ANNUAL SUMMARY Eastern North Pacific Hurricane Season of 1999

Total Page:16

File Type:pdf, Size:1020Kb

ANNUAL SUMMARY Eastern North Pacific Hurricane Season of 1999 1036 MONTHLY WEATHER REVIEW VOLUME 132 ANNUAL SUMMARY Eastern North Paci®c Hurricane Season of 1999 JOHN L. BEVEN II AND JAMES L. FRANKLIN Tropical Prediction Center, NWS, NOAA, Miami, Florida (Manuscript received 11 February 2003, in ®nal form 20 October 2003) ABSTRACT The 1999 hurricane season in the eastern North Paci®c is summarized, and individual tropical storms and hurricanes are described. Producing only nine named storms, the season tied 1996 as the second least active on record. Hurricane Dora was the strongest and longest-lived cyclone of the season. Hurricane Greg, the only cyclone to make landfall during the season, weakened to a tropical storm just before moving ashore in Baja California, Mexico. Fifteen deaths resulted from the tropical cyclones. 1. Introduction central Paci®c basin, with Dora later crossing the in- The eastern North Paci®c hurricane basin covers the ternational date line into the western North Paci®c ba- area north of the equator and east of 1408W longitude sin. to Central and North America. Nine tropical storms One can speculate on the reasons for the inactive formed in this basin during the 1999 hurricane season. season. One possibility is the active 1999 Atlantic sea- Of these, six became hurricanes and two became major son (Lawrence et al. 2001), which featured 16 tropical hurricanesÐcategory 3 or higher (maximum sustained cyclones (TCs). Climatologically, most eastern North winds of 97 kt or greater) on the Saf®r±Simpson Hur- Paci®c cyclones can be traced to disturbances (tropical ricane Scale (Simpson 1974); the 1966±98 averages waves) that cross Central America from the Caribbean are 16 tropical storms, 9 hurricanes, and 4 major hur- (Simpson et al. 1969; Avila and Guiney 2000). An ricanes. There were ®ve additional tropical depressions increase in the number of Atlantic storms could po- that failed to reach tropical storm intensity. The 1999 tentially decrease the vigor of waves crossing into the season ties the 1996 season (May®eld and Rappaport Paci®c. Atlantic Hurricanes Cindy, Dennis, Floyd, 1998) for the second least active since satellite obser- Gert, and Jose all formed from tropical waves and then vations began in 1966. Only the 1977 season, with moved out of the Tropics. While tropical waves spawn eight tropical storms (Gunther 1978), was less active. more than one TC occasionally, the remnant wave vor- Table 1 lists the tropical storms and hurricanes of ticity after genesis often appears greatly reduced. A 1999, while Fig. 1 shows a map of their tracks. Most pattern of above-normal activity in the Atlantic cou- of the data used in determining the tracks and inten- pled with below-normal activity in the eastern Paci®c sities (1-min average sustained winds at 10 m) are de- was also noted in 1995, 1996, and 1998. Conversely, rived from satellites; these include Dvorak (1984) in- the active 1997 season in the eastern Paci®c was ac- tensity estimates, cloud-drift winds, and ocean surface companied by a below-normal number of Atlantic sys- scatterometer data (e.g., Tsai et al. 2000). Other sources tems. This inverse relationship is intriguing, but does of data include infrequent surface, upper-air, and radar not occur every year, as noted by Lander and Guard observations. There were no reconnaissance ¯ights into (1998). eastern North Paci®c tropical cyclones in 1999. All 1999 eastern Paci®c tropical cyclones (including Hurricane Greg, which crossed the southern tip of the nondeveloping tropical depressions) could be as- Baja California, Mexico, as a tropical storm on 7 Sep- sociated with Atlantic tropical waves that crossed Cen- tember, was the only storm to make landfall in 1999. tral America. However, the background monsoonlike Hurricanes Dora and Eugene crossed 1408W into the environment may have played a role in the develop- ment of several cyclones. In some cases, the wave de- Corresponding author address: Dr. John L. Beven II, National veloped into a tropical cyclone upon entering the fa- Hurricane Center, 11691 SW 17th Street, Miami, FL 33165-2149. vorable background environment. In other cases, the E-mail: [email protected] wave may have assisted the development of a preex- Unauthenticated | Downloaded 10/04/21 11:24 AM UTC APRIL 2004 ANNUAL SUMMARY 1037 TABLE 1. Eastern Paci®c tropical storms and hurricanes of 1999. Max 1-min Min sea level Name Class* Dates** wind speed (kt) pressure (mb) Deaths Adrian H 18±22 Jun 85 973 6 Beatriz H 9±17 Jul 105 955 Calvin T 25±27 Jul 35 1005 Dora H 6±23 Aug 120 943 Eugene H 6±15 Aug 95 965 Fernanda T 17±22 Aug 55 994 Greg H 5±9 Sep 65 986 9 Hilary H 17±21 Sep 65 987 Irwin T 8±11 Oct 50 997 * T: tropical storm, max sustained winds 34±63 kt. H: