Light and Electron Microscopic Observations on the Anterior Pituitary of the Mouse Injected with Dl-Thyroxine By

Total Page:16

File Type:pdf, Size:1020Kb

Light and Electron Microscopic Observations on the Anterior Pituitary of the Mouse Injected with Dl-Thyroxine By Okajimas Fol. anat. jap., 43: 21-51, 1967 Light and Electron Microscopic Observations on the Anterior Pituitary of the Mouse injected with dl-Thyroxine By Tomiji Uchida Department of Anatomy, Nagoya University School of Medicine, Nagoya, Japan (Director : Prof. Dr. Ka z u m a r o Y a m ad a) Introduction Probably, the first suggestion of the existence of a functional relationship between the thyroid and hypophysis was given by Niepce (1851) who described pituitary enlargement in a series of goitrous cretins. Since then numerous studies have provided detailed evidence of this relationship. The reciprocal interrelationship be- tween thyroid stimulating hormone (TSH) secretion in the anterior hypophysis and the circulating levels of thyroid hormone has been well established, and in general, procedures which reduce effective plasma concentrations of thyroid hormone increase thyrotrophic hormone release in the anterior pituitary, whereas increased circulat- ing levels of thyroxine inhibit thyrotophic hormone secretion. This negative feedback mechanism resides both in the level of the pituitary and of a hypothalamic " TSH releasing center " (S o 1 o m on and Dowling, '60). Earlier views (Ma rin e, Rosen and Spar k, '35; Morris, '52) favored pituitary acidophile cell as the source of thyrotrophic hormone, but results of many recent studies implicate the basophile cell (Zeckwer, '38a and '38b; Griesbach and Purves, '45 Pur v es and Griesbac h, '46a, '46b, '51a, '51b, '51c, '57a and '57b; Goldberg and Chaikoff, '50; Salter, '50, Halmi, '50, '51, '52a , '52b, and 52c ; R ennel s, '53; Halm i and G u d e, '54 D'Angelo, '53 and '55; Knigge, '55; Elf tman, '58; Mura - s h i m a, '60 and others). Halm i ('50, '52a, '52b and '52c) using Gomori's aldehyde-fuchsin staining method (G o m o r i, '50) recently, differentiated clearly two functionally distinct types of basophile (beta and delta cell) in the 21 rat pituitary, and stated beta basophiles correspond to thyrotrophic hormone secretion. P u r v es and G r i e s b a c h ('51a, '51b and '51c) moreover, applied periodic acid-Schiff's reaction to the rat pituitary which allegedly discriminates thyrotrophic and gonadotrophic hormone producing cells routinely classified as basophiles. More recently, electron microscopy has been used to study on hypophysis (W e i s s and Lansing, '53; Rinehart and Farquhar, '53; Farqu- har and Rinehart, '54a, '54b and '54c; Farquhar and Wel- lings, '57; Farquhar, '57; He dinger and Farquhar, '57; Peterson, '57; Ichikawa, '59; Yamada and Sano, '60; Barnes, '61, '62 and '63; Hymer, McShan and Christian- sen, '61; Herlant and Klastersk y, '61; Lundin and Schelin, '62; Rennels, '62 and '64; Sano, '62; Hymer and McShan, '63; Salazar, '63; Siperstein and Allison, '65; Young, Foster and Cameron, '65). Although cytological alterations in the hypophysis of hypo- and hyperthyroid animals have been extensively described by many inves- tigators, electron microscopic description of the anterior pituitary in experimental hyperthyoid animals has previously been little reported. Experimental hyperthyroidism induces a quantitative alteration of various hormonal conditions in the anterior pituitary. The present auther previously, reported on the anterior pituitary cytology of the hyperthyroid mouse made with the light microscope (U chid a, '64) . In the present study, light and electron microscopes were employed to investigate the cytological changes in the mouse anterior pituitary following thyroxine injection. Materials and Methods Sixty nine young adult male DD strain mice, 51 to CO days age, were used in this study. They were divided into two groups, namely experimental group and control group. In the present study, dl- Thyroxine was dissolved in 0.02 N. sodium hydroxide made isotonic with sodium chloride and administered to the mice in the form of daily subcutaneous injection. The levels of thyroxine dosage were 0.5, 1.0, 5.0 and 10.0 pg, and the period of injection 3, 7, 14, 21 and 30 days. In the same way, control groups were injected with the same solution without thyroxine. Most animals were sacrificed 24 hours after the last injection under ether anesthesia. The pituitaries were removed immediately after death and fixed in Zenker-formalin- acetic acid fixative. The tissues were imbedded in paraffin and cut serially in the sagittal plane at 4 p. They were stained with hematoxylin-eosin, Heidenhein's azan, periodic acid-Schiff's reaction (PAS) and Gomori's aldehyde-fuchsin. On the other hand, for electron microscopy, some of the animals were killed by decapitation. The pituitaries were dissected out quickly and fixed in buffered isotonic 1 per cent osmium tetroxide (0504) (P a la d e, '52) at ice-cold (0-4°C) temperature for 1 hour. After fixation the tissues were rinsed in distilled