Advances in Understanding of Desiccation Tolerance of Lichens and Lichen-Forming Algae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cephalobus Litoralis: Biology and Tolerance to Desiccation
Journal of Nematology 20(2):327-329. 1988. © The Society of Nematologists 1988. Cephalobus litorali . Biology and Tolerance to Desiccation M. SAEED, S. A. KHAN, V. A. SAEED, AND H. A. KHAN1 Abstract: Cephalobus litoralis (Akhtar, 1962) Andr~ssy, 1984 reproduced parthenogenetically and completed its life cycle in 72-90 hours. Each female deposited 200-300 eggs. The nematodes showed synchronized movements in the rhythms of the anterior parts of the body. The nematodes were coiled when dried in culture medium or in slowly evaporating water droplets on the tops of culture plates, but in pellets they assumed irregular postures. Nematodes in pellets stored at high humidity could be reactivated after storage for 28 days. Key words: behavior, Cephalobus litoralis, coiling, desiccation tolerance, life cycle, parthenogenesis, synchronized movement. Cephalobus litoralis (Akhtar) Andrfissy, by a modified Baermann funnel method. 1984 was described in 1962 by Akhtar (1) A single gravid female was placed in a cav- as Paracephalobus litoralis based on only two ity slide containing water. After oviposi- female specimens collected from soil tion, a single egg was transferred to a petri around the roots of sugarcane (Saccharum dish containing finely blended pea meal o~cinarum L.) in the agricultural farms of paste (PMP) and water. All experiments the Pakistan Council of Scientific and In- were conducted with nematodes from sin- dustrial Research (PCSIR), Lahore, Paki- gle egg progeny raised in this manner. stan. It had not been reported elsewhere For mass rearing, nematodes were cul- until the authors found it in Karachi. In tured in 14-cm-d petri dishes containing 1967 Andrfissy (3) transferred Eucephalo- pea meal paste. -
Modelling Panspermia in the TRAPPIST-1 System
October 13, 2017 Modelling panspermia in the TRAPPIST-1 system James A. Blake1,2*, David J. Armstrong1,2, Dimitri Veras1,2 Abstract The recent ground-breaking discovery of seven temperate planets within the TRAPPIST-1 system has been hailed as a milestone in the development of exoplanetary science. Centred on an ultra-cool dwarf star, the planets all orbit within a sixth of the distance from Mercury to the Sun. This remarkably compact nature makes the system an ideal testbed for the modelling of rapid lithopanspermia, the idea that micro-organisms can be distributed throughout the Universe via fragments of rock ejected during a meteoric impact event. We perform N-body simulations to investigate the timescale and success-rate of lithopanspermia within TRAPPIST-1. In each simulation, test particles are ejected from one of the three planets thought to lie within the so-called ‘habitable zone’ of the star into a range of allowed orbits, constrained by the ejection velocity and coplanarity of the case in question. The irradiance received by the test particles is tracked throughout the simulation, allowing the overall radiant exposure to be calculated for each one at the close of its journey. A simultaneous in-depth review of space microbiological literature has enabled inferences to be made regarding the potential survivability of lithopanspermia in compact exoplanetary systems. 1Department of Physics, University of Warwick, Coventry, CV4 7AL 2Centre for Exoplanets and Habitability, University of Warwick, Coventry, CV4 7AL *Corresponding author: [email protected] Contents Universe, and can propagate from one location to another. This interpretation owes itself predominantly to the works of William 1 Introduction1 Thompson (Lord Kelvin) and Hermann von Helmholtz in the 1.1 Mechanisms for panspermia...............2 latter half of the 19th Century. -
Desiccation Tolerance and Drought Acclimation in the Antarctic Collembolan Cryptopygus Antarcticus
Journal of Insect Physiology 54 (2008) 1432–1439 Contents lists available at ScienceDirect Journal of Insect Physiology journal homepage: www.elsevier.com/locate/jinsphys Desiccation tolerance and drought acclimation in the Antarctic collembolan Cryptopygus antarcticus Michael A. Elnitsky a,b,*, Joshua B. Benoit c, David L. Denlinger c, Richard E. Lee Jr.a a Department of Zoology, Miami University, Oxford, OH 45056, United States b Department of Biology, Mercyhurst College, Erie, PA 16546, United States c Department of Entomology, The Ohio State University, Columbus, OH 43210, United States ARTICLE INFO ABSTRACT Article history: The availability of water is recognized as the most important determinant of the distribution and Received 9 June 2008 activity of terrestrial organisms within the maritime Antarctic. Within this environment, arthropods Received in revised form 30 July 2008 may be challenged by drought stress during both the austral summer, due to increased