Hazard Mitigation Plan

Total Page:16

File Type:pdf, Size:1020Kb

Hazard Mitigation Plan Dona Ana County City of Anthony, City of Las Cruces, Elephant Butte Irrigation District, Village of Hatch, Town of Mesilla, New Mexico State University, and City of Sunland Park ALL HAZARD MITIGATION PLAN Final: June 2021 FOR OFFICIAL USE ONLY Doña Ana County, City of Anthony, Elephant Butte Irrigation District, Village of Hatch, City of Las Cruces, Town of Mesilla, New Mexico State University and City of Sunland Park ALL HAZARD MITIGATION PLAN 2020 TABLE OF CONTENTS SECTION 1: INTRODUCTION .................................................................................................... 1 1.1 DMA 2000 Requirements ..................................................................................... 1 1.1.1 General Requirements ....................................................................................... 1 1.1.2 Update Requirements ........................................................................................ 1 1.2 Official Jurisdiction Participation and Record of Adoption and Approval .... 2 1.3 Plan Purpose and Authority ................................................................................ 2 1.4 Plan Description .................................................................................................... 3 1.4.1 2013 Plan History ............................................................................................. 3 1.4.2 General Content and Arrangement ................................................................... 3 SECTION 2: JURISDICTIONAL DESCRIPTIONS ......................................................................... 5 2.1 County Overview .................................................................................................. 5 2.1.1 History............................................................................................................... 5 2.1.2 Geography ......................................................................................................... 5 2.1.3 Transportation ................................................................................................... 7 2.1.4 Climate .............................................................................................................. 7 2.1.5 Population ....................................................................................................... 10 2.1.6 Economy ......................................................................................................... 12 2.1.7 Land Ownership/Management ........................................................................ 15 2.1.8 Unincorporated Area Growth Trends ............................................................. 17 2.2 Jurisdictional Overviews .................................................................................... 19 2.2.1 City of Anthony .............................................................................................. 19 2.2.2 Elephant Butte Irrigation District.................................................................... 21 2.2.3 Village of Hatch .............................................................................................. 25 2.2.4 City of Las Cruces .......................................................................................... 29 2.2.5 Town of Mesilla .............................................................................................. 32 2.2.6 New Mexico State University ......................................................................... 35 2.2.7 City of Sunland Park ....................................................................................... 41 SECTION 3: PLANNING PROCESS ........................................................................................... 43 3.1 Planning Process Description............................................................................. 43 3.2 Previous Planning Process Assessment ............................................................. 43 3.3 Planning Team .................................................................................................... 44 3.3.1 General ............................................................................................................ 44 3.3.2 Primary Point of Contact ................................................................................ 45 3.3.3 Steering Committee Assembly ....................................................................... 45 3.3.5 Agency/Organizational Participation .............................................................. 51 3.4 Public Involvement ............................................................................................. 53 3.4.1 Previous Plan Assessment............................................................................... 53 3.4.2 Plan Update Strategy....................................................................................... 54 3.5 Reference Documents and Technical Resources .............................................. 56 3.6 Plan Integration Into Other Planning Mechanisms ........................................ 58 3.6.1 Past Plan Incorporation/Integration Assessment ............................................ 58 FOR OFFICIAL USE ONLY Page i Doña Ana County, City of Anthony, Elephant Butte Irrigation District, Village of Hatch, City of Las Cruces, Town of Mesilla, New Mexico State University and City of Sunland Park ALL HAZARD MITIGATION PLAN 2020 3.6.2 Five Year Plan Integration/Incorporation Strategy ......................................... 60 3.6.3 Plan Incorporation Process ............................................................................. 62 SECTION 4: RISK ASSESSMENT ............................................................................................. 66 4.1 Hazard Identification and Screening ................................................................ 66 4.2 Vulnerability Analysis Methodology ................................................................. 69 4.2.1 General ............................................................................................................ 69 4.2.2 Calculated Priority Risk Index (CPRI) Evaluation ......................................... 69 4.2.3 Critical Facilities and Infrastructure ............................................................... 