water, rapidly dehydrated in an ethanol series, and embedded in Epon 812 (L u f t, '61). Sections were cut with a Porter-Blume ultramicrotome, using glass knives with cutting edge angle of 45°, and mounted on mesh copper grids without a supporting film of carbon. The sections were stained by floating them face downward on a saturated solution of uranyl acetate (W a t s o n, '58) in 50 per cent ethanol for periods ranging from 30 min. to 60 min. and then were washed thoroughly in distilled water. Sections were examined and photographed with a Hitachi Hu 11A electron microscope. Observations The anterior pituitary of the normal mouse consisted of chromo- phobes and three types of chromophile : the acidophiles and two types of basophile, beta cell (thyrotroph) and delta cell (gonadotroph). The acidophiles (Fig. 1), by light microscopy, are more abundantly found in the lateral portion of the anterior lobe. The cells present a sharply defined cell boundary and are round or oval in shape. They contain cytoplasmic granules which are selectively stained with eosin, orange-G and azocarmin. Acidophiles vary in size, but the majority are medium in size. These medium sized cells are generally well granulated. Their nuclei are also round or oval in shape, light vesicular, and there are frequently seen cartwheel-like nuclei. Moreover, considerable numbers of these cells possess a negative image of Golgi's apparatus or perinuclear halo. The large acidophiles and small acidophiles are observed only in small numbers. Mitotic figures of acidophiles are rarely found. By electron microscopy two types of acidophile were identified. The first type cell of acidophiles (Figs. 7 and 10) is more numerous and conspicuous type. The spherical and electron dense granules of these cells are scattered randomly throughout the cytoplasm and range in size from 350 to 400 mp, although occasionally they may be as large as 500 mil. The endoplasmic reticulum of the commonly encountered form appears as a series of flattened sacs in parallel 24 Tomiji Uchida rows and is stacked to one side of the cell. But occasionally the endoplasmic reticulum is markedly enlarged. Scattered elements of the endoplasmic reticulum can be seen either around the nucleus or between the granules and the membrane. A few mitochondria and moderately developed Golgi zone are also observed. The second type cell of acidophiles (Fig. 8) is characterized by the presence of oval or irregularly shaped dense granules peculiarly concentrated near the Golgi area. Their granules range in size from 200 to 400 mp in their longest dimension, and from 100 to 200 my in their shortest. The endoplasmic reticulum is arranged as flattened parallel lamellae and stacked to one side of the cell in the vicinity of the plasma membrane. The Golgi zone is relatively small. The mitochondria are rod-shaped and possess an electron dense matrix. In both type cells, ribosomes are usually found attached to the endoplasmic reticulum membranes. The beta basophiles (Figs. 2 and 3), by light microscopy, are larger than the acidophiles, and angular or even crescent in shape. They are more numerous in the central portion of the anterior lobe, but rarely encountered. Their granules are coarser than those of the acidophiles and are stained with PAS reaction and Gomori's aldehyde-fuchsin (Fig. 3). Nuclei of the beta cells are round or oval in shape, usually smaller than those of the delta cells and contain . abundant chromatin granules. The negative image of Golgi's appa- ratus is seen indefinitely. In electron microscopic observations, these beta cells (thyrotrophs) (Figs. 9 and 10) are also polygonal in outline with a small nucleus. Their spherical secretory granules are relative- ly constant in size, ranging from 50 to 100 my, but they vary markedly in electron density. The cytoplasm of the cell is relatively devoid of fine structural detail. The fine granules of the beta cells are sparsely and randomly distributed throughout the cytoplasm. Occasionally they are particularly arranged in the periphery of the cytoplasm. The ground substance of the cytoplasm is more electron lucent than other cell types of the anterior pituitary. Few ribosomes are present, either attached to the membrane system or lying free in the cytoplasm. The Golgi's apparatus in these cells is relatively poorly developed. The endoplasmic reticulum appears as scattering of small vesicles and its development is also relatively poor. The mitochondria are small and appear rather as dense rods. The delta cells (gonadotrophs) are located mainly in the anterior portion, so-called sex-zone " and scattered in the central region of the anterior lobe. In light microscopic observations, delta cells (Fig. Light and Electron Microscopic Observations on the Anterior Pituitary 25 2) are oval or polygonal in shape and densely packed with fine, dust- like granules that are stained with aniline blue of the azan staining or PAS reaction. But these granules are not stained with aldehyde- fuchsin. They vary in size, but usually larger than those of the acidophiles.