temperature, Accepted 4 August 2008 wind, insolation, and extended periods of reduced precipitation, and the winter, as a result of vapor pressure gradients between the surrounding icy environment and the body fluids. The purpose of the Keywords: present study was to assess the desiccation tolerance of the Antarctic springtail, Cryptopygus Desiccation antarcticus, under ecologically-relevant conditions characteristic of both summer and winter along the Drought acclimation Collembola Antarctic Peninsula. In addition, this study examined the physiological changes and effects of mild Cold-hardiness drought acclimation on the subsequent desiccation tolerance of C. antarcticus.Thecollembolans À1 Cryoprotective dehydration possessed little resistance to water loss under dry air, as the rate of water loss was >20% h at 0% relative humidity (RH) and 4 8C. -
The Evolution of Freeze Tolerance in a Historically Tropical Snail Alice B
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2010 The evolution of freeze tolerance in a historically tropical snail Alice B. Dennis Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Dennis, Alice B., "The ve olution of freeze tolerance in a historically tropical snail" (2010). LSU Doctoral Dissertations. 1003. https://digitalcommons.lsu.edu/gradschool_dissertations/1003 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THE EVOLUTION OF FREEZE TOLERANCE IN A HISTORICALLY TROPICAL SNAIL A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Alice B. Dennis B.S., University of California, Davis 2003 May, 2010 ACKNOWLEDGEMENTS There are many people who have helped make this dissertation possible. I would first like to thank my advisor, Michael E. Hellberg, for his support and guidance. Comments and discussion with my committee: Drs. Sibel Bargu Ates, Robb T. Brumfield, Kenneth M. Brown, and William B. Stickle, have been very helpful throughout the development of this project. I would also like to thank those whose guidance helped lead me down this path, particularly Rick Grosberg, John P. Wares and Alex C. C. Wilson. -
Evolutionary Processes Transpiring in the Stages of Lithopanspermia Ian Von Hegner
Evolutionary processes transpiring in the stages of lithopanspermia Ian von Hegner To cite this version: Ian von Hegner. Evolutionary processes transpiring in the stages of lithopanspermia. 2020. hal- 02548882v2 HAL Id: hal-02548882 https://hal.archives-ouvertes.fr/hal-02548882v2 Preprint submitted on 5 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HAL archives-ouvertes.fr | CCSD, April 2020. Evolutionary processes transpiring in the stages of lithopanspermia Ian von Hegner Aarhus University Abstract Lithopanspermia is a theory proposing a natural exchange of organisms between solar system bodies as a result of asteroidal or cometary impactors. Research has examined not only the physics of the stages themselves but also the survival probabilities for life in each stage. However, although life is the primary factor of interest in lithopanspermia, this life is mainly treated as a passive cargo. Life, however, does not merely passively receive an onslaught of stress from surroundings; instead, it reacts. Thus, planetary ejection, interplanetary transport, and planetary entry are only the first three factors in the equation. The other factors are the quality, quantity, and evolutionary strategy of the transported organisms. -
A Comparison of the Dinosaur Communities from the Middle
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 July 2018 doi:10.20944/preprints201807.0610.v1 Peer-reviewed version available at Geosciences 2018, 8, 327; doi:10.3390/geosciences8090327 1 Review 2 A comparison of the dinosaur communities from 3 the Middle Jurassic of the Cleveland (Yorkshire) 4 and Hebrides (Skye) basins, based on their ichnites 5 6 Mike Romano 1*, Neil D. L. Clark 2 and Stephen L. Brusatte 3 7 1 Independent Researcher, 14 Green Lane, Dronfield, Sheffield S18 2LZ, England, United Kingdom; 8 [email protected] 9 2 Curator of Palaeontology, The Hunterian, University of Glasgow, University Avenue, Glasgow 10 G12 8QQ, Scotland, United Kingdom; [email protected] 11 3 Chancellor's Fellow in Vertebrate Palaeontology, School of Geosciences, University of Edinburgh, 12 Grant Institute, The King's Buildings, James Hutton Road, Edinburgh EH9 3FE, Scotland, United Kingdom; 13 [email protected] 14 * Correspondence: [email protected]; Tel.: 01246 417330 15 16 Abstract: 17 Despite the Hebrides and Cleveland basins being geographically close, research has not 18 previously been carried out to determine faunal similarities and assess the possibility of links 19 between the dinosaur populations. The palaeogeography of both areas during the Middle Jurassic 20 shows that there were no elevated landmasses being eroded to produce conglomeratic material in 21 the basins at that time. The low-lying landscape and connected shorelines may have provided 22 connectivity between the two dinosaur populations. 23 The dinosaur fauna of the Hebrides and Cleveland basins has been assessed based primarily 24 on the abundant ichnites found in both areas as well as their skeletal remains. -
