Causal Agent, Biology and Management of the Leaf and Stem

Total Page:16

File Type:pdf, Size:1020Kb

Causal Agent, Biology and Management of the Leaf and Stem CAUSAL AGENT, BIOLOGY AND MANAGEMENT OF THE LEAF AND STEM DISEASE OF BOXWOOD {BUXUS SPP.) A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by FANG SHI In partial fulfillment of requirements for the degree of Master of Science May, 2011 ©Fang Shi, 2011 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-82801-4 Our file Notre reference ISBN: 978-0-494-82801-4 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author's permission. In compliance with the Canadian Conformement a la loi canadienne sur la Privacy Act some supporting forms protection de la vie privee, quelques may have been removed from this formulaires secondaires ont ete enleves de thesis. cette these. While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n'y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. 1+1 Canada ABSTRACT CAUSAL AGENT, BIOLOGY AND MANAGEMENT OF THE LEAF AND STEM DISEASE OF BOXWOOD (BUXUS SPR) Fang Shi Advisor: University of Guelph, 2011 Professor T. Hsiang An outbreak of a boxwood disease was observed in Southern Ontario nurseries in 2008, but appears to have been present in Ontario for at least 10 years. From 2008 to 2010, over fungal 312 isolates were obtained from diseased samples. Eight major fungal morphotypes associated with the blight were identified with morphological and molecular techniques. Among them, only Volutella buxi successfully satisfied Koch's postulates, which confirmed it is the causal agent of boxwood blight. Wounds may be the major penetration points for V. buxi since non-wounded inoculated tissues did not become diseased. The Buxus cultivar 'Green Gem' was the most susceptible compared to 'Green Velvet', 'Green Mound', or 'Green Mountain'. ISSR markers revealed low genetic variation of V. buxi between different cultivars and locations indicating asexual reproduction and probably a recent origin in Canada. Six fungicidal treatments showed strong preventive activity and some curative activity against Volutella blight. ACKNOWLEDGEMENTS I really appreciate my advisor Dr. Tom Hsiang providing me this opportunity to obtain an M.Sc degree. With his knowledge, patient and encourage, I have learned how to do research in science. I would like to thank to my advisory committee member Dr. Allen Xue for his advice. I would like to give my thanks to Dr. George Barron for his suggestions during the study and kindly offering his plant disease specimens. I would also like to thank to Dr. Janice Elmhirst for sending me plant samples from B.C. and sharing her experience and knowledge. I would like to thank to everyone in Dr. Hsiang's lab for their help with my research and sharing their professional and life experiences. Special thanks to Dr. Lynn Tian, Linda He and Karla De la Cerda for their technical support and helping me get through hard times. I would like to thank to Jennifer Llewellyn and everyone in the nursery industries. Without them, I would not be able to be involved in such an interesting and challenging project. I would like to give my thanks to my family members and friends. Without their spiritual support, I would not be able to accomplish what I have done, many thanks for their endless support and unconditional love. i TABLE OF CONTENTS ACKNOWLEDGEMENTS i TABLE OF CONTENTS ii LIST OF TABLES vi LIST OF FIGURES viii LIST OF APPENDICES x LIST OF ABBREVIATIONS AND ACRONYMS xi Chapter One: Literature Review 1 1.1 Introduction 1 1.2 Major Boxwood Diseases Caused by Fungi 3 1.2.1 Fungi associated with boxwood 3 1.2.2 Volutella leaf and stem blight 5 1.2.2.1 Taxonomy 5 1.2.2.2 Morphology 6 1.2.2.3 Disease history and description 9 1.2.3 Macrophoma leaf spot 11 1.2.4 Phytophthora root rot 11 1.2.5 Cylindrocladium leaf spot 12 1.3 Control Methods for Boxwood Diseases 13 1.3.1 Cultural methods 13 1.3.2 Chemical