Project Xpedition Is the Product of Purdue University‟S Aeronautical and Astronautical Engineering Department Senior Spacecraft Design Class in the Spring of 2009

Total Page:16

File Type:pdf, Size:1020Kb

Project Xpedition Is the Product of Purdue University‟S Aeronautical and Astronautical Engineering Department Senior Spacecraft Design Class in the Spring of 2009 92 Project Xpedition Purdue University AAE 450 Spacecraft Design Spring 2009 Contents 1 – FOREWORD ........................................................................................................................................... 5 2 – INTRODUCTION ................................................................................................................................... 7 2.1 – BACKGROUND .................................................................................................................................... 7 2.2 – WHAT‟S IN THIS REPORT? .................................................................................................................. 9 2.3 – ACKNOWLEDGEMENTS .....................................................................................................................10 2.4 – ACRONYM LIST .................................................................................................................................12 3 – PROJECT OVERVIEW ....................................................................................................................... 14 3.1 – DESIGN REQUIREMENTS ...................................................................................................................14 3.2 – INTERPRETATION OF DESIGN REQUIREMENTS ...................................................................................18 3.3 – DESIGN PROCESS ..............................................................................................................................19 3.4 – RISK AND COST ANALYSIS ................................................................................................................22 4 – RESULTS ............................................................................................................................................... 25 5 – MISSION CONFIGURATION 100G PAYLOAD ............................................................................. 27 5.1 – SYSTEM OVERVIEW ..........................................................................................................................28 5.2 – LAUNCH VEHICLE .............................................................................................................................31 5.2.1 – Launch Vehicle Selection .........................................................................................................31 5.2.2 – Earth Parking Orbit Selection .................................................................................................33 5.2.3 – Attitude Determination in LEO ................................................................................................35 5.3- LUNAR TRANSFER ..............................................................................................................................37 5.3.1 – Structure ...................................................................................................................................37 5.3.2 – Mission Operations ..................................................................................................................47 5.3.3 – Propulsion on the Orbital Transfer Vehicle .............................................................................51 5.3.4 – Attitude .....................................................................................................................................56 5.3.5 – Communication ........................................................................................................................60 5.3.6 – Thermal Control .......................................................................................................................67 5.3.7 – Power .......................................................................................................................................69 5.4 – LUNAR DESCENT ..............................................................................................................................74 5.4.1 – Structures .................................................................................................................................74 5.4.2 – Mission Operations ..................................................................................................................82 5.4.4 – Attitude Control .......................................................................................................................93 5.4.5 – Communication ........................................................................................................................95 5.4.6 – Thermal Control .......................................................................................................................98 5.4.7 – Power .....................................................................................................................................104 5.5 – LOCOMOTION ..................................................................................................................................109 5.5.1 – Structures/Integration ............................................................................................................110 5.5.2 – Propulsion ..............................................................................................................................115 5.5.3 – Communications ....................................................................................................................117 5.5.4 – Thermal Control .....................................................................................................................120 5.5.5 – Power .....................................................................................................................................121 5.5.6 – Mission Operations ................................................................................................................123 5.6 – MISSION INTEGRATION ...................................................................................................................126 5.7 – RISK ANALYSIS ...............................................................................................................................132 5.8 – COST ANALYSIS ..............................................................................................................................133 6 – MISSION CONFIGURATION 10KG PAYLOAD .......................................................................... 134 6.1 – SYSTEM OVERVIEW ........................................................................................................................135 6.2 – LAUNCH VEHICLE ...........................................................................................................................138 6.2.1 – Launch Vehicle/Site................................................................................................................138 6.2.2 – Earth Parking Orbit Selection ...............................................................................................139 6.2.3 – Attitude determination in LEO ...............................................................................................140 6.3 – LUNAR TRANSFER ...........................................................................................................................141 6.3.1 – Structure .................................................................................................................................141 6.3.2 – Mission Operations ................................................................................................................145 6.3.3 – Propulsion on the Orbital Transfer Vehicle ...........................................................................147 6.3.4 – Attitude ...................................................................................................................................148 6.3.5 – Communication ......................................................................................................................150 6.3.6 – Thermal Control .....................................................................................................................151 6.3.7 – Power .....................................................................................................................................152 6.4 – LUNAR DESCENT ............................................................................................................................155 6.4.1 – Structures ...............................................................................................................................155 6.4.2 – Mission Operations ................................................................................................................163 6.4.3 – Propulsion ..............................................................................................................................165 6.4.4 – Attitude Control .....................................................................................................................171 6.4.5 – Communication ......................................................................................................................172 6.4.6 – Thermal Control .....................................................................................................................173 6.4.7 – Power .....................................................................................................................................175 6.5 – LOCOMOTION ..................................................................................................................................179
Recommended publications
  • Mission to Jupiter
    This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines.