Who Or What Is Gaia? Blood Music – the Earth from Myth to Movement
FACT SHEET NUMBER #2 WHO OR WHAT IS GAIA? BLOOD MUSIC – THE EARTH FROM MYTH TO MOVEMENT John Croft Update 1st April 2014 This Factsheet by John Croft is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Permissions beyond the scope of this license may be available at [email protected]. ABSTRACT: The realisation that the Earth is not just a passive home for life, but has many properties as a living system, enables us to connect modern science and ancient spiritualities, into an ethic for a common social movement. The care of the whole is thus deeply connected to the care of each part. TABLE OF CONTENTS WHO OR WHAT IS GAIA? .................................................................................................................................. 2 GAIA THEORY AND THE ORIGIN OF LIFE .................................................................................................. 20 GAIA AND INDUSTRIAL CULTURE .............................................................................................................. 24 GAIA AS A MOVEMENT .................................................................................................................................. 41 CONCLUSION .................................................................................................................................................... 43 __________________________________________________________________________________________ Dragon Dreaming Factsheet Number #2 Page 1 of 51 THE REDISCOVERY OF GAIA Viewed from -
Desiccation Tolerance of Adult Stem Cells in the Presence of Trehalose and Glycerol
The Open Biotechnology Journal, 2008, 2, 211-218 211 Open Access Desiccation Tolerance of Adult Stem Cells in the Presence of Trehalose and Glycerol Surbhi Mittal and Ram V. Devireddy* Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA, USA Abstract: Development of protocols for storing desiccated cells at ambient temperatures offers tremendous economic and practical advantages over traditional storage procedures like cryopreservation and freeze-drying. As a first step for devel- oping such procedures for adult stem cells, we have measured the post-rehydration membrane integrity (PRMI) of two passages, Passage-0 (P0) and Passage-1 (P1), of human adipose-derived stem cells (ASCs). ASCs were dried using a con- vective stage at three different drying rates (slow, moderate and rapid) in D-PBS with trehalose (50 mM) and glycerol (384 mM). ASCs were incubated in the drying media for 30 mins prior to drying at the prescribed rate on the convective stage for 30 mins. After drying, the ASCs were stored for 48 hrs in three different conditions: i) at ambient temperature, ii) in plastic bags at ambient temperature and iii) in vacuum sealed plastic bags at ambient temperature. PRMI was as- sessed after incubating the rehydrated ASCs with stromal medium for a further 48 hrs. Our measurements show that the PRMI of ASCs was: i) higher when ASCs were dried slowly; ii) increased when they were stored in vacuum as opposed to at ambient or in plastic bags; and iii) decreased with increasing passage of ASCs, i.e. under similar drying and storage conditions P0 ASCs had higher PRMI than P1 ASCs. -
Effect of Relative Humidity on Respiration and Metabolism in the Moss Physcomitrella Patens
University of South Dakota USD RED Honors Thesis Theses, Dissertations, and Student Projects Spring 2018 Effect of Relative Humidity on Respiration and Metabolism in the Moss Physcomitrella Patens Cami Brenner University of South Dakota Follow this and additional works at: https://red.library.usd.edu/honors-thesis Recommended Citation Brenner, Cami, "Effect of Relative Humidity on Respiration and Metabolism in the Moss Physcomitrella Patens" (2018). Honors Thesis. 9. https://red.library.usd.edu/honors-thesis/9 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, and Student Projects at USD RED. It has been accepted for inclusion in Honors Thesis by an authorized administrator of USD RED. For more information, please contact [email protected]. EFFECT OF RELATIVE HUMIDITY ON RESPIRATION AND METABOLISM IN THE MOSS PHYSCOMITRELLA PATENS by Cami Brenner A Thesis Submitted in Partial Fulfillment Of the Requirements for the University Honors Program Department of Biology The University of South Dakota May 2018 The members of the honors Thesis Committee appointed to examine the thesis of Cami Brenner find it satisfactory and recommend it be accepted. Dr. Karen L. Koster Professor of Biology Director of the Committee Dr. Bernard M.W Wone Assistant Professor of Biology Dr. David Swanson Professor of Biology ABSTRACT Effect of Relative Humidity on Respiration and Metabolism in the Moss Physcomitrella Patens Cami Brenner Director: Dr. Karen L. Koster, Ph.D. The goal of this research was to test the effect of relative humidity on respiration and metabolism in the moss species Physcomitrella patens. Although this moss does not usually survive rapid desiccation, tolerance of extreme water loss can be induced by very slow drying and acclimation for 6-10 days at high relative humidity (RH). -
