Guidance on Best Available
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) United States Patent (10) Patent No.: US 9,724,649 B2 Stasiak Et Al
USOO9724649B2 (12) United States Patent (10) Patent No.: US 9,724,649 B2 Stasiak et al. (45) Date of Patent: Aug. 8, 2017 (54) SELF-WETTING POROUS MEMBRANES (I) (56) References Cited (71) Applicant: PALL CORPORATION, Port U.S. PATENT DOCUMENTS Washington, NY (US) 3,318,959 A 5, 1967 Borman 3,847,867 A 11/1974 Heath et al. (72) Inventors: Marcin Stasiak, Port Washington, NY (Continued) (US); Hassan Ait-Haddou, Melville, NY (US) FOREIGN PATENT DOCUMENTS EP O318787 A2 6, 1989 (73) Assignee: Pall Corporation, Port Washington, EP 296274.6 A1 1, 2016 NY (US) (Continued) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 OTHER PUBLICATIONS U.S.C. 154(b) by 168 days. European Patent Office, Extended European Search Report issued in European Patent Application No. 16167135.9 (Oct. 27, 2016) 5 pp. (21) Appl. No.: 14/750,382 (Continued) Primary Examiner — Taiwo Oladapo (22) Filed: Jun. 25, 2015 (74) Attorney, Agent, or Firm — Leydig, Voit & Mayer, Ltd. Prior Publication Data (65) (57) ABSTRACT US 2016/0375409 A1 Dec. 29, 2016 Disclosed is a self-wetting porous membrane comprising an aromatic hydrophobic polymer Such as polysulfone and a (51) Int. C. wetting agent comprising a copolymer of formula A-B or A-B-A, wherein A is a hydrophilic segment comprising a BOLD 7L/06 (2006.01) polymerized monomer of the formula (I): CH=C(R')(R), BOLD 69/06 (2006.01) wherein R' and R are as described herein, and B is an (Continued) aromatic hydrophobic polymeric segment, wherein seg (52) U.S. -
United States Patent (19) 11 Patent Number: 4,764,566 Swedo (45
United States Patent (19) 11 Patent Number: 4,764,566 Swedo (45. Date of Patent: Aug. 16, 1988 54 PENDANT BIPHENYLENE ASA OTHER PUBLICATIONS CROSS-LINKING SITE IN AROMATIC THERMOPLASTC POLYMERS Garapon & Stille, Macromolecules, 10, 627 (1977). Recca & Stille, ibid., 10, 1344 (1977) & 11, 479 (1978). (75) Inventor: Raymond J. Swedo, Mt. Prospect, Ill. Swedo and Marvel, J. PolymerSci, Polymer Chem. Ed., 16, 2711 (1978). (73 Assignee: Allied-Signal Inc., Morristown, N.J. Ibid, 15, 683 (1977) and 17, 2815 (1979). M Primary Examiner-Theodore E. Pertilla 21 Appl. No.: 46,813 Attorney, Agent, or Firm-Thomas K. McBride; Eugene I. Snyder Fied: May 7, 1987 22 57 ABSTRACT (51) Int. Cl.' ...... 0 v 0 p a y who C08 L 71/04 Thermally stable polymers may be cross-linked by ap (52) U.S. C. .................................... 525/390; 525/397; pending biphenylene moieties to the polymer backbone, w 525/462; 525/471 then heating the modified polymer at a temperature in (58) Field of Search ................ 525/462,390, 397, 471 excess of about 300' C. The cross-link density of the cured polymer can be controlled by varying the relative 56) References Cited population of biphenylene moieties on the polymer U.S. PATENT DOCUMENTS backbone. Properties of the modified but uncured poly mer are essentially the same as those in the original 4,197,393 4/1980 Swedo et al. ....................... 528/173 4,269,953 5/1981 Brand .................................. 52.5/534 thermally stable polymer. 4,414,380 1 1/1983 Swedo ................................. 528/173 4,507,462 3/1985 Stille .................................... 528/125 14 Claims, No Drawings 4,764,566 1. -
Rates 2017.Xlsx
Facilities with Scales - Schedule of Charges March 2017 Description Charges GENERAL Basic Gate Fee $50 per ton Minimum Gate Fee Charge for Waste $5.00 Recyclable Materials Drop Off No Charge TYPE OF MATERIAL HOUSEHOLD TRASH Up to 200 lbs. minimum Gate Fee $5.00 $0.50 each additional 20 lb. increment or fraction CONSTRUCTION AND DEMOLITION (C&D) C&D with no concrete, recyclables, green waste or chipable wood $50 per ton minimum $5.00 Separated Concrete $25 per ton minimum $5.00 Separated chipable wood $25 per ton minimum $5.00 Mixed C&D (household trash, recyclables, green waste and/or concrete in the load) $175 per ton minimum $5.00 GREEN WASTE Lawn Clippings/Leaves, Up to 400lbs. Minimum Gate Fee $5.00 yard waste, brush, shrubs, $.0.50 each additional 40lb. Increment or fraction trees, branches, woodchips. Tree