Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Te2, Part Iii
TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS -
Sexual Reproduction & the Reproductive System Visual
Biology 202: Sexual Reproduction & the Reproductive System 1) Label the diagram below. Some terms may be used more than once. Spermatozoa (N) Mitosis Spermatogonium (2N) Spermatids (N) Primary Oocyte (2N) Polar bodies (N) Ootid (N) Second polar body (N) Meiosis I Primary spermatocyte (2N) Oogonium (2N) Secondary oocyte (2N) Ovum (N) Secondary spermatocytes (2N) First polar body Meiosis II Source Lesson: Gametogenesis & Meiosis: Process & Differences 2) Label the diagram of the male reproductive system below. Seminal vesicle Testis Scrotum Pubic bone Penis Prostate gland Urethra Epididymis Vas deferens Bladder Source Lesson: Male Reproductive System: Structures, Functions & Regulation 3) Label the image below. Rectum Testis Ureter Bulbourethral gland Urethra Urinary bladder Pubic bone Penis Seminal vesicle Ductus deferens Epididymis Prostate gland Anus Source Lesson: Semen: Composition & Production 4) Label the structures below. Inner and outer lips of the vagina Mons pubis Vaginal opening Clitoris Anus Urethral opening Perineum Vulva Source Lesson: Female Reproductive System: Structures & Functions 5) Label the diagram below. Some terms may be used more than once. Clitoris Vulva Labia majora Labia minora Perineum Clitoral hood Vaginal opening Source Lesson: Female Reproductive System: Structures & Functions 6) Label the internal organs that make up the female reproductive system. Uterus Fallopian tubes Ovaries Cervix Vagina Endometrium Source Lesson: Female Reproductive System: Structures & Functions 7) Label the diagram below. LH Follicular -
Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal. -
Uterus – Dilation
Uterus – Dilation Figure Legend: Figure 1 Uterus - Dilation of the uterine lumen in a female B6C3F1/N mouse from a chronic study. There is dilation of the uterine horn. Figure 2 Uterus - Dilation in a female B6C3F1/N mouse from a chronic study (higher magnification of Figure 1). The endometrial epithelium is cuboidal. Figure 3 Uterus - Dilation in a female B6C3F1/N mouse from a chronic study. There is dilation of the uterine lumen, which contains flocculent, eosinophilic material. Figure 4 Uterus - Dilation in a female B6C3F1/N mouse from a chronic study (higher magnification of Figure 3). There is flattened epithelium and eosinophilic material in the uterine lumen. Comment: Dilation of uterine horns (Figure 1, Figure 2, Figure 3, and Figure 4) is commonly observed at necropsy, and frequently these uteri have accumulations of excessive amounts of fluid within the 1 Uterus – Dilation lumen. Uterine dilation is relatively commonly seen in both rats and mice and may be segmental. Luminal dilation may be associated with stromal polyps or occur secondarily to hormonal imbalances from ovarian cysts or to a prolonged estrus state after cessation of the estrus cycle in aged rodents. Administration of progestins, estrogens, and tamoxifen in rats has been associated with uterine dilation. Luminal dilation is normally observed at proestrus and estrus in cycling rodents and should not be diagnosed. Increased serous fluid production is part of the proestrus phase of the cycle judged by the vaginal epithelium (which shows early keratinization covered by a layer of mucified cells) and should not be diagnosed. With uterine dilation, the endometrial lining is usually attenuated or atrophic and the wall of the uterus thinned due to the increasing pressure, but in less severe cases the endometrium can be normal (Figure 2). -
The Functions of Uterine Secretions R