Recommended publications
  • The Morphology and Histology of a Certain Structure Connected with the Pars Intermedia of the Pituitary Body Ofthe Ox1
    THE MORPHOLOGY AND HISTOLOGY OF A CERTAIN STRUCTURE CONNECTED WITH THE PARS INTERMEDIA OF THE PITUITARY BODY OFTHE OX1 ROSALIND \VULZEX From the Hearst Anatomical Laboratory oj the University oj California SEVENTEEN FIGURES Certain physiological experiments are now being conducted in the Rudolph Spreckels Physiological Laboratory of this University which necessitate the separation of a great number of ox pituitaries into their two main divisions. As an interesting anatomical feature was in this way brought to our attention the material was used in addition for this anatomical study. This feature has not been mentioned by the following who have written more or less fully upon the pituitary body of the ox, Peremeschko ('67), Dostojewski ('86), Herring ('08)' and Traut- mann ('11). The pituitary body of the ox, like that of other vertebrates, is composed of two distinct portions. One, the pars nervosa, is derived from the brain as an outgrowth of the hypothalamus. The other originates as a hollow buccal evagination which in time is completely separated from the digestive tract. That portion of this evagination which comes into contact with the pars nervosa is called the pars intermedia. It is a comparatively thin sheet of epithelium which spreads as a coating over much Material amounting to thousands of pituitary bodies was most kindly sup- plied by the Oakland Meat and Packing Company through the courtesy of the Superintendent. It was derived from cows, bulls and steers. As the cone struc- ture was present indifferently in these three varieties, its appearance can have little to do with sex or castration.
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • © Copyright 2016 Wendy Yang
    © Copyright 2016 Wendy Yang Role for cell-to-cell communication in stem cell specification toward pancreatic progenitors: relevance to the design of novel therapies for diabetes. Wendy Yang A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2016 Reading Committee: Vincenzo Cirulli, Chair Laura Crisa Paul D. Lampe Program Authorized to Offer Degree: Pharmacology University of Washington Abstract Role for cell-to-cell communication in stem cell specification toward pancreatic progenitors: relevance to the design of novel therapies for diabetes. Wendy Yang Chair of the Supervisory Committee: Vincenzo Cirulli Metabolism, Endocrinology & Nutrition Pancreatic islets of Langerhans, responsible for the production of hormones such as insulin and glucagon, develop from pluripotent pancreatic progenitors following their specification toward an endocrine phenotype. Based on the established role of cell-to-cell communication as an important mechanism regulating developmental decisions during embryonic life, I investigated the expression pattern of Connexins (Cxs), the building blocks of Gap Junction channels, in the developing human pancreas, and in an in vitro model of pancreatic progenitor differentiation from human embryonic stem cells (hESC). I also investigated the role of β1 integrins and an associated downstream effector, integrin-linked kinase (ILK), on islet development in mice. In a first series of experiments, I investigated the expression pattern of Cxs in the developing human pancreas. Results from these studies revealed that while Cx32 is predominantly expressed in the acinar tissue, Cx36 is primarily expressed in developing islet β- cells. Cx43 exhibited the most interesting expression pattern, being primarily detected in putative islet cell progenitors that delaminate from the pancreatic ductal epithelium and aggregate with developing islet cell clusters.