hurricane, max sustained winds 64 kt or higher. ** Dates based on UTC and include tropical depression stage. isting monsoon disturbance. Unfortunately, the avail- of 4 and 2, respectively. While the mean ITCZ appears able data often do not allow for a distinction between weak in July (Fig. 3b), monthly low-level wind anom- the two possibilities. alies (not shown) suggest it was close to normal Figure 2 shows an example of a tropical wave cross- strength. Also, 200±850-mb wind shear data (not ing Central America that eventually became Hurricane shown) indicate no obvious inhibiting factors. Thus, Greg. In this particular case, a monsoonlike environ- the reason for the inactive July remains a mystery. ment with some disturbed weather was in place before During August, a well-de®ned mean ITCZ circula- the arrival of the wave. However, tropical cyclogenesis tion was centered southwest of Baja California (Fig. did not occur until the wave arrived. Figure 2 suggests 3c); it also strongly appeared in monthly wind anom- that the tropical cyclogenesis showed better spatial and alies (not shown). Hurricane Eugene and Tropical temporal continuity with the preexisting disturbed Storm Fernanda formed in the vicinity of this feature, weather, which in turn suggests that the wave acted as while Hurricane Dora became a major hurricane in that a trigger for the development of the preexisting mon- area. soon disturbance. During September, the ITCZ shifted northward to Another possible explanation for the reduced activ- near the coast of Mexico east of 1058W (Fig. 3d), cre- ity is that the sea surface temperature (SST) pattern ating a strong cyclonic anomaly along 188±208N from combined with the location of the intertropical con- 1158W eastward into Mexico (not shown). This shift vergence zone (ITCZ) to create a smaller than normal resulted in disturbances passing over or near the moun- area favorable for tropical cyclone formation. Colder tainous areas of southern Mexico, likely limiting cy- than normal SSTs along the equator associated with La clogenesis. Hurricanes Greg and Hilary formed on the NinÄa, combined with the normal cold SSTs generally southeast side of the mean cyclone centered southwest north of 208N, may have limited the area of warm water of Baja California. necessary for tropical cyclone development and main- tenance. This was most notable during August west of 1208W, where only a 108±128-wide east±west band of 2. Tropical storm and hurricane summaries SSTs warmer than 268C existed (not shown). a. Hurricane Adrian: 18±22 June Figure 3 shows monthly mean 850-mb winds for June, July, August, and September 1999. Note the A persistent area of disturbed weather located south month-to-month variation in the location and intensity of the Gulf of Tehuantepec developed a low-level cir- of the ITCZ. During June, the mean position extended culation and convective banding on 16 June. This oc- from Panama west-northwestward to a few hundred curred when a tropical wave, which had moved off the miles southwest of Baja California with mean circu- west coast of Africa 11 days earlier, moved into the lation centers near the western end and just south of preexisting disturbed area. Further development fol- southeastern Mexico. Both circulation centers are lowed, producing a tropical depression about 225 n mi anomalous (not shown). The western center, while ap- southeast of Acapulco, Mexico, near 0600 UTC 18 pearing favorable for TC development, is located near June (Fig. 1). The depression became Tropical Storm cold SSTs. This superposition may have helped sup- Adrian later that day. A deep-layer ridge over Mexico press activity, as any nascent TC in this area would helped steer the cyclone west-northwestward on a track likely have encountered cold water before genesis parallel to the coast of Mexico through 20 June. Adrian could occur. became a hurricane on 20 June and maintained an es- Five tropical cyclones formed in July, which is near timated peak intensity of 85 kt from 1800 UTC 20 normal. However, only 2 of these became storms and June to 0000 UTC 21 June. An eye was brie¯y seen only 1 a hurricane, numbers that are half of the normal in satellite imagery during this time (not shown). Unauthenticated | Downloaded 10/04/21 11:24 AM UTC 1038 MONTHLY WEATHER REVIEW VOLUME 132 . 1. Tracks of eastern Paci®c tropical storms and hurricanes during 1999. IG F Unauthenticated | Downloaded 10/04/21 11:24 AM UTC APRIL 2004 ANNUAL SUMMARY 1039 FIG. 2. Sequence of daily Geostationary Operational Environmental Satellite-8 (GOES 8) infrared satellite images at 1200 UTC from 27 Aug to 4 Sep 1999. Dates are indicated on the right-hand side of the ®gure. Dashed line marks the tropical wave that eventually triggered Hurricane Greg (G). Unauthenticated | Downloaded 10/04/21 11:24 AM UTC 1040 MONTHLY WEATHER REVIEW VOLUME 132 FIG.