    [Show full text]
  • Warren and Taylor-2014-In Tog-The Moon-'Author's Personal Copy'.Pdf
    This article was originally published in Treatise on Geochemistry, Second Edition published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Warren P.H., and Taylor G.J. (2014) The Moon. In: Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, vol. 2, pp. 213-250. Oxford: Elsevier. © 2014 Elsevier Ltd. All rights reserved. Author's personal copy 2.9 The Moon PH Warren, University of California, Los Angeles, CA, USA GJ Taylor, University of Hawai‘i, Honolulu, HI, USA ã 2014 Elsevier Ltd. All rights reserved. This article is a revision of the previous edition article by P. H. Warren, volume 1, pp. 559–599, © 2003, Elsevier Ltd. 2.9.1 Introduction: The Lunar Context 213 2.9.2 The Lunar Geochemical Database 214 2.9.2.1 Artificially Acquired Samples 214 2.9.2.2 Lunar Meteorites 214 2.9.2.3 Remote-Sensing Data 215 2.9.3 Mare Volcanism
    [Show full text]
  • The Reference Mission of the NASA Mars Exploration Study Team
    NASA Special Publication 6107 Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team Stephen J. Hoffman, Editor David I. Kaplan, Editor Lyndon B. Johnson Space Center Houston, Texas July 1997 NASA Special Publication 6107 Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team Stephen J. Hoffman, Editor Science Applications International Corporation Houston, Texas David I. Kaplan, Editor Lyndon B. Johnson Space Center Houston, Texas July 1997 This publication is available from the NASA Center for AeroSpace Information, 800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934 (301) 621-0390. Foreword Mars has long beckoned to humankind interest in this fellow traveler of the solar from its travels high in the night sky. The system, adding impetus for exploration. ancients assumed this rust-red wanderer was Over the past several years studies the god of war and christened it with the have been conducted on various approaches name we still use today. to exploring Earth’s sister planet Mars. Much Early explorers armed with newly has been learned, and each study brings us invented telescopes discovered that this closer to realizing the goal of sending humans planet exhibited seasonal changes in color, to conduct science on the Red Planet and was subjected to dust storms that encircled explore its mysteries. The approach described the globe, and may have even had channels in this publication represents a culmination of that crisscrossed its surface. these efforts but should not be considered the final solution. It is our intent that this Recent explorers, using robotic document serve as a reference from which we surrogates to extend their reach, have can continuously compare and contrast other discovered that Mars is even more complex new innovative approaches to achieve our and fascinating—a planet peppered with long-term goal.
    [Show full text]
  • Assessment of Spectral Properties of Apollo 12 Landing Site Yann Chemin1, Ian Crawford2, Peter Grindrod2, and Louise Alexander2
    Assessment of spectral properties of Apollo 12 landing site Yann Chemin1, Ian Crawford2, Peter Grindrod2, and Louise Alexander2 1Student, Birkbeck Colllege, University of London 2Birkbeck Colllege, University of London Corresponding author: Yann Chemin1 Email address: [email protected] ABSTRACT The geology and mineralogy of the Apollo 12 landing site has been the subject of recent studies that this research attempts to complement from a remote sensing point of view using the Moon Mineralogy Mapper (M3) sensor data, onboard the Chandrayaan-1 lunar orbiter. It is a higher spatial-spectral resolution sensor than the Clementine UVVis sensor and gives the opportunity to study the lunar surface with a comparatively more detailed spectral resolution. We used ISIS and GRASS GIS to study the M3 data. The M3 signatures are showing a monotonic featureless increment, with very low reflectance, suggesting a mature regolith. The regolith maturity is splitting the landing site in a younger Northwest and older Southeast. The mineral identification using the lunar sample spectra from within the Relab database found some similarity to a basaltic rock/glass mix. The spectrum features of clinopyroxene have been found in the Copernican rays and at the landing site. Lateral mixing increases FeO content away from the central part of the ray. The presence of clinopyroxene in the pigeonite basalt in the stratigraphy of the landing site brings forth some complexity in differentiating the Copernican ray’s clinopyroxene from the local source, as the spectra are twins but for their vertical shift in reflectance, reducing away from the central part of the ray. Spatial variations in mineralogy were not found mostly because of the pixel size compared to the landing site area.