    [Show full text]
  • Histology Histology
    HISTOLOGY HISTOLOGY ОДЕСЬКИЙ НАЦІОНАЛЬНИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ THE ODESSA NATIONAL MEDICAL UNIVERSITY Áiáëiîòåêà ñòóäåíòà-ìåäèêà Medical Student’s Library Серія заснована в 1999 р. на честь 100-річчя Одеського державного медичного університету (1900–2000 рр.) The series is initiated in 1999 to mark the Centenary of the Odessa State Medical University (1900–2000) 1 L. V. Arnautova O. A. Ulyantseva HISTÎLÎGY A course of lectures A manual Odessa The Odessa National Medical University 2011 UDC 616-018: 378.16 BBC 28.8я73 Series “Medical Student’s Library” Initiated in 1999 Authors: L. V. Arnautova, O. A. Ulyantseva Reviewers: Professor V. I. Shepitko, MD, the head of the Department of Histology, Cytology and Embryology of the Ukrainian Medical Stomatologic Academy Professor O. Yu. Shapovalova, MD, the head of the Department of Histology, Cytology and Embryology of the Crimean State Medical University named after S. I. Georgiyevsky It is published according to the decision of the Central Coordinational Methodical Committee of the Odessa National Medical University Proceedings N1 from 22.09.2010 Навчальний посібник містить лекції з гістології, цитології та ембріології у відповідності до програми. Викладено матеріали теоретичного курсу по всіх темах загальної та спеціальної гістології та ембріології. Посібник призначений для підготовки студентів до практичних занять та ліцензійного екзамену “Крок-1”. Arnautova L. V. Histology. A course of lectures : a manual / L. V. Arnautova, O. A. Ulyantseva. — Оdessa : The Оdessa National Medical University, 2010. — 336 p. — (Series “Medical Student’s Library”). ISBN 978-966-443-034-7 The manual contains the lecture course on histology, cytology and embryol- ogy in correspondence with the program.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Observations on the Histology and Ultrastructure
    OBSERVATIONS ON THE HISTOLOGY AND ULTRASTRUCTURE OF THE PARS DISTALIS OF THE RABBIT HYPOPHYSIS IN ORGAN CULTURE A Thesis submitted for the degree of Doctor of Philosophy in the University of London by SNEHLATA PATHAK Department of Cellular Biology 1970 and Histology, St. Mary's Hospital Medical School, London W.2. ABSTRACT The histology and ultrastrueture of the pars distalis of the rabbit hypophysis was studied after different periods of organ culture, and the best technique for the maintenance of the maximum proportion of the explant was assessed by comparing cultures grown in different conditions. Explants in air with a medium buffered. with N.2-hydroxyethylpiperazine-N1-2- ethanesulphonic acid (HEPES), not previously used in organ culture, proved more satisfactory than explants in carbogen with bicarbonate buffered 199, and cultures were maintained for more than 3 weeks. Material from young animals survived better than from old. The survival of cells was assessed on the basis of their cytological integrity when explants were examined by light microscopy after specific staining and by electron microscopy; DNA and RNA fluorescence with acridine orange was a valuable indicator. Also, cell multiplication was identified by direct observation of mitosis, by the application of the colchicine technique and by autoradiography. During culture, prolactin cells showed physiological signs of secretion (demonstrated by combined culture with mammary gland) and morphological signs of an increase of secretory activity. Morphological signs of reduced secretory activity appeared in the presence of hypothalamic tissue (combined culture) or extract. Somatotrophs and gonadotrophs. showed signs of low-level secretory activity in solitary pars distalis culture and of increased activity in combined culture with hypothalamus.
    [Show full text]
  • Involvement of Gap Junctional Communication in Secretion
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1719 (2005) 82 – 101 http://www.elsevier.com/locate/bba Review Involvement of gap junctional communication in secretion Laetitia Michon 1, Rachel Nlend Nlend 1, Sabine Bavamian, Lorraine Bischoff, Nathalie Boucard, Dorothe´e Caille, Jose´ Cancela, Anne Charollais, Eric Charpantier, Philippe Klee, Manon Peyrou, Ce´line Populaire, Laurence Zulianello, Paolo Meda * Department of Cell Physiology and Metabolism, University of Geneva, C.M.U., 1 rue Michel Servet, 1211 Geneva 4, Switzerland Received 11 July 2005; received in revised form 31 October 2005; accepted 7 November 2005 Available online 18 November 2005 Abstract Glands were the first type of tissues in which the permissive role of gap junctions in the cell-to-cell transfer of membrane-impermeant molecules was shown. During the 40 years that have followed this seminal finding, gap junctions have been documented in all types of multicellular secretory systems, whether of the exocrine, endocrine or pheromonal nature. Also, compelling evidence now indicates that gap junction-mediated coupling, and/or the connexin proteins per se, play significant regulatory roles in various aspects of gland functions, ranging from the biosynthesis, storage and release of a variety of secretory products, to the control of the growth and differentiation of secretory cells, and to the regulation of gland morphogenesis. This review summarizes this evidence in the light of recent reports. D 2005 Elsevier B.V. All rights reserved. Keywords: Exocrine gland; Endocrine gland; Enzyme; Hormone; Ca2+; Synchronization Contents 1.