Stumps $4.00 less than 24" plus Gate Fee $5.00 $12.00 greater than 24" plus Gate Fee $5.00 Mixed Debris (Green waste, household trash,recyclables and/or concrete in the load) $175 per ton minimum $5.00 ANIMALS Small (less than 25 lbs.) $5.00 each + $5.00 Gate Fee Medium (25-200 lbs.) $10.00 each + $5.00 Gate Fee Large (more than 200lbs.) $30.00 each + $5.00 Gate Fee FURNITURE $5.00 minimum Gate Fee plus $4.00 per item ELECTRONIC WASTE No Charge UNIVERSAL WASTE No Charge RESIDENTIAL HOUSEHOLD HAZARDOUS WASTE No Charge COMMERCIAL HAZARDOUS WASTE Not accepted SEPTAGE Inyo $65.00 first 3,000 gallons $42.00 per additional 1,000 gallons or increment Out of County $130.00 first $3,000 gallons $84.00 per addional 1,000 gallons or increment Facilities with Scales - Schedule of Charges March 2017 Description Charges TIRES Auto & light truck $4.00 for 19" rim or less + $5.00 Gate Fee $8.00 for 20" - 24.5" rim + $5.00 Gate Fee Tractor/Heavy Equipment Tire $30 For Up to 100 lbs + $5.00 Gate Fee $40 over 100 lbs. -
Gas Chromatography Supplies Catalog 62 1-800-729-6872
1-800-729-6872 www.ovsc.com Gas Chromatography Supplies Catalog 62 1-800-729-6872 Get the GC products you need, when you need them. A trusted source Ohio Valley has gained a worldwide reputation as being the standard in the industry for our production of a complete line of high quality OV® liquid phases. Our fused silica capillary columns are manufactured using genuine OV® liquid phases. These columns are capable of performing a wide variety of separations on the most difficult samples and are extremely reproducible, highly efficient, inert, thermally stable and bonded. Each column is thoroughly preconditioned and individually pretested to guarantee high quality. No worries, no risks Our products are of the highest quality and fully guaranteed. Get items quickly Most orders are shipped within 24 hours. Get help and information Our experience in the field of gas chromatography goes back to 1966 with the introduction of OV®-1. Our highly dedicated and knowledgeable staff is here to help you with technical support and personal service. 115 Industry Road, Marietta, OH 45750 1-800-729-6872 • (740) 373- 2276 • Fax (740) 373-9910 E-mail: [email protected] • Web: www.ovsc.com ©2013 Ohio Valley Specialty Company Catalog Design and Nature Photographs: ©2013 Morehead Marketing Inc. These images may not be used in any manner without written authorization from the owners. www.ovsc.com Capillary Table of Contents Activated Alumina . 30 Columns Adsorbents, Dessicants . 30 4-12 Applications . 56-78 Autosampler Syringes, Agilent . 41 Autosampler Vials . 49-51 Capillary Maintenance Kit . 45 Glass Columns Capillary Connectors . -
00 Gate Fee Schedule
EFFECTIVE Nov. 17, 2020 GATE FEE SUMMARY Walker Transfer Station / Lanfill Mono County Solid Waste Program *All prices for waste that must be transported off-site include a $20/ton Transportation Surcharge GREEN ITALICIZED TEXT = RECYCLED MATERIAL Category / Item Description Unit Cost Minimum Gate Fee ....................................................................................................................... $5.00 per load Household and Commercial Waste. “First” Garbage Can(s) (up to 82 gallons, or any portion thereof) .................................................. $5.00 Additional Cans (up to 41 gallons each, or any portion thereof) ............................................. $2.50 Mixed Waste, Generally ......................................................................................................... $11.75 per cu. yd. Construction and Demolition (C&D) Waste Mixed Building C&D Debris -- 2 CUBIC YARD DAILY LIMIT (painted wood, furniture, drywall, insulation, plumbing fixtures, mattresses, cementitious building products, carpet, other misc. bldg. debris) ..................................................................................................................... $16.50 per cu. yd. Recyclable Building C&D Debris (un-painted lumber, engineered wood products) …$5.00 per cu. yd. Wood, Green Waste, and Similar Organics. Organics8 (clean loads of bark, hay, grass clippings, sod, tumbleweeds) ............................... $5.00 per load Wood (clean loads of prunings, brush, tree limbs and trunks less than 18” -