    [Show full text]
  • Workshop on Moon in Transition: Apollo 14, Kreep, and Evolved Lunar Rocks
    WORKSHOP ON MOON IN TRANSITION: APOLLO 14, KREEP, AND EVOLVED LUNAR ROCKS (NASA-CR-I"'-- N90-I_02o rRAN31TION: APJLLN l_p KRFEP, ANu _VOLVFD LUNAR ROCKS (Lunar and Pl_net3ry !nst.) I_7 p C_CL O3B Unclas G3/91 0253133 LPI Technical Report Number 89-03 UNAR AND PLANETARY INSTITUTE 3303 NASA ROAD 1 HOUSTON, TEXAS 77058-4399 7 WORKSHOP ON MOON IN TRANSITION: APOLLO 14, KREEP, AND EVOLVED LUNAR ROCKS Edited by G. J. Taylor and P. H. Warren Sponsored by Lunar and Planetary Institute NASA Johnson Space Center November 14-16, 1988 Houston, Texas Lunar and Planetary Institute 330 ?_NASA Road 1 Houston, Texas 77058-4399 LPI Technical Report Number 89-03 Compiled in 1989 by the LUNAR AND PLANETARY INSTITUTE The Institute is operated by Universities Space Research Association under Contract NASW-4066 with the National Aeronautics and Space Administration. Material in this document may be copied without restraint for Library, abstract service, educational, or personal research purposes; however, republication of any portion requires the written permission of the authors as well as appropriate acknowledgment of this publication. This report may be cited as: Taylor G. J. and Warren PI H., eds. (1989) Workshop on Moon in Transition: Apo{l_ 14 KREEP, and Evolved Lunar Rocks. [PI Tech. Rpt. 89-03. Lunar and Planetary Institute, Houston. 156 pp. Papers in this report may be cited as: Author A. A. (1989) Title of paper. In W_nkshop on Moon in Transition: Ap_llo 14, KREEP, and Evolved Lunar Rocks (G. J. Taylor and P. H. Warren, eds.), pp. xx-yy. LPI Tech. Rpt.
    [Show full text]
  • Lunar and Planetary Science XXXII (2001) 1815.Pdf
    Lunar and Planetary Science XXXII (2001) 1815.pdf NEW AGE DETERMINATIONS OF LUNAR MARE BASALTS IN MARE COGNITUM, MARE NUBIUM, OCEANUS PROCELLARUM, AND OTHER NEARSIDE MARE H. Hiesinger1, J. W. Head III1, U. Wolf2, G. Neukum2 1 Department of Geological Sciences, Brown University, Providence, RI 02912, [email protected] 2 DLR-Inst. of Planetary Exploration, Rutherfordstr. 2, 12489 Berlin/Germany Introduction see a second small peak in volcanic activity at ~2-2.2 Lunar mare basalts cover about 17% of the lunar b.y. surface [1]. A significant portion of lunar mare basalts are exposed within Oceanus Procellarum for which Oceanus Procellarum, Mare Cognitum, Mare Nubium absolute radiometric age data are still lacking. Here we (Binned Ages of Mare Basalts) present age data that are based on remote sensing 20 techniques, that is, crater counts. We performed new crater size-frequency distribution measurements for spectrally homogeneous basalt units in Mare Cogni- 15 tum, Mare Nubium, and Oceanus Procellarum. The investigated area was previously mapped by Whitford- Stark and Head [2] who, based on morphology and 10 spectral characteristics, defined 21 distinctive basalt Frequency types in this part of the lunar nearside. Based on a high-resolution Clementine color ratio composite (e.g., 5 750-400/750+400 ratio as red, 750/990 ratio as green, and 400/750 ratio as blue), we remapped the distribu- 0 tion of distinctive basalts and found that their map well 1.1 1.5 2 2.5 3 3.5 4 discriminates the major basalt types. However, based Age [b.y.; bins of 100 m.y.] on the new high-resolution color data several of their units can be further subdivided into spectrally different Fig.