methods 15 1.4 Hypotheses and Objectives 15 Chapter Two: Causal Agent of A Disease of Boxwood 20 2.1 Introduction 20 2.1.1 Morphological methods of identification 20 2.1.2 Molecular methods of identification 21 2.1.3 Boxwood disease causal agents 22 2.1.4 Objectives 23 2.2 Materials and Methods 23 2.2.1 Sample collection 23 2.2.2 Media preparation 24 2.2.3 Fungal isolation from diseased boxwood tissues 24 2.2.4 Identification of fungal isolates with morphological technique 25 2.2.5 DNA extraction 26 2.2.6 Primer design and selection 27 2.2.7 PCR amplification 28 2.2.8 DNA concentration 28 2.2.9 DNA sequencing and result analysis 29 2.2.10 Koch's postulates 30 2.3 Results 31 2.3.1 Disease samples 31 2.3.2 Morphological characteristics of fungal isolates 32 2.3.3 Molecular identification of morphotypes 33 2.3.4 Volutella species comparison against the database on GenBank 34 2.3.5 Testing Koch's postulates 35 2.4 Discussion 36 Chapter Three: Biological Characteristics, Pathogenicity and Genetic Variation in Volutella buxi 48 3.1 Introduction 48 3.1.1 Biological characteristics and disease development of Volutella spp. 48 3.1.2 Boxwood cultivars 49 3.1.3 Genetic diversity of Volutella buxi 51 3.1.4 Objectives 52 3.2 Materials and Methods 53 3.2.1 Boxwood plants and fungal isolates 53 3.2.2 Growth rates of Volutella buxi isolates 53 3.2.3 Pathogenicity and resistance 54 3.2.3.1 The infection process 54 3.2.3.2 Resistance 56 3.2.4 Primer screening and PCR amplification for ISSR " 57 3.2.5 DNA extraction and ISSR data analysis 59 3.2.6 Statistical analysis 60 3.3 Results 60 3.3.1 Sample collection and fungal isolates 60 3.3.2 Temperature effects on Volutella buxi 60 3.3.3 Pathogenicity and resistance 62 3.3.4 Disease development during inoculation progress 62 3.3.5 Genetic variation in Volutella buxi 62 3.4 Discussion 63 Chapter Four: Effects of Fungicides on Volutella Blight Development 80 4.1 Introduction 80 4.1.1 Fungicides used for ornamentals in Canada 81 4.1.2 Objectives 85 4.2 Materials and Methods 85 4.2.1 Boxwood plants and fungal isolates 85 4.2.2 Fungicide selection 86 4.2.3 Fungicide sensitivity on amended agar 86 4.2.4 Fungicide test on whole plants in 25 °C room 88 4.2.5 Statistical analysis 89 4.3 Results 90 4.3.1 Boxwood samples and fungal isolates of Volutella buxi 90 4.3.2 EC50 values and threshold concentrations of fungicides 90 4.3.3 The efficacy of fungicides on boxwood plants in 25 °C room 91 4.4 Discussion 91 Chapter Five: General Discussion 102 REFERENCES 110 APPENDICES 120 V LIST OF TABLES Table 2.1 Number and frequency of morphotypes recorded based on 312 fungal isolates associated with Volutella leaf and stem blight of boxwood. Species from the eight major morphotypes were identified with morphological and molecular biological techniques. 40 Table 2.2 A list of 41 accession numbers and species names of ITS sequences collected from GenBank by searching for 'Volutella', and then used to in phylogenetic analysis. 41 Table 3.1 Boxwood plants records with collection date, location, and number of each cultivar as 3-inch potted plants or cuttings. 69 Table 3.2 Number of Volutella buxi isolates collected from Georgetown, St. Catherines and B.C. from boxwood cultivars 'Chicagoland Green', 'Green Beauty', 'Green Mound', 'Green Mountain' and 'Green Velvet'. 70 Table 3.3 Mean mycelial growth of three Volutella buxi isolates at 10, 15, 20, 25, 30 and 35 °C. A 5-mm-diameter plug from a 7-d-old culture was used to inoculate each tube and the tubes were incubated for 16 d. Each isolate by temperature combination was repeated three times. 71 Table 3.4 Mean mycelial growth during 16 d at 25 °C of 32 Volutella buxi isolates collected from Georgetown and St. Catherines. There were five replicates for each isolate. 72 Table 3.5 Detached leaves of each boxwood cultivar were inoculated with a 0.14 ml of spore suspension of Volutella buxi (106 spores/mL) and incubated at 25 °C for 5 d.