Chapter 14 the Economics of Marine Litter
Chapter 14 The Economics of Marine Litter Stephanie Newman, Emma Watkins, Andrew Farmer, Patrick ten Brink and Jean-Pierre Schweitzer Abstract This chapter aims to provide an overview of research into quantifying the economic impacts of marine litter. From an environmental economics perspec- tive it introduces the difficulties in measuring the economic costs of marine litter; reviews those sectors where these costs are notable; and considers policy instru- ments, which can reduce these costs. Marine litter is underpinned by dynamic and complex processes, the drivers and impacts of which are multi-scalar, trans- boundary, and play out in both marine and terrestrial environments. These impacts include economic costs to expenditure, welfare and lost revenue. In most cases, these are not borne by the producers or the polluters. In industries such as fisher- ies and tourism the costs of marine litter are beginning to be quantified and are considerable. In other areas such as impacts on human health, or more intangible costs related to reduced ecosystem services, more research is evidently needed. As the costs of marine litter are most often used to cover removing debris or recov- ering from the damage which they have caused, this expenditure represents treat- ment rather than cure, and although probably cheaper than inaction do not present a strategy for cost reduction. Economic instruments, such as taxes and charges addressing the drivers of waste, for instance those being developed for plastic bags, could be used to reduce the production of marine litter and minimise its impacts. In any case, there remain big gaps in our understanding of the harm caused by marine litter, which presents difficulties when attempting to both quantify its economic costs, and develop effective and efficient instruments to reduce them. -
Energy Recovery from Sewage Sludge: the Case Study of Croatia
energies Article Energy Recovery from Sewage Sludge: The Case Study of Croatia Dinko Đurđevi´c 1,* , Paolo Blecich 2 and Željko Juri´c 1 1 Energy Institute Hrvoje Požar, 10000 Zagreb, Croatia; [email protected] 2 Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia; [email protected] * Correspondence: [email protected] Received: 26 April 2019; Accepted: 16 May 2019; Published: 20 May 2019 Abstract: Croatia produced 21,366 tonnes of dry matter (DM) sewage sludge (SS) in 2016, a quantity expected to surpass 100,000 tonnes DM by 2024. Annual production rates for future wastewater treatment plants (WWTP) in Croatia are estimated at 5.8–7.3 Nm3/people equivalent (PE) for biogas and 20–25 kgDM/PE of sewage sludge. Biogas can be converted into 12–16 kWhel/PE of electricity and 19–24 kWhth/PE of heat, which is sufficient for 30–40% of electrical and 80–100% of thermal autonomy. The WWTP autonomy can be increased using energy recovery from sewage sludge incineration by 60% for electricity and 100% of thermal energy (10–13 kWhel/PE and 30–38 kWhth/PE). However, energy for sewage sludge drying exceeds energy recovery, unless solar drying is performed. 2 The annual solar drying potential is estimated between 450–750 kgDM/m of solar drying surface. The lower heating value of dried sewage sludge is 2–3 kWh/kgDM and this energy can be used for assisting sludge drying or for energy generation and supply to WWTPs. Sewage sludge can be considered a renewable energy source and its incineration generates substantially lower greenhouse gases emissions than energy generation from fossil fuels. -
Aeroshell Book