72 4.2.4 Loss Estimations ............................................................................................. 74 4.2.5 Development Trend Analysis ......................................................................... 76 4.3 Hazard Risk Profiles ........................................................................................... 77 4.3.1 Dam Failure .................................................................................................... 78 4.3.2 Drought ........................................................................................................... 97 4.3.3 Extreme Cold ................................................................................................ 105 4.3.4 Flooding ........................................................................................................ 111 4.3.5 Severe Wind .................................................................................................. 137 4.3.6 Thunderstorms (Lightening & Hail) ............................................................. 145 4.3.7 Wildfire ......................................................................................................... 152 SECTION 5: MITIGATION STRATEGY ................................................................................... 182 5.1 Capability Assessment ...................................................................................... 182 5.1.1 Jurisdictional Capabilities ............................................................................. 182 5.1.2 National Flood Insurance Program Participation .......................................... 205 5.2 Hazard Mitigation Goals .................................................................................. 211 5.3 Mitigation Actions/Projects.............................................................................. 211 5.3.1 Previous Mitigation Actions/Projects Assessment ....................................... 211 5.3.2 New Mitigation Actions / Projects and Implementation Strategy ................ 230 SECTION 6: PLAN MAINTENANCE PROCEDURES ................................................................ 275 6.1 Monitoring and Evaluation .............................................................................. 275 6.1.1 Past Plan Cycle ............................................................................................. 275 6.1.2 Proposed Schedule and Scope ...................................................................... 275 6.2 Plan Update ....................................................................................................... 276 6.3 Continued Public Involvement ........................................................................ 277 LIST OF MAPS Maps 1A-1F – Dam Failure Hazard Maps Maps 2A-2D – Flood Hazard Maps – County Wide Maps 2E-2O – Flood Hazard Maps – Jurisdiction Specific Maps 3A-3D – Wildfire Hazard Map(s) – County Wide Maps 3E-3O – Wildfire Hazard Maps – Jurisdiction Specific FOR OFFICIAL USE ONLY Page ii Doña Ana County, City of Anthony, Elephant Butte Irrigation District, Village of Hatch, City of Las Cruces, Town of Mesilla, New Mexico State University and City of Sunland Park ALL HAZARD MITIGATION PLAN 2020 LIST OF FIGURES Figure 2-1:
Recommended publications
  • P2h.8 Landfalling Tropical Cyclones in the Eastern Pacific
    P2H.8 LANDFALLING TROPICAL CYCLONES IN THE EASTERN PACIFIC. PART I: CASE STUDIES FROM 2006 AND 2007. Luis M. Farfán1, Rosario Romero-Centeno2, G. B. Raga2 and Jorge Zavala-Hidalgo2 1Unidad La Paz, CICESE, Mexico 2Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico 1. INTRODUCTION Western Mexico routinely experiences landfall of those that moved onto the mainland acquired a significant tropical cyclones. Jáuregui (2003) documented that 65 eastward component by 20ºN. Additionally, most storms hurricanes approached the west coast and 60% of them developed late in the season with highest frequency made landfall in the northwestern part of the country during the last two-thirds of September (35%) and all of between 1951 and 2000. This area is located north of October (54%). In a study of the period 1966-2004, 20ºN and west of 105ºW, which includes the Baja Romero-Vadillo et al. (2007) identified this type of storm California Peninsula and the States of Nayarit, Sinaloa track and the landfall trend associated with the presence and Sonora. Also, 64% of 88 tropical storms entered this of westerly airflow at middle and upper levels. area, increasing precipitation in this very arid region. Some of these systems continued moving northward after landfall and, eventually, had an influence on the weather conditions in the southwestern United States. The records for the eastern Pacific basin, provided by the National Hurricane Center, reveal 614 tropical cyclones during 1970–2007. Figure 1 displays the tracks of the sub-group of tropical cyclones that made landfall over northwestern Mexico. The upper panel (Fig.
    [Show full text]
  • Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific Ab Sins Nicholas S
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School March 2019 Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific aB sins Nicholas S. Grondin Louisiana State University, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Climate Commons, Meteorology Commons, and the Physical and Environmental Geography Commons Recommended Citation Grondin, Nicholas S., "Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific asinB s" (2019). LSU Master's Theses. 4864. https://digitalcommons.lsu.edu/gradschool_theses/4864 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. CLIMATOLOGY, VARIABILITY, AND RETURN PERIODS OF TROPICAL CYCLONE STRIKES IN THE NORTHEASTERN AND CENTRAL PACIFIC BASINS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geography and Anthropology by Nicholas S. Grondin B.S. Meteorology, University of South Alabama, 2016 May 2019 Dedication This thesis is dedicated to my family, especially mom, Mim and Pop, for their love and encouragement every step of the way. This thesis is dedicated to my friends and fraternity brothers, especially Dillon, Sarah, Clay, and Courtney, for their friendship and support. This thesis is dedicated to all of my teachers and college professors, especially Mrs.
