International Astrobiology Workshop 2013

Total Page:16

File Type:pdf, Size:1020Kb

International Astrobiology Workshop 2013 The 6th Japan Astrobiology Network Annual Meeting as http://www.isas.jaxa.jp/home/labam/jabn6 Co-Sponsored by: November 28-30, 2013 JAXA/ISAS, Sagamihara, JAPAN Image Credits: JAXA/ISAS, NASA, ALMA, JAMSTEC, A. Ikeshita International Astrobiology Workshop 2013 November 28–30, 2013 • Sagamihara, Kanagawa, Japan Sponsors Japan Astrobiology Network (JABN) Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA/ISAS) Earth-Life Science Institute, Tokyo Institute of Technology (ELSI/Tokyo Tech) Astrobiology Division, Center for Novel Science Initiatives, National Institutes for Natural Sciences (NINS/CNSI) Sagamihara City Museum Scientific Organizing Committee Masaki Fujimoto (JAXA/ISAS) Hidenori Genda (ELSI/Tokyo Tech) Daiki Horikawa (Universite Paris Descartes) Shigeru Ida (ELSI/Tokyo Tech) Motoo Ito (JAMSTEC) Daisuke Kiga (ELSI/Tokyo Tech) Kensei Kobayashi (Yokohama National University) Hitoshi Kuninaka (JAXA/JSPEC) Yutestu Kuruma (ELSI/Tokyo Tech) Takano Nakagawa (JAXA/ISAS) Masatoshi Ohishi (NAOJ) Yasuhito Sekine (University of Tokyo) Ken Takai (JAMSTEC) Yoshinori Takano (JAMSTEC) Motohide Tamura (University of Tokyo) Yuichiro Ueno (ELSI/Tokyo Tech) Hikaru Yabuta (Osaka University) Hajime Yano (JAXA/ISAS) Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1766 Compiled in 2013 by Meeting and Publication Services Lunar and Planetary Institute USRA Houston 3600 Bay Area Boulevard, Houston TX 77058-1113 This material is based upon work supported by NASA under Award No. NNX08AC28A. Any opinions, findings, and conclusions or recommendations expressed in this volume are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. The Lunar and Planetary Institute is operated by the Universities Space Research Association under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (2013) Title of abstract. In International Astrobiology Workshop 2013, p. XX. LPI Contribution No. 1766, Lunar and Planetary Institute, Houston. ISSN No. 0161-5297 Preface This volume contains abstracts that have been accepted for presentation at the International Astrobiology Workshop 2013, November 28–30, 2013, Sagamihara, Kanagawa, Japan. Administration and publications support for this meeting were provided by the staff of the Meeting and Publication Services Department at the Lunar and Planetary Institute. Technical Guide to Sessions Thursday, November 28, 2013 9:00 a.m. ISAS Main Building 2F Conference Hall Welcome and Introduction 9:30 a.m. ISAS Main Building 2F Conference Hall Meteoritics and Cosmochemistry 12:00 p.m. ISAS Main Building 1F “Bidding Room” Lunch and Poster Viewing (Nyusatsu-Shitsu) 1:30 p.m. ISAS Main Building 2F Conference Hall Special Lectures I 2:30 p.m. ISAS Main Building 2F Conference Hall Early Earth, Geochemistry, and Planetary Environment 4:30 p.m. ISAS Main Building 2F Conference Hall Group Photo 5:00 p.m. ISAS Main Building 2F Conference Hall Molecular Clouds and Planetary Formation Regions Friday, November 29, 2013 9:00 a.m. ISAS Main Building 2F Conference Hall Webcast Presentation I 9:30 a.m. ISAS Main Building 2F Conference Hall Solar System Exploration and Experiments (Science, Mission Designs, Instruments, and Enabling Technology) 12:00 p.m. ISAS Main Building 1F “Bidding Room” Lunch and Poster Viewing (Nyusatsu-Shitsu) 1:30 p.m. ISAS Main Building 2F Conference Hall Special Lectures II 2:30 p.m. ISAS Main Building 2F Conference Hall Exoplanetary Systems and Exoplanets (Theories, Models, and Observations) 5:00 p.m. ISAS Main Building 2F Conference Hall Group Photo 5:30 p.m. ISAS Main Building 1F “Bidding Room” Poster Session (Nyusatsu-Shitsu) Saturday, November 30, 2013 9:00 a.m. ISAS Main Building 2F Conference Hall Webcast Presentation II 9:30 a.m. ISAS Main Building 2F Conference Hall Panel Discussion: “Astrobiology vs. Space Experiments and Exploration” 11:15 a.m. ISAS Main Building 2F Conference Hall Life in Extreme Environments I 12:00 p.m. ISAS Main Building 1F “Bidding Room” Lunch and Poster Viewing (Nyusatsu-Shitsu) 2:00 p.m. ISAS Main Building 2F Conference Hall Life in Extreme Environments II 2:50 p.m. ISAS Main Building 2F Conference Hall Group Photo 3:20 p.m. ISAS Main Building 2F Conference Hall RNA and Molecular Biology 5:50 p.m. ISAS Main Building 2F Conference Hall Findings and Closing Remarks Contents Program ................................................................................................................................................................. xi Experimentally Testing the Hypothesis of a Limited Amino Acid Repertoire in Primitive Proteins S. Akanuma, Y. Nakajima, S. Yokobori, and A. Yamagishi....................................................................... 