THE AEROSHELL BOOK Twentieth Edition 2021 Issued by: Shell Aviation Shell International Petroleum Co. Ltd. Shell Centre York Road London SE1 7NA www.shell.com/aviation 3 COPYRIGHT STATEMENT All rights reserved. Neither the whole nor any part of this document may be reproduced, stored in any retrieval system or transmitted in any form or by any means (electronic, mechanical, reprographic, recording or otherwise) without the prior written consent of the copyright owner. The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this document the expressions “Shell”, “Group” and “Shell Group” are sometimes used for convenience where references are made to Group companies in general. Likewise, the words “we”, “us” and “our” are also used to refer to Group companies in general or those who work for them. These expressions are also used where there is no purpose in identifying specific companies. © 2021 Shell International Petroleum Company Limited. 4 DEFINITIONS & CAUTIONARY NOTE The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate legal entities. In this The AeroShell Book, “Shell”, “Shell Group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to Royal Dutch Shell plc and its subsidiaries in general or to those who work for them. These terms are also used where no useful purpose is served by identifying the particular entity or entities. ‘‘Subsidiaries’’, “Shell subsidiaries” and “Shell companies” as used in this The AeroShell Book refer to entities over which Royal Dutch Shell plc either directly or indirectly has control. -
Proposed Framework for End-Of-Life Vehicle Recycling System Implementation in Malaysia
5.6 Proposed framework for End-Of-Life vehicle recycling system implementation in Malaysia Muhammad Azmi 1, Muhamad Zameri Mat Saman 1, Safian Sharif 1, Norhayati Zakuan 2, Salwa Mahmood 1 1Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia 2Faculty of Management and Human Resource Development, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia Abstract Normally in Malaysia, vehicles are being used extensively regardless of its age or condition. This situation is not only in rural areas but exists in major cities. Vehicle manufacturers expected their vehicles to last in 15 years, hence vehicles exceeding this limit are considered as End-of-Life Vehicle (ELV). The extensive usage of ELV may lead to vehicle failure which threatens the safety of its user as well as other road users. ELV usage also contributes to environmental pollution. In order to overcome this, a framework for ELV management needs to be developed. Prior to that, a survey was done to study the current practice being applied in Malaysia. This paper also study the existing framework applied by other countries as adaptation for Malaysian ELV recycling implementation framework. This framework is expected to assist the government in drafting new ELV related policies. Keywords: ELV; Framework; Vehicle Recycling; Vehicle Recovery 1 INTRODUCTION Canada and Taiwan had reported success in controlling the Total number of vehicle in Malaysia had reached a number of ELV off the road. cumulative amount of 21.25 million vehicles at the end of Due to the success of countries implementing ELV law, a year 2010 with an average of 12% increase of vehicle SWOT analysis on the respective framework had also been registration each year over the period of 5 years. -
Overview of Anaerobic Digestion for Municipal Solid Waste
Global Methane Initiative Overview of Anaerobic Digestion for Municipal Solid Waste Updated: October 2016 1 About This Presentation . Introduces the process of anaerobic digestion (AD) for municipal solid waste (MSW) . Provides an overview of anaerobic digestion microbiology . Helps you understand how you might benefit from AD . Guides you through the key areas to consider when developing an AD project . Reviews the status of AD globally and provides selected case studies Using Bookmarks to Navigate This presentation contains bookmarks to help you navigate. Using the panel on the left, click the bookmark to jump to the slide. For Chrome users, the bookmarks can be viewed by clicking on the bookmark icon ( ) at the top right of the screen. 2 Global Methane Initiative GMI is a voluntary, multilateral partnership that aims to reduce global methane emissions and to advance the abatement, recovery and use of methane as a valuable clean energy source. OBJECTIVES BENEFITS . Reduce anthropogenic methane . Decline in methane concentrations emissions and advance the and methane utilization will result recovery and use of methane in: while: – Sustainability – Enhancing economic growth – Energy security – Promoting energy security – Health and safety – Improving local air quality – Profitability and public health. 3 GMI Partners . Grew from 14 to 42 Partner governments, plus the European Commission . Accounts for nearly 70% of global anthropogenic methane emissions 4 Main Menu 1. Introduction – what is AD and why should it interest me? Click here for an introduction to AD 2. Is AD suitable for me? Click here for more info about the potential for AD 3. Step-by-step guide Click here for detailed information about the key issues to consider when developing an AD project 4. -