Recommended publications
  • Abacca Mosaic Virus
    Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana,
    [Show full text]
  • Illuminating Type Collections of Nectriaceous Fungi in Saccardo's
    Persoonia 45, 2020: 221–249 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.45.09 Illuminating type collections of nectriaceous fungi in Saccardo’s fungarium N. Forin1, A. Vizzini 2,3,*, S. Nigris1,4, E. Ercole2, S. Voyron2,3, M. Girlanda2,3, B. Baldan1,4,* Key words Abstract Specimens of Nectria spp. and Nectriella rufofusca were obtained from the fungarium of Pier Andrea Saccardo, and investigated via a morphological and molecular approach based on MiSeq technology. ITS1 and ancient DNA ITS2 sequences were successfully obtained from 24 specimens identified as ‘Nectria’ sensu Saccardo (including Ascomycota 20 types) and from the type specimen of Nectriella rufofusca. For Nectria ambigua, N. radians and N. tjibodensis Hypocreales only the ITS1 sequence was recovered. On the basis of morphological and molecular analyses new nomenclatural Illumina combinations for Nectria albofimbriata, N. ambigua, N. ambigua var. pallens, N. granuligera, N. peziza subsp. ribosomal sequences reyesiana, N. radians, N. squamuligera, N. tjibodensis and new synonymies for N. congesta, N. flageoletiana, Sordariomycetes N. phyllostachydis, N. sordescens and N. tjibodensis var. crebrior are proposed. Furthermore, the current classifi- cation is confirmed for Nectria coronata, N. cyanostoma, N. dolichospora, N. illudens, N. leucotricha, N. mantuana, N. raripila and Nectriella rufofusca. This is the first time that these more than 100-yr-old specimens are subjected to molecular analysis, thereby providing important new DNA sequence data authentic for these names. Article info Received: 25 June 2020; Accepted: 21 September 2020; Published: 23 November 2020. INTRODUCTION to orange or brown perithecia which do not change colour in 3 % potassium hydroxide (KOH) or 100 % lactic acid (LA) Nectria, typified with N.
    [Show full text]
  • Download from Genbank, and the Outgroup Monilochaetes Infuscans CBS 379.77 and CBS , RNA Polymerase II Second Largest Subunit
    Mycological Progress (2019) 18:1135–1154 https://doi.org/10.1007/s11557-019-01511-4 ORIGINAL ARTICLE New plectosphaerellaceous species from Dutch garden soil Alejandra Giraldo1,2 & Margarita Hernández-Restrepo1 & Pedro W. Crous1,2,3 Received: 8 April 2019 /Revised: 17 July 2019 /Accepted: 2 August 2019 # The Author(s) 2019 Abstract During 2017, the Westerdijk Fungal Biodiversity Institute (WI) and the Utrecht University Museum launched a Citizen Science project. Dutch school children collected soil samples from gardens at different localities in the Netherlands, and submitted them to the WI where they were analysed in order to find new fungal species. Around 3000 fungal isolates, including filamentous fungi and yeasts, were cultured, preserved and submitted for DNA sequencing. Through analysis of the ITS and LSU sequences from the obtained isolates, several plectosphaerellaceous fungi were identified for further study. Based on morphological characters and the combined analysis of the ITS and TEF1-α sequences, some isolates were found to represent new species in the genera Phialoparvum,i.e.Ph. maaspleinense and Ph. rietveltiae,andPlectosphaerella,i.e.Pl. hanneae and Pl. verschoorii, which are described and illustrated here. Keywords Biodiversity . Citizen Science project . Phialoparvum . Plectosphaerella . Soil-born fungi Introduction phylogenetic fungal lineages in soil-inhabiting fungi (Tedersoo et al. 2017). Soil is one of the main reservoirs of fungal species and Among Ascomycota, the family Plectosphaerellaceae commonly ranks as the most abundant source regarding (Glomerellales, Sordariomycetes) harbours important plant fungal biomass and physiological activity. Fungal diver- pathogens such as Verticillium dahliae, V. alboatrum and sity is affected by the variety of microscopic habitats and Plectosphaerella cucumerina, but also several saprobic genera microenvironments present in soils (Anderson and usually found in soil, i.e.