    [Show full text]
  • Introduction to Geomicrobiology
    ITGA01 18/7/06 18:06 Page iii Introduction to Geomicrobiology Kurt Konhauser ITGC03 18/7/06 18:11 Page 93 3 Cell surface reactivity and metal sorption One of the consequences of being extremely 3.1 The cell envelope small is that most microorganisms cannot out swim their surrounding aqueous environment. Instead they are subject to viscous forces that 3.1.1 Bacterial cell walls cause them to drag around a thin film of bound water molecules at all times. The im- Bacterial surfaces are highly variable, but one plication of having a watery shell is that micro- common constituent amongst them is a unique organisms must rely on diffusional processes material called peptidoglycan, a polymer con- to extract essential solutes from their local sisting of a network of linear polysaccharide milieu and discard metabolic wastes. As a (or glycan) strands linked together by proteins result, there is a prime necessity for those cells (Schleifer and Kandler, 1972). The backbone to maintain a reactive hydrophilic interface. of the molecule is composed of two amine sugar To a large extent this is facilitated by having derivatives, N-acetylglucosamine and N-acetyl- outer surfaces with anionic organic ligands and muramic acid, that form an alternating, and high surface area:volume ratios that provide repeating, strand. Short peptide chains, with four a large contact area for chemical exchange. or five amino acids, are covalently bound to some Most microorganisms further enhance their of the N-acetylmuramic acid groups (Fig. 3.1). chances for survival by growing attached to They serve to enhance the stability of the submerged solids.
    [Show full text]
  • On the Staining Capacity of the Nucleolus and Its Physiological Significance
    On the Staining Capacity of the Nucleolus and its Physiological Significance. By Kunio Sato. Department of Anatomy. Okayama Medical college, (Director: Prof. K. Kosaka.) With 7 text figures. Contents. Introduction 717 Historical. ......• 717 Material and methods........ 719 Staining character of the Nucleolus 720 a. Fixingfluids 720 b. Stains.. .............•. 721 Relation ofthe Nucleolus to Reagents .. 726 Nucleoli inVariousDevelopmental Stages......Developmental 728 Comments...... .......... 731 Conclusions ..... .. 735 Introduction. Since the discovery of the nucleolus in nucleus b Fontana (1781), a host of investigators have striven to find its physiological significance and the origin of its peculiar stainability. To our regret, however, we have not as yet arrived at an acceptable conclusion ; some take it for a metabolic product with little significance to cell functions, while others think that it is a most important reservoir or pre-substance of chromatin, being stained partly acidophilously and partly basophilously. Still others consider it nothing other than a crystalloid. At the Institute of Anatomy Prof. KO saka suggested me to attack the nucleolus problem from its staining capacity, and in the following pages I shall describe some of my results. Historical. Carnoy and Lebrun (1897-1899), Nussbaum (1913), Lubosch 718 Kunio sato, (1914), Wagner (1923) et al. found double stainability of the nucleolus (germinal spot) and maintain that the nucleolus is acidophilic but its peripheral portion may be basophilic, although this condition varies a great deal according to the different kinds and physiologic phases of cells. What was said of the egg cells is also confirmed in the somatic cells. Macklin . (MO found that the nucleolus of connective tissue cell very finely stained by haematoxylin and gentian violet.
    [Show full text]
  • Characterization of Human Pituitary Adenomas in Cell Cultures by Light and Electron Microscopic Morphology and Immunolabeling
    FOLIA HISTOCHEMICA ET CYTOBIOLOGICA Vol. 43, No. 2, 2005 pp. 81-90 Characterization of human pituitary adenomas in cell cultures by light and electron microscopic morphology and immunolabeling Ilona Fazekas1, Balázs Hegedüs1, Ernö Bácsy2, Edit Kerekes1, Felicia Slowik1, Katalin Bálint1 and Emil Pásztor1 1National Institute of Neurosurgery, Budapest, and 2Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary Abstract: The morphology and hormone production of pituitary adenoma cell cultures were compared in order to highlight their characteristic in vitro features. Cell suspensions were prepared from 494 surgical specimens. The 319 viable monolayer cultures were analyzed in detail by light microscopy and immunocytochemistry within two weeks of cultivation. Some cultures were further characterized by scanning, transmission and immunogold electron microscopy. The viability and detailed in vitro morphology of adenoma cells were found to be characteristic for the various types of pituitary tumors. The sparsely granulated growth hormone, the corticotroph and the acidophil stem cell adenomas provided the highest ratio of viable cultures. Occasionally, prolonged maintenance of cells resulted in long-term cultures. Furthermore, a variety of particular distributions of different hormone-containing granules were found in several cases. Both light microscopic and ultrastructural analyses proved that the primary cultures of adenoma cells retain their physiological features during in vitro cultivations. Our in vitro findings correlated with the routine histopathological examination. These results prove that monolayer cultures of pituitary adenoma cells can contribute to the correct diagnosis and are valid model systems for various oncological and neuroendoc- rinological studies. Key words: Pituitary adenoma - Hormone - Immunolabeling - Electron microscopy - Cell culture Introduction drugs and hormone therapies aimed at the control of tumor growth [1, 2, 10].
