Lunar and Planetary Science XXXII (2001) 1815.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Lunar and Planetary Science XXXII (2001) 1815.Pdf Lunar and Planetary Science XXXII (2001) 1815.pdf NEW AGE DETERMINATIONS OF LUNAR MARE BASALTS IN MARE COGNITUM, MARE NUBIUM, OCEANUS PROCELLARUM, AND OTHER NEARSIDE MARE H. Hiesinger1, J. W. Head III1, U. Wolf2, G. Neukum2 1 Department of Geological Sciences, Brown University, Providence, RI 02912, [email protected] 2 DLR-Inst. of Planetary Exploration, Rutherfordstr. 2, 12489 Berlin/Germany Introduction see a second small peak in volcanic activity at ~2-2.2 Lunar mare basalts cover about 17% of the lunar b.y. surface [1]. A significant portion of lunar mare basalts are exposed within Oceanus Procellarum for which Oceanus Procellarum, Mare Cognitum, Mare Nubium absolute radiometric age data are still lacking. Here we (Binned Ages of Mare Basalts) present age data that are based on remote sensing 20 techniques, that is, crater counts. We performed new crater size-frequency distribution measurements for spectrally homogeneous basalt units in Mare Cogni- 15 tum, Mare Nubium, and Oceanus Procellarum. The investigated area was previously mapped by Whitford- Stark and Head [2] who, based on morphology and 10 spectral characteristics, defined 21 distinctive basalt Frequency types in this part of the lunar nearside. Based on a high-resolution Clementine color ratio composite (e.g., 5 750-400/750+400 ratio as red, 750/990 ratio as green, and 400/750 ratio as blue), we remapped the distribu- 0 tion of distinctive basalts and found that their map well 1.1 1.5 2 2.5 3 3.5 4 discriminates the major basalt types. However, based Age [b.y.; bins of 100 m.y.] on the new high-resolution color data several of their units can be further subdivided into spectrally different Fig. 1:Distribution of basalt ages in Oceanus Procellarum, Mare basalt sub-types. The purpose of remapping the basalts Cognitum, and Mare Nubium in Oceanus Procellarum was to define spectrally ho- mogeneous units for which we assume that they were All Investigated Basins formed within a short period of time with to a first (Binned Ages of Mare Basalts) order homogeneous mineralogy, such as a single erup- 50 tive phase. Definition of homogeneous units is one of the crucial prerequisites for reliable age determina- 40 tions with crater size-frequency distribution measure- ments. Having defined such units with Clementine 30 images, we transferred the unit boundaries to high- resolution Lunar Orbiter IV images in order to meas- ure the crater size-frequency distribution. Clementine Frequency 20 images are not well suited for crater counts because of their high sun angle. The technique of crater size- 10 frequency distribution measurements on spectrally homogeneous regions has been previously applied to 0 basalts in Mare Imbrium, Serenitatis, Tranquillitatis, 1.1 1.5 2 2.5 3 3.5 4 Humorum, Humboldtianum, Australe and is described Age [b.y.; bins of 100 m.y.] in detail by [3]. Fig. 2:Distribution of basalt ages in all investigated basins (Im- Results brium, Serenitatis, Tranquillitatis, Oceanus Procellarum, Based on the new age data, Figure 1 shows the Cognitum, Nubium, Humorum, Humboldtianum, Australe) distribution of basalt ages in the investigated mare regions in Oceanus Procellarum, Mare Cognitum, and Mare Nubium. The largest number of basalt units per time bin was Our new crater size frequency distribution data of formed in the late Imbrian Period at ~3.3-3.5 b.y. We the remapped basalt units indicate that the ages of Lunar and Planetary Science XXXII (2001) 1815.pdf NEW AGE DETERMINATIONS OF LUNAR MARE BASALTS HIESINGER, H. ET AL. basalts in Mare Cognitum vary from 3.32 b.y. to 3.65 cate thicknesses of up to tens of meters. Our volume b.y. We dated ~7 count areas in Mare Cognitum but estimates are based on the assumption that a single only one unit showed evidence for