1 Simplification of the Genetic Code: Restricted Diversity of Genetically Encoded Amino Acids K. Amikura, A. Kawahara-Kobayashi, and D. Kiga ................................................................................ 3 RNA and the Nature of the Last Common Ancestor A. Becerra, S. Islas, R. Hernandez-Morales, and A. Lazcano .................................................................. 4 Complex Organic Molecules in the Interstellar Medium in the Era of ALMA A. Belloche ............................................................................................................................................... 5 Bioimaging by X-Ray Laser Diffraction at SACLA Y. Bessho .................................................................................................................................................. 6 Studies of Exoplanets with SPICA K. Enya ..................................................................................................................................................... 7 Toward Characterization of Exoplanetary Surface Environment Y. Fujii ...................................................................................................................................................... 8 Formation and Early Evolution of Atmosphere and Ocean on the Earth H. Genda, K. Hamano, and Y. Abe ........................................................................................................... 9 Interaction of the Sleeping Chironomid with Microorganisms: “Uchi-Soto” in the World of Anhydrobiosis O. Gusev, E. Shagimardanova, T. Bosch, T. Okuda, and T. Kikawada .................................................. 10 Interplanetary Migration of Eucaryotic Cell, Spore of Schizosaccharomyces Pombe N. Hayashi, J. Nosaka, R. Ando, H. Hashimoto, S. Yokobori, I. Narumi, K. Nakagawa, A. Yamagishi, and H. Tohda ........................................................................................... 11 Perspectives of ELSI Projects: The Origin of the Earth and the Origin of Life K. Hirose ................................................................................................................................................ 12 Astrobiological Research on Tardigrades: Implications for Extraterrestrial Life Forms D. D. Horikawa ...................................................................................................................................... 13 Astrobiology Research on Board of the International Space Station as part of the European Space Exploration Initiative G. Horneck ............................................................................................................................................. 14 Global Census of Microbial Life in Marine Subsurface Sediments T. Hoshino, M. Tsutsumi, Y. Morono, and F. Inagaki ............................................................................ 15 Why Life? Origins of Life Elsewhere in the Universe P. Hut ..................................................................................................................................................... 16 Darwinian Evolution in a Translation-Coupled RNA Replication System Within a Cell-Like Compartment N. Ichihashi, K. Usui, and T. Yomo ........................................................................................................ 17 Limits of Life in the Deep Subseafloor Biosphere: New Insights from IODP Expedition 337 F. Inagaki, K.-U. Hinrichs, Y. Kubo, and IODP Expedition 337 Scientists ........................................... 18 AKARI Observations of Interstellar Polycyclic Aromatic Hydrocarbons D. Ishihara, H. Kaneda, S. Oyabu, T. Kondo, M. Yamagishi, and A. Yasuda ........................................ 19 Ultra High Spatial Resolution Ion Imaging with a NanoSIMS Ion Microprobe: Applications to Astrobiology M. Ito ...................................................................................................................................................... 20 Metamorphosed Clasts in the CV Carbonaceous Chondrite Breccias Mokoia and Yamato 86009: Evidence for Strong Thermal Metamorphism on the CV Parent Asteroid K. Jogo, A. N. Krot, and K. Nagashima ................................................................................................. 21 Exploration of Jovian System by ESA-JUICE-Mission:
Recommended publications
  • Biohazardous Waste Treatment
    Biological Safety: Principles & Applications for Lab Personnel Presented by: Biological Safety Office http://biosafety.utk.edu Introduction OVERVIEW OF BIOSAFETY PROGRAM Introduction to Laboratory Safety When entering the laboratory environment you are likely to contact hazards that you would not encounter on a daily basis. These can include: • Physical hazards • Chemical hazards • Radiological hazards • Biological hazards Biohazards Any biological agent or condition that poses a threat to human, animal, or plant health, or to the environment. Examples include, but not limited to: • Agents causing disease in humans, animals or plants (bacteria, viruses, etc.) • Toxins of biological origin • Materials potentially containing infectious agents or biohazards .Blood, tissues, body fluids etc. .Waste, carcasses etc. • Recombinant DNA (depends) • Nanoparticles w/biological effector conjugates (depends) Types of Biohazards: What they are.... How they’ll look.... Regulations & Standards The Institutional Biosafety Committee Institutional Biosafety Committees (IBC) are required by the National Institutes of Health Office of Biological Activities (NIH; OBA) for institutions that receive NIH funding and conduct research using recombinant or synthetic nucleic acids. The UT IBC is composed of 14 UT-affiliated members and 2 non-affiliated members, who collectively offer a broad range of experience in research, safety and public health. Functions of the IBC Projects requiring IBC review • Performing both initial and annual • Those involving recombinant
    [Show full text]
  • Modelling Panspermia in the TRAPPIST-1 System
    October 13, 2017 Modelling panspermia in the TRAPPIST-1 system James A. Blake1,2*, David J. Armstrong1,2, Dimitri Veras1,2 Abstract The recent ground-breaking discovery of seven temperate planets within the TRAPPIST-1 system has been hailed as a milestone in the development of exoplanetary science. Centred on an ultra-cool dwarf star, the planets all orbit within a sixth of the distance from Mercury to the Sun. This remarkably compact nature makes the system an ideal testbed for the modelling of rapid lithopanspermia, the idea that micro-organisms can be distributed throughout the Universe via fragments of rock ejected during a meteoric impact event. We perform N-body simulations to investigate the timescale and success-rate of lithopanspermia within TRAPPIST-1. In each simulation, test particles are ejected from one of the three planets thought to lie within the so-called ‘habitable zone’ of the star into a range of allowed orbits, constrained by the ejection velocity and coplanarity of the case in question. The irradiance received by the test particles is tracked throughout the simulation, allowing the overall radiant exposure to be calculated for each one at the close of its journey. A simultaneous in-depth review of space microbiological literature has enabled inferences to be made regarding the potential survivability of lithopanspermia in compact exoplanetary systems. 1Department of Physics, University of Warwick, Coventry, CV4 7AL 2Centre for Exoplanets and Habitability, University of Warwick, Coventry, CV4 7AL *Corresponding author: [email protected] Contents Universe, and can propagate from one location to another. This interpretation owes itself predominantly to the works of William 1 Introduction1 Thompson (Lord Kelvin) and Hermann von Helmholtz in the 1.1 Mechanisms for panspermia...............2 latter half of the 19th Century.
    [Show full text]
  • Mission to Jupiter
    This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines.