    [Show full text]
  • (Hypocreales) Proposed for Acceptance Or Rejection
    IMA FUNGUS · VOLUME 4 · no 1: 41–51 doi:10.5598/imafungus.2013.04.01.05 Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales) ARTICLE proposed for acceptance or rejection Amy Y. Rossman1, Keith A. Seifert2, Gary J. Samuels3, Andrew M. Minnis4, Hans-Josef Schroers5, Lorenzo Lombard6, Pedro W. Crous6, Kadri Põldmaa7, Paul F. Cannon8, Richard C. Summerbell9, David M. Geiser10, Wen-ying Zhuang11, Yuuri Hirooka12, Cesar Herrera13, Catalina Salgado-Salazar13, and Priscila Chaverri13 1Systematic Mycology & Microbiology Laboratory, USDA-ARS, Beltsville, Maryland 20705, USA; corresponding author e-mail: Amy.Rossman@ ars.usda.gov 2Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, Ottawa, ON K1A 0C6, Canada 3321 Hedgehog Mt. Rd., Deering, NH 03244, USA 4Center for Forest Mycology Research, Northern Research Station, USDA-U.S. Forest Service, One Gifford Pincheot Dr., Madison, WI 53726, USA 5Agricultural Institute of Slovenia, Hacquetova 17, 1000 Ljubljana, Slovenia 6CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 7Institute of Ecology and Earth Sciences and Natural History Museum, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia 8Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey TW9 3AB, UK 9Sporometrics, Inc., 219 Dufferin Street, Suite 20C, Toronto, Ontario, Canada M6K 1Y9 10Department of Plant Pathology and Environmental Microbiology, 121 Buckhout Laboratory, The Pennsylvania State University, University Park, PA 16802 USA 11State
    [Show full text]
  • Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and Related Genera with Cylindrocarpon-Like Anamorphs
    available online at www.studiesinmycology.org StudieS in Mycology 68: 57–78. 2011. doi:10.3114/sim.2011.68.03 Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs P. Chaverri1*, C. Salgado1, Y. Hirooka1, 2, A.Y. Rossman2 and G.J. Samuels2 1University of Maryland, Department of Plant Sciences and Landscape Architecture, 2112 Plant Sciences Building, College Park, Maryland 20742, USA; 2United States Department of Agriculture, Agriculture Research Service, Systematic Mycology and Microbiology Laboratory, Rm. 240, B-010A, 10300 Beltsville Avenue, Beltsville, Maryland 20705, USA *Correspondence: Priscila Chaverri, [email protected] Abstract: Neonectria is a cosmopolitan genus and it is, in part, defined by its link to the anamorph genusCylindrocarpon . Neonectria has been divided into informal groups on the basis of combined morphology of anamorph and teleomorph. Previously, Cylindrocarpon was divided into four groups defined by presence or absence of microconidia and chlamydospores. Molecular phylogenetic analyses have indicated that Neonectria sensu stricto and Cylindrocarpon sensu stricto are phylogenetically congeneric. In addition, morphological and molecular data accumulated over several years have indicated that Neonectria sensu lato and Cylindrocarpon sensu lato do not form a monophyletic group and that the respective informal groups may represent distinct genera. In the present work, a multilocus analysis (act, ITS, LSU, rpb1, tef1, tub) was applied to representatives of the informal groups to determine their level of phylogenetic support as a first step towards taxonomic revision of Neonectria sensu lato. Results show five distinct highly supported clades that correspond to some extent with the informal Neonectria and Cylindrocarpon groups that are here recognised as genera: (1) N.