Recommended publications
  • P2h.8 Landfalling Tropical Cyclones in the Eastern Pacific
    P2H.8 LANDFALLING TROPICAL CYCLONES IN THE EASTERN PACIFIC. PART I: CASE STUDIES FROM 2006 AND 2007. Luis M. Farfán1, Rosario Romero-Centeno2, G. B. Raga2 and Jorge Zavala-Hidalgo2 1Unidad La Paz, CICESE, Mexico 2Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico 1. INTRODUCTION Western Mexico routinely experiences landfall of those that moved onto the mainland acquired a significant tropical cyclones. Jáuregui (2003) documented that 65 eastward component by 20ºN. Additionally, most storms hurricanes approached the west coast and 60% of them developed late in the season with highest frequency made landfall in the northwestern part of the country during the last two-thirds of September (35%) and all of between 1951 and 2000. This area is located north of October (54%). In a study of the period 1966-2004, 20ºN and west of 105ºW, which includes the Baja Romero-Vadillo et al. (2007) identified this type of storm California Peninsula and the States of Nayarit, Sinaloa track and the landfall trend associated with the presence and Sonora. Also, 64% of 88 tropical storms entered this of westerly airflow at middle and upper levels. area, increasing precipitation in this very arid region. Some of these systems continued moving northward after landfall and, eventually, had an influence on the weather conditions in the southwestern United States. The records for the eastern Pacific basin, provided by the National Hurricane Center, reveal 614 tropical cyclones during 1970–2007. Figure 1 displays the tracks of the sub-group of tropical cyclones that made landfall over northwestern Mexico. The upper panel (Fig.
    [Show full text]
  • Atlantic Hurricane Season Outlook for June 2020
    Atlantic Hurricane Season Outlook for June 2020 ELEVATED U.S. RISKS FROM HURRICANE SEASON 2020 AS VERY BUSY YEAR BEGINS… Outlook Overview ➢ WeatherTiger’s WeatherTiger's June outlook for the 2020 hurricane season is for a 75-80% chance of an above average year, with a 15-20% chance of near-normal and just a 5% chance of below-normal cumulative activity. The median of our forecast is about 180% of average hurricane season activity, or around 19 named storms, nine hurricanes and five major hurricanes. ➢ This is slightly above the consensus of some other recently issued forecasts, likely due to our model's bullishness towards a La Niña developing by late summer or early fall. However, almost all forecast groups project above normal activity. ➢ Overall, while model skill remains limited at this range, convergent lines of evidence from our objective modeling and seasonal analogs support an active season, with the potential for a risky steering current regime in the peak months. Updated Seasonal Outlook for Tropical Cyclone Activity On a lighter note: hurricane season. The devil you know is back. Unlike a pandemic, at least taking down the shutters after a storm won’t make it return. This doesn’t imply that hurricane season 2020 will be reasonable. WeatherTiger’s updated seasonal forecast and a consensus of other guidance favors an abnormally active year. We expect net activity of about three-quarters more than the average season, with 95% odds of more storms than Dr. Birx has scarves. I’ll get into the forecast rationale and what it may mean for Florida, but first, a quick orientation for new readers: I’m Dr.
    [Show full text]
  • Preliminary Report Tropical Storm Bud 13 - 17 June 2000
    Preliminary Report Tropical Storm Bud 13 - 17 June 2000 Jack Beven National Hurricane Center 21 July 2000 a. Synoptic history The origins of Bud can be traced to a tropical wave that emerged from the coast of Africa on 22 May. The wave generated little convection as it moved across the Atlantic and Caribbean. The wave moved into the eastern Pacific on 6 June, but showed few signs of organization until 11 June when a broad low pressure area formed a few hundred miles southwest of Acapulco, Mexico. The initial Dvorak intensity estimates were made that day. Further development was slow, as the low exhibited multiple centers for much of 11-12 June. As one center emerged as dominant, the system became a tropical depression near 0600 UTC 13 June about 370 n mi south-southwest of Manzanillo, Mexico (Table 1). The depression became Tropical Storm Bud six hours later as it moved northwestward. Bud reached a peak intensity of 45 kt early on 14 June while turning north-northwestward. The peak intensity was maintained for 12 hr, followed by slow weakening due to a combination of increasing vertical shear and cooler sea surface temperatures. Bud passed just northeast of Socorro Island on 15 June as a 40 kt tropical storm. It weakened to a depression on 16 June as it slowed to an erratic drift about 70 n mi north of Socorro Island. Bud dissipated as a tropical cyclone on 17 June about 90 n mi north-northeast of Socorro Island; however, the remnant broad low persisted until 19 June.