    [Show full text]
  • 2017 Dean's Report
    PARDEE RAND DEAN’S REPORT GRADUATE 2017 SCHOOL REPORT TO THE BOARD OF GOVERNORS SUSAN L. MARQUIS, DEAN YEAR IN REVIEW Message from the Dean NNOVATION.” In our research. In our tools and methods. In our systems and processes. In the development and application of technology. We’re not talking about a buzzword here. We’re talking about doing things better. Asking different questions. Turning things around. Not resting on “Iour laurels but looking for new ways to solve problems that no one has solved before. This is innovation at RAND—and it’s essential for RAND to remain relevant and influential in the 21st century. It’s what our clients, policymakers, and our communities need and demand. When RAND’s president and CEO Michael Rich talks about his SUSAN L. MARQUIS, DEAN vision for RAND and for the Pardee RAND Graduate School, he speaks about the school as a competitive advantage for RAND—a secret weapon that should be a primary engine of With this world- innovation for RAND. When Michael asked me, the dean, to take on the additional role of vice president for innovation, he was class graduate school asking Pardee RAND to not only aspire to but to fully claim this within this world-class unique role of strengthening the environment for innovation across all of RAND. With this world-class graduate school within research organization, this world-class research organization, both institutions can provide more—and accomplish more—than other research and both institutions can policy organizations. provide more—and For the past few years, you’ve heard us talk about “reimagining Pardee RAND.” The imperatives for change for the school and accomplish more— RAND are powerful.
    [Show full text]
  • Extension of the Systematic Approach to Tropical Cyclone Track Forecasting in the Eastern and Central North Pacific
    NPS ARCHIVE 1997.12 BOOTHE, M. NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS EXTENSION OF THE SYTEMATIC APPROACH TO TROPICAL CYCLONE TRACK FORECASTING IN THE EASTERN AND CENTRAL NORTH PACIFIC by Mark A. Boothe December, 1997 Thesis Co-Advisors: Russell L.Elsberry Lester E. Carr III Thesis B71245 Approved for public release; distribution is unlimited. DUDLEY KNOX LIBRARY NAVAl OSTGRADUATE SCHOOL MONTEREY CA 93943-5101 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching casting data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, I'aperwork Reduction Project (0704-0188) Washington DC 20503. 1 . AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED December 1997. Master's Thesis TITLE AND SUBTITLE EXTENSION OF THE SYSTEMATIC 5. FUNDING NUMBERS APPROACH TO TROPICAL CYCLONE TRACK FORECASTING IN THE EASTERN AND CENTRAL NORTH PACIFIC 6. AUTHOR(S) Mark A. Boothe 7. PERFORMING ORGANIZATION NAME(S) AND ADDR£SS(ES) PERFORMING Naval Postgraduate School ORGANIZATION Monterey CA 93943-5000 REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSEES) 10. SPONSORING/MONTTORIN G AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
    [Show full text]
  • Rio Grande Project
    Rio Grande Project Robert Autobee Bureau of Reclamation 1994 Table of Contents Rio Grande Project.............................................................2 Project Location.........................................................2 Historic Setting .........................................................3 Project Authorization.....................................................6 Construction History .....................................................7 Post-Construction History................................................15 Settlement of the Project .................................................19 Uses of Project Water ...................................................22 Conclusion............................................................25 Suggested Readings ...........................................................25 About the Author .............................................................25 Bibliography ................................................................27 Manuscript and Archival Collections .......................................27 Government Documents .................................................27 Articles...............................................................27 Books ................................................................29 Newspapers ...........................................................29 Other Sources..........................................................29 Index ......................................................................30 1 Rio Grande Project At the twentieth
    [Show full text]
  • Notable Tropical Cyclones and Unusual Areas of Tropical Cyclone Formation
    A flood is an overflow of an expanse of water that submerges land.[1] The EU Floods directive defines a flood as a temporary covering by water of land not normally covered by water.[2] In the sense of "flowing water", the word may also be applied to the inflow of the tide. Flooding may result from the volume of water within a body of water, such as a river or lake, which overflows or breaks levees, with the result that some of the water escapes its usual boundaries.[3] While the size of a lake or other body of water will vary with seasonal changes in precipitation and snow melt, it is not a significant flood unless such escapes of water endanger land areas used by man like a village, city or other inhabited area. Floods can also occur in rivers, when flow exceeds the capacity of the river channel, particularly at bends or meanders. Floods often cause damage to homes and businesses if they are placed in natural flood plains of rivers. While flood damage can be virtually eliminated by moving away from rivers and other bodies of water, since time out of mind, people have lived and worked by the water to seek sustenance and capitalize on the gains of cheap and easy travel and commerce by being near water. That humans continue to inhabit areas threatened by flood damage is evidence that the perceived value of living near the water exceeds the cost of repeated periodic flooding. The word "flood" comes from the Old English flod, a word common to Germanic languages (compare German Flut, Dutch vloed from the same root as is seen in flow, float; also compare with Latin fluctus, flumen).