a resurfacing basalt flow unit is 10 m thick. This thickness is a con- event. In Mare Nubium we dated ~20 count areas. servative estimate because it is at the lower end of Ages in Mare Nubium are generally similar to ages thickness estimates found in the literature [e.g., 4, 5]. obtained for basalts in Mare Cognitum but show a Once the areal extent of a basalt unit is measured, wider range of ages of 2.77-3.67 b.y. At least two the volume can be calculated and plotted in cumula- basalt units in Mare Nubium show two clearly distin- tive form versus the age. Figure 3 shows the flux of guishable ages, indicating that a resurfacing event basalts in all investigated areas, that is Imbrium, affected these units. Combined with our previously Serenitatis, Tranquillitatis, Humorum, Humboldtia- presented ages, the new crater counts indicate that num, Australe, Oceanus Procellarum, Cognitum, and active mare volcanism in Oceanus Procellarum ranges Nubium. Our data indicate that the largest basalt vol- over a long period of time from about 1.14 b.y. to umes erupted 3.3-3.7 b.y. ago. However, it has to be about 3.93 b.y., a total of ~2.8 b.y. kept in mind that older units, that are partially cov- Figure 2 shows the distribution of ages of ~220 ered with younger units are systematically underesti- basalt units that are exposed in all investigated basins. mated in their volume. The implication is that the flux For this plot we combined results from our previous curve may be steeper at older ages. Flattening of the age determinations for basalts in Mare Imbrium, curve at ages >3.7 b.y. is very likely an effect of cov- Serenitatis, Tranquillitatis, Humorum, Humboldtia- ering older units and not caused by a small flux. num, and Australe with new results for Oceanus Pro- Making use of the new data, we are now able to in- cellarum, Cognitum, and Nubium [3]. The data indi- vestigate the stratigraphy of nearside basalts and to cate that lunar volcanism in the large nearside mare study variations in basalt mineralogy with time [6] started at ~4 b.y. ago and ended at ~1.1 b.y. Most of the investigated basalts on the lunar nearside erupted Conclusions during the late Imbrian Period. Based on our new age determinations for basalts Combining age data with volume calculations of that are exposed in Oceanus Procellarum we conclude distinctive basalt units, we can make contributions to that (1) volcanism was active over a long period of estimates of the flux of lunar volcanism. time, starting at ~4 b.y. and ending at ~1.1 b.y.; (2) the largest number of basalt units were formed in the Cumulative Volumes late Imbrian Period at ~3.3-3.5 b.y.; (3) there is (Based on Estimated Thickness of 10m) All Investigated Basins probably a second peak in volcanic activity at ~2-2.2 3.5 104 b.y.; (4) the flux of lunar basalts was largest during 3 104 the late Imbrian Period, especially between ~3.3 and ~3.7 b.y., (5) the flux of basalts is significantly 4 ] 2.5 10 3 smaller during the Eratosthenian Period. 2 104 References 1.5 104 [1] Head, 1976, Rev. of Geophys. Space Phys. 14, 265-300; [2] 4 Whitford-Stark, J.L., Head III, J.W., [1980]. J. Geophys. Res. 85, 1 10 No. B11, 6579-6609; [3] Hiesinger et al., 2000, J. Geophys. Rev., in press; [4] Schaber, 1973, Proc. Lunar Planet. Sci. Conf., 4, 73- Cumulative Volume [km 5000 92; [5] Gifford and El-Baz, 1981, Moon and Planets 24, 391-398; 0 [6] Hiesinger et al., 2001, LPSC XXXII, this issue; -5000 1 1.5 2 2.5 3 3.5 4 Age [b.y.] Fig. 3: Cumulative volumes of basalts in all investigated basins (Imbrium, Serenitatis, Tranquillitatis, Oceanus Procellarum, Cog- nitum, Nubium, Humorum, Humboldtianum, Australe) For the calculation of the volume of a basalt unit, we have to rely on assumptions on the thickness of the flow unit. We do not know the thickness of each individual basalt unit, but measurements of flow units in Mare Imbrium and at the Apollo landing sites indi-.