Cell Structure and Function in the Bacteria and Archaea
4 Chapter Preview and Key Concepts 4.1 1.1 DiversityThe Beginnings among theof Microbiology Bacteria and Archaea 1.1. •The BacteriaThe are discovery classified of microorganismsinto several Cell Structure wasmajor dependent phyla. on observations made with 2. theThe microscope Archaea are currently classified into two 2. •major phyla.The emergence of experimental 4.2 Cellscience Shapes provided and Arrangements a means to test long held and Function beliefs and resolve controversies 3. Many bacterial cells have a rod, spherical, or 3. MicroInquiryspiral shape and1: Experimentation are organized into and a specific Scientificellular c arrangement. Inquiry in the Bacteria 4.31.2 AnMicroorganisms Overview to Bacterialand Disease and Transmission Archaeal 4.Cell • StructureEarly epidemiology studies suggested how diseases could be spread and 4. Bacterial and archaeal cells are organized at be controlled the cellular and molecular levels. 5. • Resistance to a disease can come and Archaea 4.4 External Cell Structures from exposure to and recovery from a mild 5.form Pili allowof (or cells a very to attach similar) to surfacesdisease or other cells. 1.3 The Classical Golden Age of Microbiology 6. Flagella provide motility. Our planet has always been in the “Age of Bacteria,” ever since the first 6. (1854-1914) 7. A glycocalyx protects against desiccation, fossils—bacteria of course—were entombed in rocks more than 3 billion 7. • The germ theory was based on the attaches cells to surfaces, and helps observations that different microorganisms years ago. On any possible, reasonable criterion, bacteria are—and always pathogens evade the immune system. have been—the dominant forms of life on Earth. -
Metabolic Shift from Glycogen to Trehalose Promotes Lifespan
Metabolic shift from glycogen to trehalose promotes PNAS PLUS lifespan and healthspan in Caenorhabditis elegans Yonghak Seoa, Samuel Kingsleya, Griffin Walkera, Michelle A. Mondouxb, and Heidi A. Tissenbauma,c,1 aDepartment of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School (UMMS), Worcester, MA 01605; bDepartment of Biology, College of the Holy Cross, Worcester, MA 01610; and cProgram in Molecular Medicine, UMMS, Worcester, MA 01605 Edited by Gary Ruvkun, Massachusetts General Hospital, Boston, MA, and approved February 13, 2018 (received for review August 10, 2017) As Western diets continue to include an ever-increasing amount of dition of trehalose to the standard E. coli diet promotes longevity sugar, there has been a rise in obesity and type 2 diabetes. To avoid (27) in contrast to the toxicity caused by the addition of glucose metabolic diseases, the body must maintain proper metabolism, even (5–8). Furthermore, mutants have been identified that are long on a high-sugar diet. In both humans and Caenorhabditis elegans, lived and store increased trehalose (27). Therefore, an association excess sugar (glucose) is stored as glycogen. Here, we find that ani- between longevity and trehalose has been established. Mammals do mals increased stored glycogen as they aged, whereas even young not store sugar as trehalose but do possess the enzyme trehalase to adult animals had increased stored glycogen on a high-sugar diet. breakdown ingested trehalose (28). Further, oral supplementation Decreasing the amount of glycogen storage by modulating the C. of trehalose has been shown to improve glucose tolerance in in- elegans glycogen synthase, gsy-1, a key enzyme in glycogen synthe- dividuals at high risk for developing type 2 diabetes (29) and can sis, can extend lifespan, prolong healthspan, and limit the detrimental improve recovery from traumatic brain injury in mice (30). -
Susceptibility to Desiccation and Soil Factors Affecting the Survival of Rhizobium Japonicum Strains Radhi Kathum Al-Rashidi Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1978 Susceptibility to desiccation and soil factors affecting the survival of Rhizobium japonicum strains Radhi Kathum Al-Rashidi Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons, Agriculture Commons, and the Agronomy and Crop Sciences Commons Recommended Citation Al-Rashidi, Radhi Kathum, "Susceptibility to desiccation and soil factors affecting the survival of Rhizobium japonicum strains " (1978). Retrospective Theses and Dissertations. 6365. https://lib.dr.iastate.edu/rtd/6365 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.