Printed in Great Britain J. Reprod. Fert. (1988) 82,875-892 @ 1988 Journals of Reproduction & Fertility Ltd The functions of uterine secretions R. M. Roberts and F. W. Bazer Departments of Biochemistry and Animal Sciences, University of Missouri, Columbia, MO 65211, U.S.A.; and Department of Animal Science, University of Florida, Gainesville, FL 32611, U.S.A. Summary. The likely functions of uterine secretions, often termed histotroph, in the nurture of the early conceptus are reviewed. Particular emphasis has been placed on the pig in which the uterus synthesizes and secretes large amounts of protein in response to progesterone. In this species, which possesses a non-invasive, diffuse type of epithelio- chorial placentation, the secretions provide a sustained embryotrophic environment which is distinct from that of serum. A group of basic proteins dominates these uterine secretions after Day 1 1 of pregnancy and its best characterized member is uteroferrin, an iron-containing acid phosphatase with a deep purple colour. Evidence has accumulated to suggest that uteroferrin, rather than functioning as an acid phosphatase, is involved in transporting iron to the conceptus. Three basic polypeptides which are found non- covalently associated with uteroferrin have been shown to be antigenically closely related to one another and to have arisen by post-translational processing from a common precursor molecule. Their function is unknown. A group of basic protease inhibitors has been identified which bear considerable sequence homology to bovine pancreatic trypsin inhibitor (aprotinin) and may control intrauterine proteolytic events initiated by the conceptuses. The last basic protein so far characterized is lysozyme which is presumed to have an antibacterial role. -
Infundibulum As the 'Trichter' and the Caudal Half As the 'Tube'
Arch. histol. jap. Vol. 23, n. 5 (July 1963). P. 447-459. Dept. of Anim. Husb., Fac. of Fish. and Anim. Husb., Hiroshima Univ., Fukuyama, Japan. Histological and Histochemical Studies on the Oviduct of the Domestic Fowl with Special Reference to the Region of Uterovaginal Juncture. 鶏 の 卵 管, と く に 子 宮 と 腟 の 移 行 部 の 組 織 学 的 お よ び 組 織 化 学 的 研 究. Shunsaku FUJII 藤 井 俊 策. (Received May 30, 1963.) The histological structure of the oviduct of the domestic fowl has almost com- pletely been investigated by many workers, including SURFACE (1912), GIERSBERG (1921, 1922), FROBOSE (1928), BRADLEY (1928), and RICHARDSON (1935). SURFACE studied mainly the histological structure of the oviduct itself. RICHARD- SON observed in detail the function and histological s structure of the gland of the ovi- duct. At present, the oviduct is generally divided into five portions: the infundi- bulum or funnel, the magnum or albumen secreting portion, the isthmus, the uterus or shell-gland region, and the vagina. Each portion has its particular structure and physiological function for egg production. In addition, some workers have identified another portion as the region of juncture, where one type of mucosa intermingles with another type. For instance, GIERSBERG (1922) distinguished the cranial half of the infundibulum as the 'Trichter'and the caudal half as the 'Tube'. RICHARDSON, (1935)also subdivided the infundibulum into 'funnel'without glandsand the 'chalazi- ferous region'with glands, and insertedthe 'isthmo-uterineregion' between the isthmus and the uterus. In spite of such large number of histological observations as these, little has been reported on the histochemistry of the oviduct. -
Histology Histology
HISTOLOGY HISTOLOGY ОДЕСЬКИЙ НАЦІОНАЛЬНИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ THE ODESSA NATIONAL MEDICAL UNIVERSITY Áiáëiîòåêà ñòóäåíòà-ìåäèêà Medical Student’s Library Серія заснована в 1999 р. на честь 100-річчя Одеського державного медичного університету (1900–2000 рр.) The series is initiated in 1999 to mark the Centenary of the Odessa State Medical University (1900–2000) 1 L. V. Arnautova O. A. Ulyantseva HISTÎLÎGY A course of lectures A manual Odessa The Odessa National Medical University 2011 UDC 616-018: 378.16 BBC 28.8я73 Series “Medical Student’s Library” Initiated in 1999 Authors: L. V. Arnautova, O. A. Ulyantseva Reviewers: Professor V. I. Shepitko, MD, the head of the Department of Histology, Cytology and Embryology of the Ukrainian Medical Stomatologic Academy Professor O. Yu. Shapovalova, MD, the head of the Department of Histology, Cytology and Embryology of the Crimean State Medical University named after S. I. Georgiyevsky It is published according to the decision of the Central Coordinational Methodical Committee of