    [Show full text]
  • Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific Ab Sins Nicholas S
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School March 2019 Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific aB sins Nicholas S. Grondin Louisiana State University, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Climate Commons, Meteorology Commons, and the Physical and Environmental Geography Commons Recommended Citation Grondin, Nicholas S., "Climatology, Variability, and Return Periods of Tropical Cyclone Strikes in the Northeastern and Central Pacific asinB s" (2019). LSU Master's Theses. 4864. https://digitalcommons.lsu.edu/gradschool_theses/4864 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. CLIMATOLOGY, VARIABILITY, AND RETURN PERIODS OF TROPICAL CYCLONE STRIKES IN THE NORTHEASTERN AND CENTRAL PACIFIC BASINS A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Geography and Anthropology by Nicholas S. Grondin B.S. Meteorology, University of South Alabama, 2016 May 2019 Dedication This thesis is dedicated to my family, especially mom, Mim and Pop, for their love and encouragement every step of the way. This thesis is dedicated to my friends and fraternity brothers, especially Dillon, Sarah, Clay, and Courtney, for their friendship and support. This thesis is dedicated to all of my teachers and college professors, especially Mrs.
    [Show full text]
  • Hurricane and Tropical Storm
    State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development.
    [Show full text]
  • 2017 Dean's Report
    PARDEE RAND DEAN’S REPORT GRADUATE 2017 SCHOOL REPORT TO THE BOARD OF GOVERNORS SUSAN L. MARQUIS, DEAN YEAR IN REVIEW Message from the Dean NNOVATION.” In our research. In our tools and methods. In our systems and processes. In the development and application of technology. We’re not talking about a buzzword here. We’re talking about doing things better. Asking different questions. Turning things around. Not resting on “Iour laurels but looking for new ways to solve problems that no one has solved before. This is innovation at RAND—and it’s essential for RAND to remain relevant and influential in the 21st century. It’s what our clients, policymakers, and our communities need and demand. When RAND’s president and CEO Michael Rich talks about his SUSAN L. MARQUIS, DEAN vision for RAND and for the Pardee RAND Graduate School, he speaks about the school as a competitive advantage for RAND—a secret weapon that should be a primary engine of With this world- innovation for RAND. When Michael asked me, the dean, to take on the additional role of vice president for innovation, he was class graduate school asking Pardee RAND to not only aspire to but to fully claim this within this world-class unique role of strengthening the environment for innovation across all of RAND. With this world-class graduate school within research organization, this world-class research organization, both institutions can provide more—and accomplish more—than other research and both institutions can policy organizations. provide more—and For the past few years, you’ve heard us talk about “reimagining Pardee RAND.” The imperatives for change for the school and accomplish more— RAND are powerful.
    [Show full text]
  • Tinamiformes – Falconiformes
    LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma
    [Show full text]
  • Fishing Pier Design Guidance Part 1
    Fishing Pier Design Guidance Part 1: Historical Pier Damage in Florida Ralph R. Clark Florida Department of Environmental Protection Bureau of Beaches and Coastal Systems May 2010 Table of Contents Foreword............................................................................................................................. i Table of Contents ............................................................................................................... ii Chapter 1 – Introduction................................................................................................... 1 Chapter 2 – Ocean and Gulf Pier Damages in Florida................................................... 4 Chapter 3 – Three Major Hurricanes of the Late 1970’s............................................... 6 September 23, 1975 – Hurricane Eloise ...................................................................... 6 September 3, 1979 – Hurricane David ........................................................................ 6 September 13, 1979 – Hurricane Frederic.................................................................. 7 Chapter 4 – Two Hurricanes and Four Storms of the 1980’s........................................ 8 June 18, 1982 – No Name Storm.................................................................................. 8 November 21-24, 1984 – Thanksgiving Storm............................................................ 8 August 30-September 1, 1985 – Hurricane Elena ...................................................... 9 October 31,
    [Show full text]
  • Chapter 2.1.3, Has Both Unique and Common Features That Relate to TC Internal Structure, Motion, Forecast Difficulty, Frequency, Intensity, Energy, Intensity, Etc