Recommended publications
  • Warren and Taylor-2014-In Tog-The Moon-'Author's Personal Copy'.Pdf
    This article was originally published in Treatise on Geochemistry, Second Edition published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Warren P.H., and Taylor G.J. (2014) The Moon. In: Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, vol. 2, pp. 213-250. Oxford: Elsevier. © 2014 Elsevier Ltd. All rights reserved. Author's personal copy 2.9 The Moon PH Warren, University of California, Los Angeles, CA, USA GJ Taylor, University of Hawai‘i, Honolulu, HI, USA ã 2014 Elsevier Ltd. All rights reserved. This article is a revision of the previous edition article by P. H. Warren, volume 1, pp. 559–599, © 2003, Elsevier Ltd. 2.9.1 Introduction: The Lunar Context 213 2.9.2 The Lunar Geochemical Database 214 2.9.2.1 Artificially Acquired Samples 214 2.9.2.2 Lunar Meteorites 214 2.9.2.3 Remote-Sensing Data 215 2.9.3 Mare Volcanism
    [Show full text]
  • A Zircon U-Pb Study of the Evolution of Lunar KREEP
    A zircon U-Pb study of the evolution of lunar KREEP By A.A. Nemchin, R.T. Pidgeon, M.J. Whitehouse, J.P. Vaughan and C. Meyer Abstract SIMS U-Pb analyses show that zircons from breccias from Apollo 14 and Apollo 17 have essentially identical age distributions in the range 4350 to 4200 Ma but, whereas Apollo 14 zircons additionally show ages from 4200 to 3900 Ma, the Apollo 17 samples have no zircons with ages <4200 Ma. The zircon results also show an uneven distribution with distinct peaks of magmatic activity. In explaining these observations we propose that periodic episodes of KREEP magmatism were generated from a primary reservoir of KREEP magma, which contracted over time towards the centre of Procellarum KREEP terrane. Introduction One of the most enigmatic features of the geology of the Moon is the presence of high concentrations of large ion lithophile elements in clasts from breccias from non mare regions. This material, referred to as KREEP (1) from its high levels of K, REE and P, also contains relatively high concentrations of other incompatible elements including Th, U and Zr. Fragments of rocks with KREEP trace element signatures have been identified in samples from all Apollo landing sites (2). The presence of phosphate minerals, such as apatite and merrillite (3); zirconium minerals, such as zircon (4), zirconolite (5) and badelleyite (6), and rare earth minerals such as yttrobetafite (7), are direct expressions of the presence of KREEP. Dickinson and Hess (8) concluded that about 9000 ppm of Zr in basaltic melt is required to saturate it with zircon at about 1100oC (the saturation concentration increases exponentially with increasing temperature).
    [Show full text]
  • Assessment of Spectral Properties of Apollo 12 Landing Site Yann Chemin1, Ian Crawford2, Peter Grindrod2, and Louise Alexander2
    Assessment of spectral properties of Apollo 12 landing site Yann Chemin1, Ian Crawford2, Peter Grindrod2, and Louise Alexander2 1Student, Birkbeck Colllege, University of London 2Birkbeck Colllege, University of London Corresponding author: Yann Chemin1 Email address: [email protected] ABSTRACT The geology and mineralogy of the Apollo 12 landing site has been the subject of recent studies that this research attempts to complement from a remote sensing point of view using the Moon Mineralogy Mapper (M3) sensor data, onboard the Chandrayaan-1 lunar orbiter. It is a higher spatial-spectral resolution sensor than the Clementine UVVis sensor and gives the opportunity to study the lunar surface with a comparatively more detailed spectral resolution. We used ISIS and GRASS GIS to study the M3 data. The M3 signatures are showing a monotonic featureless increment, with very low reflectance, suggesting a mature regolith. The regolith maturity is splitting the landing site in a younger Northwest and older Southeast. The mineral identification using the lunar sample spectra from within the Relab database found some similarity to a basaltic rock/glass mix. The spectrum features of clinopyroxene have been found in the Copernican rays and at the landing site. Lateral mixing increases FeO content away from the central part of the ray. The presence of clinopyroxene in the pigeonite basalt in the stratigraphy of the landing site brings forth some complexity in differentiating the Copernican ray’s clinopyroxene from the local source, as the spectra are twins but for their vertical shift in reflectance, reducing away from the central part of the ray. Spatial variations in mineralogy were not found mostly because of the pixel size compared to the landing site area.