the Odessa National Medical University Proceedings N1 from 22.09.2010 Навчальний посібник містить лекції з гістології, цитології та ембріології у відповідності до програми. Викладено матеріали теоретичного курсу по всіх темах загальної та спеціальної гістології та ембріології. Посібник призначений для підготовки студентів до практичних занять та ліцензійного екзамену “Крок-1”. Arnautova L. V. Histology. A course of lectures : a manual / L. V. Arnautova, O. A. Ulyantseva. — Оdessa : The Оdessa National Medical University, 2010. — 336 p. — (Series “Medical Student’s Library”). ISBN 978-966-443-034-7 The manual contains the lecture course on histology, cytology and embryol- ogy in correspondence with the program. -
Nomina Histologica Veterinaria, First Edition
NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria. -
Observations on the Histology and Ultrastructure
OBSERVATIONS ON THE HISTOLOGY AND ULTRASTRUCTURE OF THE PARS DISTALIS OF THE RABBIT HYPOPHYSIS IN ORGAN CULTURE A Thesis submitted for the degree of Doctor of Philosophy in the University of London by SNEHLATA PATHAK Department of Cellular Biology 1970 and Histology, St. Mary's Hospital Medical School, London W.2. ABSTRACT The histology and ultrastrueture of the pars distalis of the rabbit hypophysis was studied after different periods of organ culture, and the best technique for the maintenance of the maximum proportion of the explant was assessed by comparing cultures grown in different conditions. Explants in air with a medium buffered. with N.2-hydroxyethylpiperazine-N1-2- ethanesulphonic acid (HEPES), not previously used in organ culture, proved more satisfactory than explants in carbogen with bicarbonate buffered 199, and cultures were maintained for more than 3 weeks. Material from young animals survived better than from old. The survival of cells was assessed on the basis of their cytological integrity when explants were examined by light microscopy after specific staining and by electron microscopy; DNA and RNA fluorescence with acridine orange was a valuable indicator. Also, cell multiplication was identified by direct observation of mitosis, by the application of the colchicine technique and by autoradiography. During culture, prolactin cells showed physiological signs of secretion (demonstrated by combined culture with mammary gland) and morphological signs of an increase of secretory activity. Morphological signs of reduced secretory activity appeared in the presence of hypothalamic tissue (combined culture) or extract. Somatotrophs and gonadotrophs. showed signs of low-level secretory activity in solitary pars distalis culture and of increased activity in combined culture with hypothalamus. -
Involvement of Gap Junctional Communication in Secretion
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1719 (2005) 82 – 101 http://www.elsevier.com/locate/bba Review Involvement of gap junctional communication in secretion Laetitia Michon 1, Rachel Nlend Nlend 1, Sabine Bavamian, Lorraine Bischoff, Nathalie Boucard, Dorothe´e Caille, Jose´ Cancela, Anne Charollais, Eric Charpantier, Philippe Klee, Manon Peyrou, Ce´line Populaire, Laurence Zulianello, Paolo Meda * Department of Cell Physiology and Metabolism, University of Geneva, C.M.U., 1 rue Michel Servet, 1211 Geneva 4, Switzerland Received 11 July 2005; received in revised form 31 October 2005; accepted 7 November 2005 Available online 18 November 2005 Abstract Glands were the first type of tissues in which the permissive role of gap junctions in the cell-to-cell transfer of membrane-impermeant molecules was shown. During the 40 years that have followed this seminal finding, gap junctions have been documented in all types of multicellular secretory systems, whether of the exocrine, endocrine or pheromonal nature. Also, compelling evidence now indicates that gap junction-mediated coupling, and/or the connexin proteins per se, play significant regulatory roles in various aspects of gland functions, ranging from the biosynthesis, storage and release of a variety of secretory products, to the control of the growth and differentiation of secretory cells, and to the regulation of gland morphogenesis. This review summarizes this evidence in the light of recent reports. D 2005 Elsevier B.V. All rights reserved. Keywords: Exocrine gland; Endocrine gland; Enzyme; Hormone; Ca2+; Synchronization Contents 1. -