    [Show full text]
  • Apollo Over the Moon: a View from Orbit (Nasa Sp-362)
    chl APOLLO OVER THE MOON: A VIEW FROM ORBIT (NASA SP-362) Chapter 1 - Introduction Harold Masursky, Farouk El-Baz, Frederick J. Doyle, and Leon J. Kosofsky [For a high resolution picture- click here] Objectives [1] Photography of the lunar surface was considered an important goal of the Apollo program by the National Aeronautics and Space Administration. The important objectives of Apollo photography were (1) to gather data pertaining to the topography and specific landmarks along the approach paths to the early Apollo landing sites; (2) to obtain high-resolution photographs of the landing sites and surrounding areas to plan lunar surface exploration, and to provide a basis for extrapolating the concentrated observations at the landing sites to nearby areas; and (3) to obtain photographs suitable for regional studies of the lunar geologic environment and the processes that act upon it. Through study of the photographs and all other arrays of information gathered by the Apollo and earlier lunar programs, we may develop an understanding of the evolution of the lunar crust. In this introductory chapter we describe how the Apollo photographic systems were selected and used; how the photographic mission plans were formulated and conducted; how part of the great mass of data is being analyzed and published; and, finally, we describe some of the scientific results. Historically most lunar atlases have used photointerpretive techniques to discuss the possible origins of the Moon's crust and its surface features. The ideas presented in this volume also rely on photointerpretation. However, many ideas are substantiated or expanded by information obtained from the huge arrays of supporting data gathered by Earth-based and orbital sensors, from experiments deployed on the lunar surface, and from studies made of the returned samples.
    [Show full text]
  • The Moon and Eclipses
    Lecture 10 The Moon and Eclipses Jiong Qiu, MSU Physics Department Guiding Questions 1. Why does the Moon keep the same face to us? 2. Is the Moon completely covered with craters? What is the difference between highlands and maria? 3. Does the Moon’s interior have a similar structure to the interior of the Earth? 4. Why does the Moon go through phases? At a given phase, when does the Moon rise or set with respect to the Sun? 5. What is the difference between a lunar eclipse and a solar eclipse? During what phases do they occur? 6. How often do lunar eclipses happen? When one is taking place, where do you have to be to see it? 7. How often do solar eclipses happen? Why are they visible only from certain special locations on Earth? 10.1 Introduction The moon looks 14% bigger at perigee than at apogee. The Moon wobbles. 59% of its surface can be seen from the Earth. The Moon can not hold the atmosphere The Moon does NOT have an atmosphere and the Moon does NOT have liquid water. Q: what factors determine the presence of an atmosphere? The Moon probably formed from debris cast into space when a huge planetesimal struck the proto-Earth. 10.2 Exploration of the Moon Unmanned exploration: 1950, Lunas 1-3 -- 1960s, Ranger -- 1966-67, Lunar Orbiters -- 1966-68, Surveyors (first soft landing) -- 1966-76, Lunas 9-24 (soft landing) -- 1989-93, Galileo -- 1994, Clementine -- 1998, Lunar Prospector Achievement: high-resolution lunar surface images; surface composition; evidence of ice patches around the south pole.
    [Show full text]
  • Shoot the Moon – 1967
    Video Transcript for Archival Research Catalog (ARC) Identifier 45011 Assignment: Shoot the Moon – 1967 Narrator: The assignment was specific: get photographs of the surface of the Moon that are good enough to determine whether or not it’s safe for a man to land there. But appearances can be deceiving, just as deceiving as trying to get a good picture of, well, a candy apple. Doesn’t seem to be too much of a problem, just set it up, light it, and snap the picture. Easy, quick, simple. But it can be tough. To begin with, the apple is some distance away, so you can’t get to it to just set it up, light it, and so on. To make things even more difficult, it isn’t even holding still; it’s moving around in circles. Now timing is important. You have to take your picture when the apple is nearest to you so you get the most detail and when the light that’s available is at the best angle for the photo. And even that’s not all. You are moving too, in circles. You’re both turning and circling about the apple. Now, about that assignment. As the technology of man in space was developing, it became more and more apparent that our knowledge of the Moon’s surface as a possible landing site was not sufficient. To land man safely on the Moon and get him safely off again, we had to know whether we could set up a precise enough trajectory to reach the Moon.