    [Show full text]
  • 10Great Features for Moon Watchers
    Sinus Aestuum is a lava pond hemming the Imbrium debris. Mare Orientale is another of the Moon’s large impact basins, Beginning observing On its eastern edge, dark volcanic material erupted explosively and possibly the youngest. Lunar scientists think it formed 170 along a rille. Although this region at first appears featureless, million years after Mare Imbrium. And although “Mare Orien- observe it at several different lunar phases and you’ll see the tale” translates to “Eastern Sea,” in 1961, the International dark area grow more apparent as the Sun climbs higher. Astronomical Union changed the way astronomers denote great features for Occupying a region below and a bit left of the Moon’s dead lunar directions. The result is that Mare Orientale now sits on center, Mare Nubium lies far from many lunar showpiece sites. the Moon’s western limb. From Earth we never see most of it. Look for it as the dark region above magnificent Tycho Crater. When you observe the Cauchy Domes, you’ll be looking at Yet this small region, where lava plains meet highlands, con- shield volcanoes that erupted from lunar vents. The lava cooled Moon watchers tains a variety of interesting geologic features — impact craters, slowly, so it had a chance to spread and form gentle slopes. 10Our natural satellite offers plenty of targets you can spot through any size telescope. lava-flooded plains, tectonic faulting, and debris from distant In a geologic sense, our Moon is now quiet. The only events by Michael E. Bakich impacts — that are great for telescopic exploring.
    [Show full text]
  • Workshop on Moon in Transition: Apollo 14, Kreep, and Evolved Lunar Rocks
    WORKSHOP ON MOON IN TRANSITION: APOLLO 14, KREEP, AND EVOLVED LUNAR ROCKS (NASA-CR-I"'-- N90-I_02o rRAN31TION: APJLLN l_p KRFEP, ANu _VOLVFD LUNAR ROCKS (Lunar and Pl_net3ry !nst.) I_7 p C_CL O3B Unclas G3/91 0253133 LPI Technical Report Number 89-03 UNAR AND PLANETARY INSTITUTE 3303 NASA ROAD 1 HOUSTON, TEXAS 77058-4399 7 WORKSHOP ON MOON IN TRANSITION: APOLLO 14, KREEP, AND EVOLVED LUNAR ROCKS Edited by G. J. Taylor and P. H. Warren Sponsored by Lunar and Planetary Institute NASA Johnson Space Center November 14-16, 1988 Houston, Texas Lunar and Planetary Institute 330 ?_NASA Road 1 Houston, Texas 77058-4399 LPI Technical Report Number 89-03 Compiled in 1989 by the LUNAR AND PLANETARY INSTITUTE The Institute is operated by Universities Space Research Association under Contract NASW-4066 with the National Aeronautics and Space Administration. Material in this document may be copied without restraint for Library, abstract service, educational, or personal research purposes; however, republication of any portion requires the written permission of the authors as well as appropriate acknowledgment of this publication. This report may be cited as: Taylor G. J. and Warren PI H., eds. (1989) Workshop on Moon in Transition: Apo{l_ 14 KREEP, and Evolved Lunar Rocks. [PI Tech. Rpt. 89-03. Lunar and Planetary Institute, Houston. 156 pp. Papers in this report may be cited as: Author A. A. (1989) Title of paper. In W_nkshop on Moon in Transition: Ap_llo 14, KREEP, and Evolved Lunar Rocks (G. J. Taylor and P. H. Warren, eds.), pp. xx-yy. LPI Tech. Rpt.
    [Show full text]
  • GRAIL-Identified Gravity Anomalies In
    Solar System Exploration Division, GSFC Code 690 GRAIL-identified gravity anomalies in Oceanus Procellarum: Insight into subsurface impact and volcanic/magmatic structures on the Moon Ariel N. Deutsch1, Gregory A. Neumann2, James W. Head1 1Department of Earth, Environmental and Planetary Sciences, Brown University, 2NASA Goddard Space Flight Center Introduction: Lunar gravity anomalies. Positive Bouguer gravity anomalies. • Four distinctive positive Bouguer gravity anomalies are • Previous work has suggested that these four positive gravity anomalies may be due to: -Subsurface volcanic sills [2]. • New, higher-resolution GRAIL data [3] allow for the re- analysis of these anomalies. • Understanding the subsurface density structures that contribute to these anomalies is important in order to discuss regional impact and volcanic histories, and the evolution of the lunar crust in Oceanus Procellarum. Objectives. 1. Constrain subsurface structures that contribute to the . four positive Bouguer gravity anomalies. 2. Discuss the hidden impact and volcanic histories of . the Moon. Methods. Results: Filled and buried impact craters. RESULTS: MANTLE UPWELLING • Six geologic end-member scenarios are explored to 20 200 1. Filled and Buried Impact 2. Southern Aristarchus Plateau analyze the four observed gravitational anomalies. 15 Model 3 10 GRAIL 100 • Impact crater parameters [e.g., 4] are estimated to C Gravity 5 B from uplift Gravity from A 0 0 km -3 km km ρ = 3150 kg m -5 mGal mGal • Analyses of the generation, ascent, and eruption of -3 mGal ρ = 2800 kg m crater -10 Surface topography -100 -3 of subsurface magmatic structures and also the . -15 ∆ρ = 600 kg m Highland crust -20 -200 Mantle interpretation of surface volcanic features.
