commons Recommended Citation Al-Rashidi, Radhi Kathum, "Susceptibility to desiccation and soil factors affecting the survival of Rhizobium japonicum strains " (1978). Retrospective Theses and Dissertations. 6365. https://lib.dr.iastate.edu/rtd/6365 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.