    [Show full text]
  • Ascomyceteorg 09-01 Ascomyceteorg
    Four new species of Ijuhya (Bionectriaceae) from Belgium, metropolitan France and French Guiana Christian LECHAT Abstract: Four new species of Ijuhya are described and illustrated based on material collected in Belgium, Jacques FOURNIER metropolitan France and French Guiana. The four new species described herein were sequenced and one of them was successfully cultured. They are placed in the Bionectriaceae based on ascomata not changing colour in 3% KOH or lactic acid, acremonium-like asexual morph and phylogenetic affinities of LSU sequences with five morphologically related genera of theBionectriaceae . Their placement in Ijuhya is based on mor- Ascomycete.org, 9 (1) : 11-18. phological and phylogenetic comparison with the most similar genera including Lasionectria and Lasionec- Janvier 2017 triella. An updated dichotomous key to Ijuhya is presented. Mise en ligne le 07/01/2017 Keywords: acremonium-like, Ascomycota, Hypocreales, ribosomal DNA, taxonomy. Résumé : quatre espèces nouvelles du genre Ijuhya sont décrites et illustrées d’après du matériel récolté en Belgique, France métropolitaine et Guyane française. Les quatre espèces nouvelles décrites ici ont été sé- quencées et l'une d'entre elles a pu être cultivée. Elles sont placées dans les Bionectriaceae d’après les as- comes ne changeant pas de couleur dans KOH à 3 % ou dans l’acide lactique, la forme asexuée de type acremonium et les affinités phylogénétiques des séquences LSU avec des espèces représentant cinq genres de Bionectriaceae morphologiquement proches. Leur placement dans Ijuhya est établi sur la comparaison morphologique et phylogénétique avec les genres les plus ressemblants, dont Lasionectria et Lasionectriella. Une clé dichotomique mise à jour du genre Ijuhya est proposée.
    [Show full text]
  • Phylogeny and Taxonomy of the Genus <I>Gliocephalotrichum</I>
    Persoonia 32, 2014: 127–140 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158514X680261 Phylogeny and taxonomy of the genus Gliocephalotrichum L. Lombard1, L.M. Serrato-Diaz 2, R. Cheewangkoon 3, R.D. French-Monar 2, C. Decock 4, P.W. Crous 1,5,6 Key words Abstract Species in the genus Gliocephalotrichum (= Leuconectria) (Hypocreales, Nectriaceae) are soilborne fungi, associated with post-harvest fruit spoilage of several important tropical fruit crops. Contemporary taxonomic Gliocephalotrichum studies of these fungi have relied on morphology and DNA sequence comparisons of the internal transcribed spacer Leuconectria region of the nuclear rDNA (ITS) and the β-tubulin gene regions. Employing DNA sequence data from four loci phylogeny (β-tubulin, histone H3, ITS, and translation elongation factor 1-alpha) and morphological comparisons, the taxonomic taxonomy status of the genus Gliocephalotrichum was re-evaluated. As a result five species are newly described, namely G. humicola (Taiwan, soil), G. mexicanum (rambutan fruit from Mexico), G. nephelii (rambutan fruit from Guatemala), G. queenslandicum (Australia, endophytic isolations) and G. simmonsii (rambutan fruit from Guatemala). Although species of Gliocephalotrichum are generally not regarded as important plant pathogens, their ability to cause post- harvest fruit rot could have an impact on fruit export and storage. Article info Received: 2 August 2013; Accepted: 1 November 2013; Published: 20 March 2014. INTRODUCTION duced by Zhuang et al. (2007), although mistakenly connected to the asexual species, G. cylindrosporum. This was later cor- The asexual genus Gliocephalotrichum, with G. bulbilium as rected by Zhuang & Luo (2008), although they refrained from type, was introduced by Ellis & Hesseltine (1962) to accom- providing a name for the asexual morph based on the version modate a species isolated from soil.