    [Show full text]
  • Applications of SAR Interferometry in Earth and Environmental Science Research
    Sensors 2009, 9, 1876-1912; doi:10.3390/s90301876 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Review Applications of SAR Interferometry in Earth and Environmental Science Research Xiaobing Zhou 1,*, Ni-Bin Chang 2 and Shusun Li 3 1 Department of Geophysical Engineering, Montana Tech of The University of Montana, Butte, MT 59701, USA; E-Mail: [email protected] (X.Z.) 2 Department of Civil, Environmental, and Construction Engineering, University of Central Florida, 4000 Central Florida Blvd.; Orlando, FL 32816, USA; E-Mail: [email protected] (N.B.C.) 3 Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Drive, P.O. Box 757320, Fairbanks, AK 99775-7320, USA; E-Mail: [email protected] (S.L.) * Author to whom correspondence should be addressed; E-Mail: [email protected] (X.Z.); Tel.: +1-406-496-4350; Fax: +1-406-496-4704 Received: 23 September 2008; in revised version: 10 December 2008 / Accepted: 12 March 2009 / Published: 13 March 2009 Abstract: This paper provides a review of the progress in regard to the InSAR remote sensing technique and its applications in earth and environmental sciences, especially in the past decade. Basic principles, factors, limits, InSAR sensors, available software packages for the generation of InSAR interferograms were summarized to support future applications. Emphasis was placed on the applications of InSAR in seismology, volcanology, land subsidence/uplift, landslide, glaciology, hydrology, and forestry sciences. It ends with a discussion of future research directions. Keywords: InSAR, phase, interferogram, deformation, remote sensing. 1. InSAR Overview of InSAR 1.1. Introduction Interferometric synthetic aperture radar (InSAR) is a rapidly evolving remote sensing technology that directly measures the phase change between two phase measurements of the same ground pixel of Sensors 2009, 9 1877 the Earth’s surface.
    [Show full text]
  • Evolution of the Moon: the 1974 Model
    Evolution of the Moon: The 1974 Model Harrison H. Schmitt Astronaut, Apollo 17* The geology of the decade of Apollo and Luna probably will become one of the fundamental turning points in the history of all science. For the first time, the scientists of the Earth have been presented with the opportunity to interpret their home planet through the direct investigations of another. Mankind can be proud and take heart in this fact. The interpretive evolution of the Moon can be divided now into seven major stages be- ginning sometime near the end of the formation of the solar system. These stages and their approximate durations in time are as follows: 1. The Beginning: 4.6 billion years ago 2. The Melted Shell: 4.6 to 4.4 billion years ago 3. The Cratered Highlands: 4.4 to 4.1 billion years ago 4. The Large Basins: 4.1 to 3.9 billion years ago 5. The Light-colored Plains: 3.9 to 3.8 billion years ago 6. The Basaltic Maria: 3.8 to 3.0 (?) billion years ago 7. The Quiet Crust: 3.0 (?) billion years ago to the present The Apollo and Luna explorations that permit us to study these stages of evolution each have contributed in progressive and significant ways. Through them we now can look with new insight-into the early differentiation of the Earth, the nature of the Earth's protocrust, the influence of the formation of large impact basins in that crust, the effects of early partial melting of the protomantle, and possibly the earliest stages of the breakup of the protocrust into continents and ocean basins.
    [Show full text]
  • The Moon, a Disk Or a Sphere?
    The Moon, a disk or a sphere? E.Seperuelo Duarte1, A.T.Mota2, J.R. de Carvalho2, R.C. Xavier2 and P.V.S.Souza2 1Instituto Federal de Educa¸c~ao,Ci^enciae Tecnologia do Estado do Rio de Janeiro, Campus Nil´opolis, 26530-060 Nil´opolis, Rio de Janeiro, Brazil 2Instituto Federal de Educa¸c~ao,Ci^enciae Tecnologia do Estado do Rio de Janeiro, Campus Volta Redonda, 27215-350 Volta Redonda, Rio de Janeiro, Brazil E-mail: [email protected] June 2021 Abstract. In this paper, we present a physical modeling activity whose objective is to allow students to determine the differences between a disk and a sphere using pure scientific criteria. Thereunto, we reproduce the Sun-Earth-Moon system with low-cost materials and compare the illumination effects on the Moon considering two possible shapes for it (a sphere and a disk). The analysis is based on the shape of the terminator line produced in each case as a function of the illumination angle. The results obtained are first discussed and then applied so that one can interpret the observed patterns in the illumination effects of other celestial bodies, such as Venus or even the Earth. Thereby, the activity can be very useful to unmask the unscientific idea of Flat Earth. The entire activity is easily replicable and it may be useful to promote a more realistic view of science and its methods. Keywords: Scientific modeling, Sun-Earth-Moon system, Flat Earth, Terminator line; arXiv:2106.06618v2 [physics.ed-ph] 26 Aug 2021 The Moon, a disk or a sphere? 2 1.
    [Show full text]