    [Show full text]
  • A Histological and Histochemical Study of Transplanted Pituitary Glands in Mice Thomas Warner Tillack Yale University
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 1963 A histological and histochemical study of transplanted pituitary glands in mice Thomas Warner Tillack Yale University Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Recommended Citation Tillack, Thomas Warner, "A histological and histochemical study of transplanted pituitary glands in mice" (1963). Yale Medicine Thesis Digital Library. 3248. http://elischolar.library.yale.edu/ymtdl/3248 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. i^'w^:na^^rnJ?imt^nTrrea,iniri«r.!«aBirh3W3»»nswi|!w-i»iaTsniS3f3«»* MUDD library 19 8 3 Medical Digitized by the Internet Archive in 2017 with funding from The National Endowment for the Humanities and the Arcadia Fund https://archive.org/details/histologicalhistOOtill A HISTOLOGICAL AND. HISTOCHEMICAL STUDY CF TRANSPLANTED PITUITARY GLANDS IN MICE Thomas W. Tillack, A*R. The University of Rochester, 1959 A Thesis Presented to the Faculty of the Yale University School of Medicine In Partial Fulfillment of the Requirements for the Degree of Doctor of Medicine The Department of Anatomy Yald University School of Medicine April 1963 ,i. oi.-;. Mamr. i-iu JAoiEO,xoxax-; » ■ - £ ft. • ACKNOWLEDGEMENTS I wish to sincerely thank Dr. W. U. Gardner for his thoughtful advice and assistance in every phase of this project.
    [Show full text]
  • Bacterial Diversity at an Abandoned Coal Mine in Southeast Kansas
    Pittsburg State University Pittsburg State University Digital Commons Electronic Thesis Collection Spring 5-12-2017 Bacterial Diversity at an Abandoned Coal Mine in Southeast Kansas Rachel Bechtold Pittsburg State University, [email protected] Follow this and additional works at: https://digitalcommons.pittstate.edu/etd Part of the Integrative Biology Commons, and the Other Ecology and Evolutionary Biology Commons Recommended Citation Bechtold, Rachel, "Bacterial Diversity at an Abandoned Coal Mine in Southeast Kansas" (2017). Electronic Thesis Collection. 335. https://digitalcommons.pittstate.edu/etd/335 This Thesis is brought to you for free and open access by Pittsburg State University Digital Commons. It has been accepted for inclusion in Electronic Thesis Collection by an authorized administrator of Pittsburg State University Digital Commons. For more information, please contact [email protected]. BACTERIAL DIVERSITY AT AN ABANDONED COAL MINE IN SOUTHEAST KANSAS A Thesis Submitted to the Graduate School in Partial Fulfillment of the Requirements for the Degree of Master of Science Rachel Bechtold Pittsburg State University Pittsburg, Kansas May 2017 BACTERIAL DIVERSITY AT AN ABANDONED COAL MINE IN SOUTHEAST KANSAS Rachel Bechtold APPROVED: Thesis Advisor ________________________________________________ Dr. Anuradha Ghosh, Biology Committee Member ________________________________________________ Dr. Dixie Smith, Biology Committee Member _________________________________________________ Dr. Ram Gupta, Chemistry ACKNOWLEDGEMENTS I would like to thank my professors and mentors at Pittsburg State University. Dr. Ghosh for her astute edits, positive attitude, and devotion to research. Dr. Smith for instilling in me a passion for soils. Dr. Gupta for his knowledge in subject of chemistry and amiable help. Dr. Chung and Kim Grissom have been a great help from the beginning in both laboratory prep and in learning new lab techniques.
    [Show full text]