    [Show full text]
  • Water on the Moon, III. Volatiles & Activity
    Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere).
    [Show full text]
  • Apollo Over the Moon: a View from Orbit (Nasa Sp-362)
    chl APOLLO OVER THE MOON: A VIEW FROM ORBIT (NASA SP-362) Chapter 1 - Introduction Harold Masursky, Farouk El-Baz, Frederick J. Doyle, and Leon J. Kosofsky [For a high resolution picture- click here] Objectives [1] Photography of the lunar surface was considered an important goal of the Apollo program by the National Aeronautics and Space Administration. The important objectives of Apollo photography were (1) to gather data pertaining to the topography and specific landmarks along the approach paths to the early Apollo landing sites; (2) to obtain high-resolution photographs of the landing sites and surrounding areas to plan lunar surface exploration, and to provide a basis for extrapolating the concentrated observations at the landing sites to nearby areas; and (3) to obtain photographs suitable for regional studies of the lunar geologic environment and the processes that act upon it. Through study of the photographs and all other arrays of information gathered by the Apollo and earlier lunar programs, we may develop an understanding of the evolution of the lunar crust. In this introductory chapter we describe how the Apollo photographic systems were selected and used; how the photographic mission plans were formulated and conducted; how part of the great mass of data is being analyzed and published; and, finally, we describe some of the scientific results. Historically most lunar atlases have used photointerpretive techniques to discuss the possible origins of the Moon's crust and its surface features. The ideas presented in this volume also rely on photointerpretation. However, many ideas are substantiated or expanded by information obtained from the huge arrays of supporting data gathered by Earth-based and orbital sensors, from experiments deployed on the lunar surface, and from studies made of the returned samples.
    [Show full text]
  • Project Xpedition Is the Product of Purdue University‟S Aeronautical and Astronautical Engineering Department Senior Spacecraft Design Class in the Spring of 2009
    92 Project Xpedition Purdue University AAE 450 Spacecraft Design Spring 2009 Contents 1 – FOREWORD ........................................................................................................................................... 5 2 – INTRODUCTION ................................................................................................................................... 7 2.1 – BACKGROUND .................................................................................................................................... 7 2.2 – WHAT‟S IN THIS REPORT? .................................................................................................................. 9 2.3 – ACKNOWLEDGEMENTS .....................................................................................................................10 2.4 – ACRONYM LIST .................................................................................................................................12 3 – PROJECT OVERVIEW ....................................................................................................................... 14 3.1 – DESIGN REQUIREMENTS ...................................................................................................................14 3.2 – INTERPRETATION OF DESIGN REQUIREMENTS ...................................................................................18 3.3 – DESIGN PROCESS ..............................................................................................................................19 3.4 – RISK
    [Show full text]
  • The Stratigraphy of Mare Basalts in Oceanus Procellarum: Initial Results from New Crater Size-Frequency Distribution Measurements
    ICEUM4, 10-15 July 2000, ESTEC, Noordwijk, The Netherlands The Stratigraphy of Mare Basalts in Oceanus Procellarum: Initial Results from New Crater Size-Frequency Distribution Measurements H. Hiesinger, J.W. Head III (Dept. of Geological Sciences, Brown University, USA); Wolf, U., Neukum, G. (DLR- Institute of Space Sensor Technology and Planetary Exploration, Germany) The stratigraphy of basalts in Oceanus Procellarum was previously investigated by Whitford-Stark and Head [1]. Based on morphologic studies, spectral reflectance and other remote sensing information they defined 21 distinctive basalt units, grouped into four formations, the Repsold-, Telemann-, Hermann-, and the Sharp-Formation. We produced a high-resolution Clementine color ratio image, superposed their map, and found that it generally discriminates well between the major spectral basalt types. However, we found that several units can be further subdivided into spectrally different basalt sub-types. The spatial distribution of previously published age data [2, 3] does not correlate with the outline of these spectrally defined units. Therefore we performed new crater size-frequency distribution measurements for spectrally and morphologically defined basalts in order to investigate the stratigraphy of basalts in Oceanus Procellarum. Our crater counts show that active mare volcanism in Oceanus Procellarum occured over a long period of time from about 1.3 b.y. to about 3.6-3.7 b.y. Lichtenberg, a bright ray crater, is partly embayed by basalt flows which cover the bright rays. Consequently, this basalt was thought to be the very youngest basalt, i.e. Copernican in age, and to mark the end of lunar volcanism [4]. However, our data show that the Lichtenberg Basalt is about 2 b.y.