Vehicle Recycling. Focusing on Sustainability
Vehicle Recycling. Focusing on Sustainability. Sustainability is a key word at every point in the BMW Groups process chain, from the development of energy-saving alternative vehicle concepts and environmentally sound production processes to environmentally friendly recycling. The BMW Group acknowledges that used cars are a particularly important source of secondary raw materials and by closing the gaps in the material cycle through recycling, we aim to make a meaningful contribution to the conservation of natural resources. Longstanding Involvement in Environmental Protection. Sustainable Business. The BMW Group has been actively involved in efficient recycling concepts for many years. The aim of our recycling process is to reclaim resources and materials con- tained in vehicles quickly and comprehensively in order to fill the gaps in material cycles and thus to use resources as sparingly and efficiently as possible. Protecting the environment and natural resources. At the beginning of the 1970’s, the BMW Group anchored environmental protection policy within its organization. Sustainable business is a main principle in both the Group’s corporate strategy and culture. Product responsibility also entails the environmentally compatible recovery of vehicles that have reached the end of their viability. The activities of the BMW Group to continuously opti- mize recycling are centred in BMW Groups own Recycling and Dismantling Centre (RDC). This is currently the world’s leading facility of its kind and is an authorised treatment facility. In addition, the RDC also provides important information for dismantling and drainage techniques, as well as creating recycling concepts for future vehicles. Whilst in the past the recycling focus lay on the environmentally responsible recovery of end-of-life vehicles, in recent years the increased scarcity of natural resources has lead to a change in focus. -
Biowaste Management in Europe Results of a Pre-Feasibility Report for a Facility for Organic Waste Recycling in South Backa Waste Management District - Serbia
Biowaste Management in Europe Results of a Pre-feasibility report for a facility for organic waste recycling in South Backa Waste Management District - Serbia Marco Ricci - Jürgensen Altereko sas on behalf Abt associates About myself • 20 years of experience in planning MSW management, designing and up¬grading of collection and transport schemes, assessing recycling facilities (focus on composting), planning comunication and participation initiatives, chairing multi-linguistic, multi-tasking working groups or projects. • 15 year foreign working experience as consulting expert focusing on issues related to solid waste management. Extensive consultancy experience in the Solid Waste Sector – on Strategy and Policy, Fees&Taxes, Separate collection schemes - , both in ´advanced´ and ´low to middle income’ countries in Europe, Latin America and Asia. • 10 years experience cooperating with international organisation/agencies (as ECN-European Compost Network, ACRR, EEA- European Environment Agency, Sweepnet-GIZ, SCOW). About myself About myself CIC Italian Composting and Biogas Association Senior Expert www.compost.it ISWA International Solid Waste Association Chair of the Working Group on Biological Treatment of Waste www.iswa.org Ecomondo International Fair Ambassador en.ecomondo.com Activities (outside Italy) Bulgaria Czech Republic Slovak Republic UK Spain Tunisia/Sweep-Net Brazil Cambodia Chile Overview • What is biowaste? • Biological treatment options • From City Assessment to Pre-feasibility investigations • South Backa WMR – scenarios