    [Show full text]
  • Two New Species of <I>Lasionectria</I> (<I>Bionectriaceae, Hypocreales</I>) from Guadeloupe and Martiniq
    ISSN (print) 0093-4666 © 2012. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/121.275 Volume 121, pp. 275–280 July–September 2012 Two new species of Lasionectria (Bionectriaceae, Hypocreales) from Guadeloupe and Martinique (French West Indies) Christian Lechat1* & Jacques Fournier2 1Ascofrance, 64 route de Chizé, F-79360 Villiers en Bois, France 2Las Muros, F-09420 Rimont *Correspondence to: [email protected] Abstract —Lasionectria marigotensis sp. nov. on decaying leaves of Cocos nucifera (Arecaceae) in Guadeloupe and L. martinicensis sp. nov. on dead stems of Passiflora sp. (Passifloraceae) in Martinique are described and illustrated. The acremonium-like asexual state was obtained in culture for both species. An updated key to the species of Lasionectria is provided. Key words —Ascomycota, neotropics, palm fungi, taxonomy Introduction The genusLasionectria (Sacc.) Cooke is based on the lectotype L. mantuana (Sacc.) Cooke, designated by Clements & Shear (1931). The ascomata of Lasionectria are yellow, pale orange, red-orange or dark brown, and do not obviously change colour in 3% KOH or lactic acid; thus Lasionectria belongs to the Bionectriaceae Samuels & Rossman as defined by Rossman et al. (1999). The genus is distinguished from other genera in the Bionectriaceae by the ascomatal wall over 20 µm thick and composed of thick-walled cells with a small lumen and hairs scattered over the ascomatal surface. Hairs may be stiff or flexuous, solitary or fasciculate but do not form a distinct apical crown. The most similar genus is Ijuhya Starbäck, which differs mainly in having ascomata with a wall less than 20 µm thick and typically with a discoid flattened apex fringed by triangular fascicles of hairs, or rarely without hairs (Rossman et al.
    [Show full text]
  • Preliminary Survey of Bionectriaceae and Nectriaceae (Hypocreales, Ascomycetes) from Jigongshan, China
    Fungal Diversity Preliminary Survey of Bionectriaceae and Nectriaceae (Hypocreales, Ascomycetes) from Jigongshan, China Ye Nong1, 2 and Wen-Ying Zhuang1* 1Key Laboratory of Systematic Mycology and Lichenology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, P.R. China 2Graduate School of Chinese Academy of Sciences, Beijing 100039, P.R. China Nong, Y. and Zhuang, W.Y. (2005). Preliminary Survey of Bionectriaceae and Nectriaceae (Hypocreales, Ascomycetes) from Jigongshan, China. Fungal Diversity 19: 95-107. Species of the Bionectriaceae and Nectriaceae are reported for the first time from Jigongshan, Henan Province in the central area of China. Among them, three new species, Cosmospora henanensis, Hydropisphaera jigongshanica and Lanatonectria oblongispora, are described. Three species in Albonectria and Cosmospora are reported for the first time from China. Key words: Cosmospora henanensis, Hydropisphaera jigongshanica, Lanatonectria oblongispora, taxonomy. Introduction Studies on the nectriaceous fungi in China began in the 1930’s (Teng, 1934, 1935, 1936). Teng (1963, 1996) summarised work that had been carried out in China up to the middle of the last century. Recently, specimens of the Bionectriaceae and Nectriaceae deposited in the Mycological Herbarium, Institute of Microbiology, Chinese Academy of Sciences (HMAS) were re- examined (Zhuang and Zhang, 2002; Zhang and Zhuang, 2003a) and additional collections from tropical China were identified (Zhuang, 2000; Zhang and Zhuang, 2003b,c), whereas, those from central regions of China were seldom encountered. Field investigations were carried out in November 2003 in Jigongshan (Mt. Jigong), Henan Province. Eighty-nine collections of the Bionectriaceae and Nectriaceae were obtained. Jigongshan is located in the south of Henan (E114°05′, N31°50′).