    [Show full text]
  • Calendar Year 2016 Report to the Rio Grande Compact Commission
    University of New Mexico UNM Digital Repository Law of the Rio Chama The Utton Transboundary Resources Center 2016 Calendar Year 2016 Report to the Rio Grande Compact Commission Dick Wolfe Colorado Tom Blaine New Mexico Patrick R. Gordon Texas Hal Simpson Federal Chairman Follow this and additional works at: https://digitalrepository.unm.edu/uc_rio_chama Recommended Citation Wolfe, Dick; Tom Blaine; Patrick R. Gordon; and Hal Simpson. "Calendar Year 2016 Report to the Rio Grande Compact Commission." (2016). https://digitalrepository.unm.edu/uc_rio_chama/72 This Report is brought to you for free and open access by the The Utton Transboundary Resources Center at UNM Digital Repository. It has been accepted for inclusion in Law of the Rio Chama by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. Calendar Year 2016 Report to the Rio Grande Compact Commission Colorado New Mexico Texas Dick Wolfe Tom Blaine Patrick R. Gordon Federal Chairman Hal Simpson U. S. Department of the Interior Bureau of Reclamation Albuquerque Area Office Albuquerque, New Mexico March 2017 MISSION STATEMENTS The Department of the Interior protects and manages the Nation's natural resources and cultural heritage; provides scientific and other information about those resources; and honors its trust responsibilities or special commitments to American Indians, Alaska Natives, and affiliated island communities. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Cover photo – Overbank flow at habitat restoration site on the Sevilleta NWR during 2016 spring pulse (Dustin Armstrong, Reclamation) Calendar Year 2016 Report to the Rio Grande Compact Commission U.
    [Show full text]
  • MASARYK UNIVERSITY BRNO Diploma Thesis
    MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION DEPARTMENT OF ENGLISH LANGUAGE AND LITERATURE Presentation Sentences in Wikipedia: FSP Analysis Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský Declaration I declare that I have worked on this thesis independently, using only the primary and secondary sources listed in the bibliography. I agree with the placing of this thesis in the library of the Faculty of Education at the Masaryk University and with the access for academic purposes. Brno, 30th March 2018 …………………………………………. Bc. Lukáš Opavský Acknowledgements I would like to thank my supervisor, doc. Mgr. Martin Adam, Ph.D. for his kind help and constant guidance throughout my work. Bc. Lukáš Opavský OPAVSKÝ, Lukáš. Presentation Sentences in Wikipedia: FSP Analysis; Diploma Thesis. Brno: Masaryk University, Faculty of Education, English Language and Literature Department, 2018. XX p. Supervisor: doc. Mgr. Martin Adam, Ph.D. Annotation The purpose of this thesis is an analysis of a corpus comprising of opening sentences of articles collected from the online encyclopaedia Wikipedia. Four different quality categories from Wikipedia were chosen, from the total amount of eight, to ensure gathering of a representative sample, for each category there are fifty sentences, the total amount of the sentences altogether is, therefore, two hundred. The sentences will be analysed according to the Firabsian theory of functional sentence perspective in order to discriminate differences both between the quality categories and also within the categories.