    [Show full text]
  • Prebiological Evolution and the Metabolic Origins of Life
    Prebiological Evolution and the Andrew J. Pratt* Metabolic Origins of Life University of Canterbury Keywords Abiogenesis, origin of life, metabolism, hydrothermal, iron Abstract The chemoton model of cells posits three subsystems: metabolism, compartmentalization, and information. A specific model for the prebiological evolution of a reproducing system with rudimentary versions of these three interdependent subsystems is presented. This is based on the initial emergence and reproduction of autocatalytic networks in hydrothermal microcompartments containing iron sulfide. The driving force for life was catalysis of the dissipation of the intrinsic redox gradient of the planet. The codependence of life on iron and phosphate provides chemical constraints on the ordering of prebiological evolution. The initial protometabolism was based on positive feedback loops associated with in situ carbon fixation in which the initial protometabolites modified the catalytic capacity and mobility of metal-based catalysts, especially iron-sulfur centers. A number of selection mechanisms, including catalytic efficiency and specificity, hydrolytic stability, and selective solubilization, are proposed as key determinants for autocatalytic reproduction exploited in protometabolic evolution. This evolutionary process led from autocatalytic networks within preexisting compartments to discrete, reproducing, mobile vesicular protocells with the capacity to use soluble sugar phosphates and hence the opportunity to develop nucleic acids. Fidelity of information transfer in the reproduction of these increasingly complex autocatalytic networks is a key selection pressure in prebiological evolution that eventually leads to the selection of nucleic acids as a digital information subsystem and hence the emergence of fully functional chemotons capable of Darwinian evolution. 1 Introduction: Chemoton Subsystems and Evolutionary Pathways Living cells are autocatalytic entities that harness redox energy via the selective catalysis of biochemical transformations.
    [Show full text]
  • Field Trials for GM Food Get Green Light in India
    NATURE|Vol 448|23 August 2007 NEWS IN BRIEF Field trials for GM food Asthmatics win payment in diesel-fumes lawsuit get green light in India Asthma patients in Tokyo last week welcomed a cash settlement India’s first genetically modified (GM) food from car manufacturers and crop is a step closer to reaching the dining the Japanese government. The table. The government has approved field one-time payment resolved a trials for a strain of brinjal (aubergine) decade-long legal battle in which carrying a Bt (Bacillus thuringiensis) gene. the asthmatics blamed diesel car Jalna-based Mahyco, the Indian venture fumes for their illness. KIM KYUNG-HOON/REUTERS of US seed giant Monsanto, claims its insect- The automakers, including resistant variety gives better yields with Toyota, Honda and Nissan, will less pesticide use. To avoid possible cross- provide ¥1.2 billion (US$10.5 contamination with farmers’ crops, the trials million) to the plaintiffs, and a will be carried out in government farms. further ¥3.3 billion to support But critics already campaigning against Bt a five-year health plan for the cotton — currently the only GM crop grown patients. The central government in India — say the brinjal trials are illegal. and Tokyo metropolitan Full biosafety data on the brinjal tests government will each contribute ¥6 billion to the medical programme. have not yet been generated, says Kavitha Kuruganti of the Centre for Sustainable scientists — to pay for relocation, housing starting dose “should be considered for Agriculture, based in Hyderabad: “The trials and research. “This is about the rescue of patients with certain genetic variations”.
    [Show full text]
  • The Reference Mission of the NASA Mars Exploration Study Team
    NASA Special Publication 6107 Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team Stephen J. Hoffman, Editor David I. Kaplan, Editor Lyndon B. Johnson Space Center Houston, Texas July 1997 NASA Special Publication 6107 Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team Stephen J. Hoffman, Editor Science Applications International Corporation Houston, Texas David I. Kaplan, Editor Lyndon B. Johnson Space Center Houston, Texas July 1997 This publication is available from the NASA Center for AeroSpace Information, 800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934 (301) 621-0390. Foreword Mars has long beckoned to humankind interest in this fellow traveler of the solar from its travels high in the night sky. The system, adding impetus for exploration. ancients assumed this rust-red wanderer was Over the past several years studies the god of war and christened it with the have been conducted on various approaches name we still use today. to exploring Earth’s sister planet Mars. Much Early explorers armed with newly has been learned, and each study brings us invented telescopes discovered that this closer to realizing the goal of sending humans planet exhibited seasonal changes in color, to conduct science on the Red Planet and was subjected to dust storms that encircled explore its mysteries. The approach described the globe, and may have even had channels in this publication represents a culmination of that crisscrossed its surface. these efforts but should not be considered the final solution. It is our intent that this Recent explorers, using robotic document serve as a reference from which we surrogates to extend their reach, have can continuously compare and contrast other discovered that Mars is even more complex new innovative approaches to achieve our and fascinating—a planet peppered with long-term goal.