Light and Electron Microscopic Observations on the Anterior Pituitary of the Mouse Injected with Dl-Thyroxine By
Okajimas Fol. anat. jap., 43: 21-51, 1967 Light and Electron Microscopic Observations on the Anterior Pituitary of the Mouse injected with dl-Thyroxine By Tomiji Uchida Department of Anatomy, Nagoya University School of Medicine, Nagoya, Japan (Director : Prof. Dr. Ka z u m a r o Y a m ad a) Introduction Probably, the first suggestion of the existence of a functional relationship between the thyroid and hypophysis was given by Niepce (1851) who described pituitary enlargement in a series of goitrous cretins. Since then numerous studies have provided detailed evidence of this relationship. The reciprocal interrelationship be- tween thyroid stimulating hormone (TSH) secretion in the anterior hypophysis and the circulating levels of thyroid hormone has been well established, and in general, procedures which reduce effective plasma concentrations of thyroid hormone increase thyrotrophic hormone release in the anterior pituitary, whereas increased circulat- ing levels of thyroxine inhibit thyrotophic hormone secretion. This negative feedback mechanism resides both in the level of the pituitary and of a hypothalamic " TSH releasing center " (S o 1 o m on and Dowling, '60). Earlier views (Ma rin e, Rosen and Spar k, '35; Morris, '52) favored pituitary acidophile cell as the source of thyrotrophic hormone, but results of many recent studies implicate the basophile cell (Zeckwer, '38a and '38b; Griesbach and Purves, '45 Pur v es and Griesbac h, '46a, '46b, '51a, '51b, '51c, '57a and '57b; Goldberg and Chaikoff, '50; Salter, '50, Halmi, '50, '51, '52a , '52b, and 52c ; R ennel s, '53; Halm i and G u d e, '54 D'Angelo, '53 and '55; Knigge, '55; Elf tman, '58; Mura - s h i m a, '60 and others). -
Characterization of Human Pituitary Adenomas in Cell Cultures by Light and Electron Microscopic Morphology and Immunolabeling
FOLIA HISTOCHEMICA ET CYTOBIOLOGICA Vol. 43, No. 2, 2005 pp. 81-90 Characterization of human pituitary adenomas in cell cultures by light and electron microscopic morphology and immunolabeling Ilona Fazekas1, Balázs Hegedüs1, Ernö Bácsy2, Edit Kerekes1, Felicia Slowik1, Katalin Bálint1 and Emil Pásztor1 1National Institute of Neurosurgery, Budapest, and 2Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary Abstract: The morphology and hormone production of pituitary adenoma cell cultures were compared in order to highlight their characteristic in vitro features. Cell suspensions were prepared from 494 surgical specimens. The 319 viable monolayer cultures were analyzed in detail by light microscopy and immunocytochemistry within two weeks of cultivation. Some cultures were further characterized by scanning, transmission and immunogold electron microscopy. The viability and detailed in vitro morphology of adenoma cells were found to be characteristic for the various types of pituitary tumors. The sparsely granulated growth hormone, the corticotroph and the acidophil stem cell adenomas provided the highest ratio of viable cultures. Occasionally, prolonged maintenance of cells resulted in long-term cultures. Furthermore, a variety of particular distributions of different hormone-containing granules were found in several cases. Both light microscopic and ultrastructural analyses proved that the primary cultures of adenoma cells retain their physiological features during in vitro cultivations. Our in vitro findings correlated with the routine histopathological examination. These results prove that monolayer cultures of pituitary adenoma cells can contribute to the correct diagnosis and are valid model systems for various oncological and neuroendoc- rinological studies. Key words: Pituitary adenoma - Hormone - Immunolabeling - Electron microscopy - Cell culture Introduction drugs and hormone therapies aimed at the control of tumor growth [1, 2, 10].