    [Show full text]
  • Volcanic Plume, Not an Asteroid, Likely Created the Moon's Largest Basin 1 October 2014, by Jennifer Chu
    Solving the mystery of the 'man in the moon': Volcanic plume, not an asteroid, likely created the moon's largest basin 1 October 2014, by Jennifer Chu by a massive asteroid. Instead, researchers believe that the angular outline was produced by giant tension cracks in the moon's crust as it cooled around an upwelling plume of hot material from the deep interior. Maria Zuber, the E.A. Griswold Professor of Geophysics and also MIT's vice president for research, says that as cracks occurred, they formed a "plumbing system" in the moon's crust The Moon as observed in visible light (left), topography through which magma could meander to the (center, where red is high and blue is low), and the surface. Magma eventually filled the region's GRAIL gravity gradients (right). The Procellarum region smaller basins, creating what we see today as dark is a broad region of low topography covered in dark spots on the near side of the moon—features that mare basalt. The gravity gradients reveal a giant rectangular pattern of structures surrounding the region. have inspired the popular notion of a "man in the Credit: NASA/Colorado School of moon." Mines/MIT/JPL/Goddard Space Flight Center "A lot of things in science are really complicated, but I've always loved to answer simple questions," says Zuber, who is principal investigator for the New data obtained by NASA's GRAIL mission GRAIL (Gravity Recovery and Interior Laboratory) reveals that the Procellarum region on the near mission. "How many people have looked up at the side of the moon—a giant basin often referred to as moon and wondered what produced the pattern we the "man in the moon"—likely arose not from a see—let me tell you, I've wanted to solve that one!" massive asteroid strike, but from a large plume of magma deep within the moon's interior.
    [Show full text]
  • GRAIL-Identified Gravity Anomalies in Oceanus Procellarum: Insight Into 2 Subsurface Impact and Magmatic Structures on the Moon 3 4 Ariel N
    1 GRAIL-identified gravity anomalies in Oceanus Procellarum: Insight into 2 subsurface impact and magmatic structures on the Moon 3 4 Ariel N. Deutscha, Gregory A. Neumannb, James W. Heada, Lionel Wilsona,c 5 6 aDepartment of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 7 02912, USA 8 bNASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 9 cLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK 10 11 Corresponding author: Ariel N. Deutsch 12 Corresponding email: [email protected] 13 14 Date of re-submission: 5 April 2019 15 16 Re-submitted to: Icarus 17 Manuscript number: ICARUS_2018_549 18 19 Highlights: 20 • Four positive Bouguer gravity anomalies are analyzed on the Moon’s nearside. 21 • The amplitudes of the anomalies require a deep density contrast. 22 • One 190-km anomaly with crater-related topography is suggestive of mantle uplift. 23 • Marius Hills anomalies are consistent with intruded dike swarms. 24 • An anomaly south of Aristarchus has a crater rim and possibly magmatic intrusions. 25 26 Key words: 27 Moon; gravity; impact cratering; volcanism 1 28 Abstract 29 30 Four, quasi-circular, positive Bouguer gravity anomalies (PBGAs) that are similar in diameter 31 (~90–190 km) and gravitational amplitude (>140 mGal contrast) are identified within the central 32 Oceanus Procellarum region of the Moon. These spatially associated PBGAs are located south of 33 Aristarchus Plateau, north of Flamsteed crater, and two are within the Marius Hills volcanic 34 complex (north and south). Each is characterized by distinct surface geologic features suggestive 35 of ancient impact craters and/or volcanic/plutonic activity.
    [Show full text]