    [Show full text]
  • Bayesian Analysis of the Astrobiological Implications of Life's
    Bayesian analysis of the astrobiological implications of life's early emergence on Earth David S. Spiegel ∗ y, Edwin L. Turner y z ∗Institute for Advanced Study, Princeton, NJ 08540,yDept. of Astrophysical Sciences, Princeton Univ., Princeton, NJ 08544, USA, and zInstitute for the Physics and Mathematics of the Universe, The Univ. of Tokyo, Kashiwa 227-8568, Japan Submitted to Proceedings of the National Academy of Sciences of the United States of America Life arose on Earth sometime in the first few hundred million years Any inferences about the probability of life arising (given after the young planet had cooled to the point that it could support the conditions present on the early Earth) must be informed water-based organisms on its surface. The early emergence of life by how long it took for the first living creatures to evolve. By on Earth has been taken as evidence that the probability of abiogen- definition, improbable events generally happen infrequently. esis is high, if starting from young-Earth-like conditions. We revisit It follows that the duration between events provides a metric this argument quantitatively in a Bayesian statistical framework. By (however imperfect) of the probability or rate of the events. constructing a simple model of the probability of abiogenesis, we calculate a Bayesian estimate of its posterior probability, given the The time-span between when Earth achieved pre-biotic condi- data that life emerged fairly early in Earth's history and that, billions tions suitable for abiogenesis plus generally habitable climatic of years later, curious creatures noted this fact and considered its conditions [5, 6, 7] and when life first arose, therefore, seems implications.
    [Show full text]
  • 2017 Journal Impact Factor (JCR)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/317604703 2017 Journal Impact Factor (JCR) Technical Report · June 2017 CITATIONS READS 0 12,350 1 author: Pawel Domagala Pomeranian Medical University in Szczecin 34 PUBLICATIONS 326 CITATIONS SEE PROFILE All content following this page was uploaded by Pawel Domagala on 20 June 2017. The user has requested enhancement of the downloaded file. 1 , I , , 1 1 • • I , I • I : 1 t ( } THOMSON REUTERS - Journal Data Filtered By: Selected JCR Year: 2016 Selected Editions: SCIE,SSCI Selected Category Scheme: WoS Rank Full Journal Title Journal Impact Factor 1 CA-A CANCER JOURNAL FOR CLINICIANS 187.040 2 NEW ENGLAND JOURNAL OF MEDICINE 72.406 3 NATURE REVIEWS DRUG DISCOVERY 57.000 4 CHEMICAL REVIEWS 47.928 5 LANCET 47.831 6 NATURE REVIEWS MOLECULAR CELL BIOLOGY 46.602 7 JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION 44.405 8 NATURE BIOTECHNOLOGY 41.667 9 NATURE REVIEWS GENETICS 40.282 10 NATURE 40.137 11 NATURE REVIEWS IMMUNOLOGY 39.932 12 NATURE MATERIALS 39.737 13 Nature Nanotechnology 38.986 14 CHEMICAL SOCIETY REVIEWS 38.618 15 Nature Photonics 37.852 16 SCIENCE 37.205 17 NATURE REVIEWS CANCER 37.147 18 REVIEWS OF MODERN PHYSICS 36.917 19 LANCET ONCOLOGY 33.900 20 PROGRESS IN MATERIALS SCIENCE 31.140 21 Annual Review of Astronomy and Astrophysics 30.733 22 CELL 30.410 23 NATURE MEDICINE 29.886 24 Energy & Environmental Science 29.518 25 Living Reviews in Relativity 29.300 26 MATERIALS SCIENCE & ENGINEERING R-REPORTS 29.280 27 NATURE
    [Show full text]
  • Chemical Evolution Theory of Life's Origins the Lattimer, AST 248, Lecture 13 – P.2/20 Organics
    Chemical Evolution Theory of Life's Origins 1. the synthesis and accumulation of small organic molecules, or monomers, such as amino acids and nucleotides. • Production of glycine (an amino acid) energy 3HCN+2H2O −→ C2H5O2N+CN2H2. • Production of adenine (a base): 5 HCN → C5H5N5, • Production of ribose (a sugar): 5H2CO → C5H10O5. 2. the joining of these monomers into polymers, including proteins and nucleic acids. Bernal showed that clay-like materials could serve as sites for polymerization. 3. the concentration of these molecules into droplets, called protobionts, that had chemical characteristics different from their surroundings. This relies heavily on the formation of a semi-permeable membrane, one that allows only certain materials to flow one way or the other through it. Droplet formation requires a liquid with a large surface tension, such as water. Membrane formation naturally occurs if phospholipids are present. 4. The origin of heredity, or a means of relatively error-free reproduction. It is widely, but not universally, believed that RNA-like molecules were the first self-replicators — the RNA world hypothesis. They may have been preceded by inorganic self-replicators. Lattimer, AST 248, Lecture 13 – p.1/20 Acquisition of Organic Material and Water • In the standard model of the formatio of the solar system, volatile materials are concentrated in the outer solar system. Although there is as much carbon as nearly all other heavy elements combined in the Sun and the bulk of the solar nebula, the high temperatures in the inner solar system have lead to fractional amounts of C of 10−3 of the average.