    Chapter Two Charles J. Neumann USNR (Retired) U, S. National Hurricane Center Science Applications International Corporation 2. A Global Tropical Cyclone Climatology 2.1 Introduction and purpose Globally, seven tropical cyclone (TC) basins, four in the Northern Hemisphere (NH) and three in the Southern Hemisphere (SH) can be identified (see Table 1.1). Collectively, these basins annually observe approximately eighty to ninety TCs with maximum winds 63 km h-1 (34 kts). On the average, over half of these TCs (56%) reach or surpass the hurricane/ typhoon/ cyclone surface wind threshold of 118 km h-1 (64 kts). Basin TC activity shows wide variation, the most active being the western North Pacific, with about 30% of the global total, while the North Indian is the least active with about 6%. (These data are based on 1-minute wind averaging. For comparable figures based on 10-minute averaging, see Table 2.6.) Table 2.1. Recommended intensity terminology for WMO groups. Some Panel Countries use somewhat different terminology (WMO 2008b). Western N. Pacific terminology used by the Joint Typhoon Warning Center (JTWC) is also shown. Over the years, many countries subject to these TC events have nurtured the development of government, military, religious and other private groups to study TC structure, to predict future motion/intensity and to mitigate TC effects. As would be expected, these mostly independent efforts have evolved into many different TC related global practices. These would include different observational and forecast procedures, TC terminology, documentation, wind measurement, formats, units of measurement, dissemination, wind/ pressure relationships, etc. Coupled with data uncertainties, these differences confound the task of preparing a global climatology.
    [Show full text]
  • Economic Losses from Tropical Cyclones in the USA – an Assessment of the Impact of Climate Change and Socio-Economic Effects
    Economic losses from tropical cyclones in the USA – An assessment of the impact of climate change and socio-economic effects vorgelegt von Silvio Schmidt Von der Fakultät VII – Wirtschaft und Management der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Wirtschaftswissenschaft (Dr. rer. oec.) genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Christian von Hirschhausen Berichter: Prof. Dr. Claudia Kemfert Prof. Dr. Georg Meran Tag der wissenschaftlichen Aussprache: 19. Mai 2010 Berlin 2010 D83 Acknowledgements Many people deserve thanks and appreciation for this thesis, without their support and help, this work would not have been possible. Thanks to Laurens Bouwer, Oliver Büsse, Joel Gratz, Marlen Kube, Clau- dia Laube, Petra Löw, Peter Miesen, Brigitte Miksch, Roger Pielke Jr., Frank Oberholzner, Robert Sattler, Boris Siliverstovs, Michael Sonnenholzner and Angelika Wirtz for their useful comments and sugges- tions, engaging discussions and for providing me with the necessary data and with support for the data processing. Special thanks to Prof. Claudia Kemfert for her guidance during my studies, for her supporting feedback on various drafts of this paper and for her advice and motivation. Also, special thanks to Prof. Peter Höppe who was always available as a motivating discussion partner, for his advice and for arranging a funding for research activities. He also made it possible for me to have access to Munich Re’s NatCatSERVICE® database. I am also very grateful to Eberhard Faust who shared his profound knowledge on extreme weather events and the related insurance requirements with me. His support and advice contributed immensely to the completion of this thesis.
    [Show full text]
  • Extension of the Systematic Approach to Tropical Cyclone Track Forecasting in the Eastern and Central North Pacific
    NPS ARCHIVE 1997.12 BOOTHE, M. NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS EXTENSION OF THE SYTEMATIC APPROACH TO TROPICAL CYCLONE TRACK FORECASTING IN THE EASTERN AND CENTRAL NORTH PACIFIC by Mark A. Boothe December, 1997 Thesis Co-Advisors: Russell L.Elsberry Lester E. Carr III Thesis B71245 Approved for public release; distribution is unlimited. DUDLEY KNOX LIBRARY NAVAl OSTGRADUATE SCHOOL MONTEREY CA 93943-5101 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching casting data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, I'aperwork Reduction Project (0704-0188) Washington DC 20503. 1 . AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED December 1997. Master's Thesis TITLE AND SUBTITLE EXTENSION OF THE SYSTEMATIC 5. FUNDING NUMBERS APPROACH TO TROPICAL CYCLONE TRACK FORECASTING IN THE EASTERN AND CENTRAL NORTH PACIFIC 6. AUTHOR(S) Mark A. Boothe 7. PERFORMING ORGANIZATION NAME(S) AND ADDR£SS(ES) PERFORMING Naval Postgraduate School ORGANIZATION Monterey CA 93943-5000 REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSEES) 10. SPONSORING/MONTTORIN G AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
    [Show full text]
  • Hurricane & Tropical Storm
    5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.
    [Show full text]