    [Show full text]
  • P2h.8 Landfalling Tropical Cyclones in the Eastern Pacific
    P2H.8 LANDFALLING TROPICAL CYCLONES IN THE EASTERN PACIFIC. PART I: CASE STUDIES FROM 2006 AND 2007. Luis M. Farfán1, Rosario Romero-Centeno2, G. B. Raga2 and Jorge Zavala-Hidalgo2 1Unidad La Paz, CICESE, Mexico 2Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico 1. INTRODUCTION Western Mexico routinely experiences landfall of those that moved onto the mainland acquired a significant tropical cyclones. Jáuregui (2003) documented that 65 eastward component by 20ºN. Additionally, most storms hurricanes approached the west coast and 60% of them developed late in the season with highest frequency made landfall in the northwestern part of the country during the last two-thirds of September (35%) and all of between 1951 and 2000. This area is located north of October (54%). In a study of the period 1966-2004, 20ºN and west of 105ºW, which includes the Baja Romero-Vadillo et al. (2007) identified this type of storm California Peninsula and the States of Nayarit, Sinaloa track and the landfall trend associated with the presence and Sonora. Also, 64% of 88 tropical storms entered this of westerly airflow at middle and upper levels. area, increasing precipitation in this very arid region. Some of these systems continued moving northward after landfall and, eventually, had an influence on the weather conditions in the southwestern United States. The records for the eastern Pacific basin, provided by the National Hurricane Center, reveal 614 tropical cyclones during 1970–2007. Figure 1 displays the tracks of the sub-group of tropical cyclones that made landfall over northwestern Mexico. The upper panel (Fig.
    [Show full text]
  • Baseline Report Rio Grande-Caballo Dam to American Dam FLO-2D Modeling, New Mexico and Texas
    Baseline Report Rio Grande-Caballo Dam to American Dam FLO-2D Modeling, New Mexico and Texas Prepared for: United States Section International Boundary and Water Commission (USIBWC) Under IBM 92-21, Task IWO #31 Prepared by: U.S. Army Corps of Engineers (Prime Contractor) Albuquerque District Subcontractors: Mussetter Engineering, Inc., Fort Collins, Colorado Riada Engineering, Inc., Nutruiso, Arizona September 4, 2007 Table of Contents Page 1. INTRODUCTION ................................................................................................................1.1 1.1. Project Objectives ......................................................................................................1.1 1.2. Scope of Work............................................................................................................1.1 1.3. Authorization ..............................................................................................................1.3 2. GEOMORPHOLOGY..........................................................................................................2.1 2.1. Background ................................................................................................................2.1 2.2. Pre-Canalization Conditions.......................................................................................2.1 2.3. Canalization Project ...................................................................................................2.1 2.4. Subreach Delineation.................................................................................................2.3
    [Show full text]
  • Information to Users
    Application of a ground-water flow model to the Mesilla Basin, New Mexico and Texas Item Type text; Thesis-Reproduction (electronic) Authors Hamilton, Susan Lynne, 1964- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 26/09/2021 10:15:39 Link to Item http://hdl.handle.net/10150/278362 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.
    [Show full text]
  • FLO-2D Model Development Below Caballo Dam URGWOM
    FLO-2D Model Development Below Caballo Dam URGWOM Final Report on FLO-2D Model Development Submitted to: U.S. Army Corps of Engineers Albuquerque District Delivery Order DM01 Contract DACW09-03-D-0003 Prepared by: Tetra Tech, Inc. 6121 Indian School Road, NE Albuquerque, New Mexico October 3, 2005 Table of Contents Page Introduction..................................................................................................................................... 1 FLO-2D Model Development......................................................................................................... 1 Data Acquisition and Review – Hydrologic Data .................................................................... 1 Caballo Reservoir Flood Release ....................................................................................... 2 Design Storm Selection ...................................................................................................... 3 HEC-1 Hydrologic Model Application for Inflow Flood Hydrographs............................. 4 Rainfall Loss Estimate and Excess Runoff ........................................................................ 5 HEC-2 Model Results......................................................................................................... 5 Data Acquisition – Sediment Supply Analysis and Review ...................................................... 6 Data Acquisition – Diversions and Return Flows .................................................................. 11 Data Acquisition and Preparation
    [Show full text]