    [Show full text]
  • 51. Astrobiology: the Final Frontier of Science Education
    www.astrosociety.org/uitc No. 51 - Summer 2000 © 2000, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. Astrobiology: The Final Frontier of Science Education by Jodi Asbell-Clarke and Jeff Lockwood What (or Whom) Are We Looking For? Where Do We Look? Lessons from Our Past The Search Is On What Does the Public Have to Learn from All This? A High School Curriculum in Astrobiology Astrobiology seems to be all the buzz these days. It was the focus of the ASP science symposium this summer; the University of Washington is offering it as a new Ph.D. program, and TERC (Technical Education Research Center) is developing a high school integrated science course based on it. So what is astrobiology? The NASA Astrobiology Institute defines this new discipline as the study of the origin, evolution, distribution, and destiny of life in the Universe. What this means for scientists is finding the means to blend research fields such as microbiology, geoscience, and astrophysics to collectively answer the largest looming questions of humankind. What it means for educators is an engaging and exciting discipline that is ripe for an integrated approach to science education. Virtually every topic that one deals with in high school science is embedded in astrobiology. What (or Whom) Are We Looking For? Movies and television shows such as Contact and Star Trek have teased viewers with the idea of life on other planets and even in other galaxies. Illustration courtesy of and © 2000 by These fictional accounts almost always deal with intelligent beings that have Kathleen L.
    [Show full text]
  • Editorial Board Member Dr. Akos Kereszturi Journal of Astrobiology
    Journal of Astrobiology and Outreach Dr. Akos Kereszturi Editorial Board member Research Center for Astronomy and Earth Sciences Hungarian Academy of Sciences Hungary Dr. Akos Kereszturi Biography Akos Kereszturi has PhD in geology and working on planetary surface processes and astrobiology, focusing on the analysis of Mars, Europa and analog locations on the Earth. He also works for ESA under the Mars Express project and for NASA Astrobiology Institute in the TDE focus group. Beside research he teaches astrobiology and planetary science at two Hungarian universities, working on to use astrobiology as an interdisciplinary link between natural sciences. As the vice president of the Hungarian Astronomical Association and the national coordinator of the European Association for Astronomy Education he works on the popularization of astronomy and astrobiology, organizing lectures and public demonstrations. As a part time journalist he writes papers for printed journals and online websites Research Interests Ancient wet locations on Mars (morphology, spectral data), possible occurrence of liquid (interfacial) water and brine on Mars today, survival of cyanobacteria in cryptobiotic crust at simulated Mars surface conditions, Mars analog terrains and the survival strategy of extreme organisms there, surface tectonics and possibility of subsurface water migration toward the surface on the satellite Europa, educational methods both for secondary students and at university level, connecting research in astrobiology (related missions) with university courses, Recent Publications 1. How to Size an Exoplanet? A Model Approach for Visualization, Akos Kereszturi, Research Article: Astrobiol Outreach 2013, 1:1 2. Review of Wet Environment Types on Mars with Focus on Duration and Volumetric Issues, Akos Kereszturi.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]