    [Show full text]
  • Fungal Planet Description Sheets: 400–468
    Persoonia 36, 2016: 316– 458 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158516X692185 Fungal Planet description sheets: 400–468 P.W. Crous1,2, M.J. Wingfield3, D.M. Richardson4, J.J. Le Roux4, D. Strasberg5, J. Edwards6, F. Roets7, V. Hubka8, P.W.J. Taylor9, M. Heykoop10, M.P. Martín11, G. Moreno10, D.A. Sutton12, N.P. Wiederhold12, C.W. Barnes13, J.R. Carlavilla10, J. Gené14, A. Giraldo1,2, V. Guarnaccia1, J. Guarro14, M. Hernández-Restrepo1,2, M. Kolařík15, J.L. Manjón10, I.G. Pascoe6, E.S. Popov16, M. Sandoval-Denis14, J.H.C. Woudenberg1, K. Acharya17, A.V. Alexandrova18, P. Alvarado19, R.N. Barbosa20, I.G. Baseia21, R.A. Blanchette22, T. Boekhout3, T.I. Burgess23, J.F. Cano-Lira14, A. Čmoková8, R.A. Dimitrov24, M.Yu. Dyakov18, M. Dueñas11, A.K. Dutta17, F. Esteve- Raventós10, A.G. Fedosova16, J. Fournier25, P. Gamboa26, D.E. Gouliamova27, T. Grebenc28, M. Groenewald1, B. Hanse29, G.E.St.J. Hardy23, B.W. Held22, Ž. Jurjević30, T. Kaewgrajang31, K.P.D. Latha32, L. Lombard1, J.J. Luangsa-ard33, P. Lysková34, N. Mallátová35, P. Manimohan32, A.N. Miller36, M. Mirabolfathy37, O.V. Morozova16, M. Obodai38, N.T. Oliveira20, M.E. Ordóñez39, E.C. Otto22, S. Paloi17, S.W. Peterson40, C. Phosri41, J. Roux3, W.A. Salazar 39, A. Sánchez10, G.A. Sarria42, H.-D. Shin43, B.D.B. Silva21, G.A. Silva20, M.Th. Smith1, C.M. Souza-Motta44, A.M. Stchigel14, M.M. Stoilova-Disheva27, M.A. Sulzbacher 45, M.T. Telleria11, C. Toapanta46, J.M. Traba47, N.
    [Show full text]
  • Causal Agent, Biology and Management of the Leaf and Stem
    CAUSAL AGENT, BIOLOGY AND MANAGEMENT OF THE LEAF AND STEM DISEASE OF BOXWOOD {BUXUS SPP.) A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by FANG SHI In partial fulfillment of requirements for the degree of Master of Science May, 2011 ©Fang Shi, 2011 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-82801-4 Our file Notre reference ISBN: 978-0-494-82801-4 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • AR TICLE Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae
    IMA FUNGUS · VOLUME 4 · NO 1: 41–51 doi:10.5598/imafungus.2013.04.01.05 Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales) ARTICLE proposed for acceptance or rejection Amy Y. Rossman1, Keith A. Seifert2, Gary J. Samuels3, Andrew M. Minnis4, Hans-Josef Schroers5, Lorenzo Lombard6, Pedro W. Crous6, Kadri Põldmaa7, Paul F. Cannon8, Richard C. Summerbell9, David M. Geiser10, Wen-ying Zhuang11, Yuuri Hirooka12, Cesar Herrera13, Catalina Salgado-Salazar13, and Priscila Chaverri13 1Systematic Mycology & Microbiology Laboratory, USDA-ARS, Beltsville, Maryland 20705, USA; corresponding author e-mail: Amy.Rossman@ ars.usda.gov 2Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, Ottawa, ON K1A 0C6, Canada 3321 Hedgehog Mt. Rd., Deering, NH 03244, USA 4Center for Forest Mycology Research, Northern Research Station, USDA-U.S. Forest Service, One Gifford Pincheot Dr., Madison, WI 53726, USA 5Agricultural Institute of Slovenia, Hacquetova 17, 1000 Ljubljana, Slovenia 6CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 7Institute of Ecology and Earth Sciences and Natural History Museum, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia 8Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey TW9 3AB, UK 9Sporometrics, Inc., 219 Dufferin Street, Suite 20C, Toronto, Ontario, Canada M6K 1Y9 10Department of Plant Pathology and Environmental Microbiology, 121 Buckhout Laboratory, The Pennsylvania State University, University Park, PA 16802 USA 11State
    [Show full text]