Quantitative and Histomorphological Studies on Age-Correlated Changes in Canine and Porcine Hypophysis Lakshminarayana Das Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Quantitative and Histomorphological Studies on Age-Correlated Changes in Canine and Porcine Hypophysis Lakshminarayana Das Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1971 Quantitative and histomorphological studies on age-correlated changes in canine and porcine hypophysis Lakshminarayana Das Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Animal Structures Commons, and the Veterinary Anatomy Commons Recommended Citation Das, Lakshminarayana, "Quantitative and histomorphological studies on age-correlated changes in canine and porcine hypophysis" (1971). Retrospective Theses and Dissertations. 4873. https://lib.dr.iastate.edu/rtd/4873 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 71-26,847 DAS, Lakshminarayana, 1936- QUANTITATIVE AND HISTOMORPHOLOGICAL STUDIES ON AGE-CORRELATED CHANGES IN CANINE AND PORCINE HYPOPHYSIS (VOLUMES I AND II). Iowa State University, Ph.D., 1971 Anatomy• University Microfilms, A XEROX Company, Ann Arbor. Michigan Quantitative and histomorphological studies on age-correlated changes in canine and porcine hypophysis py Lakshminarayana Das Volume 1 of 2 A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OP PHILOSOPHY Major Subject: Veterinary Anatoiny Approved: Signature was redacted for privacy. Signature was redacted for privacy. Signature was redacted for privacy. Iowa State University Ames, Iowa 1971 PLEASE NOTE: Several pages contain colored illustrations. Filmed in the best possible way. UNIVERSITY MICROFILMS 11 TABLE OP CONTENTS page INTRODUCTION 1 REVIEW OP LITERATURE 6 Nomenclature 6 General Morphology 19 Pars dlstalls adenohypophysls 24 pars Intermedia adenohypophysls 31 pars Infundibular is adenohypophysls 33 Radix infundibull (median eminence) 34 pars cava infundibull and pars compacta infundibull 37 pars dlstalls neurohypophysis 38 Stains and Staining Reactions 40 Morphology of the Canine I^pophysis 72 Morphology of the Porcine Hypophysis 88 Ultrastructure of the Hypophysis 97 Development of %rpophysis 115 Blood Supply of Hypophysis 130 Quantitative Changes In I^pophysls with Age 145 Qualitative Changes in Hypophysis with Age 150 MATERIALS AND METHODS I65 General I65 Design of Program 165 Collection Procedure I69 Histological Techniques 170 Ill Page Age Groups I77 Measurements and Statistical Analysis I79 Cytometry 182 OBSERVATIONS I86 Quantitative Changes in Weights of I^pophysis , 186 Dog: beagle I86 Dog: mixed breeds I90 Pig 190 Age-correlated Changes in the Relationship of the hypophysis with other Endocrine Glands 195 Dog: beagles 195 Dog: mixed breeds 200 Pig 200 Histomorphology of the Canine l^pophysis 204 Adenohypophysis 204 Neurohypophysis 220 Histomorphology of the Porcine I^pophysis 225 Adenohypophysis 225 Neurohypophysis 236 Age-correlated Changes in the Canine Hypophysis 24l Adenohypophysis 241 Statistical evaluation 261 Neurohypophysis 2 76 Age-correlated Changes in the Porcine Hypophysis 288 Adenohypophysis 288 iv Page Neurohypophysis 329 Age-correlated Changes in the Hypothalamus 341 DISCUSSION 350 Comparative Study on Quantitative Changes in Weight 350 Morphology 361 Adenohypophysis 361 Neurohypophysis 386 Age-correlated Changes 391 Correlative Studies on Age-correlated Changes in Other Endocrine Glands 408 SUMMARY 413 BIBLIOGRAPHY 423 ACKNOWIEDGMENTS 457 APPENDIX A. TABLES 459 APPENDIX B. GRAPHS 520 APPENDIX C. PHOTOMICROGRAPHS 56I 1 INTRODUCTION Throughout its life span, every organism manifests certain dynamic processes which reveal certain specific roles when they are distributed among the age intervals. In earlier stages of the life span, these processes mainly contribute towards the goal of attaining functional and reactive abilities leading to reproduction of the species. This stage commonly termed development anU/6r growth period is followed by one which denotes the period of maximum functional ability, both in reproduction and reactance to the environ­ ment. During the latter stage, different tissues and organ systems of the body are often referred to as being normal. Terms such as adult, sexually mature, matured and fully grown are often used to denote this stage. The next stage is evidenced by changes undergone by tissues and organ systems in the body as a result of the dynamics of life's processes with the passage of time. These morphological and functional deviations reduce the functional ability of organ systems, decrease the adaptability of the organism and may contribute towards its death. This stage is commonly referred to as old age or senescence. In earlier days of gerontological research, the term age changes was applied in a limited sense to the morpho­ logical and functional changes that are evident during senescence (Strehler, 1962). Since most visible changes 2 with advancement of age are evinced by organs of the repro­ ductive system, the main cause of such changes in the process of ageing was thought to be the decreased activity of gonads. This concept has since been modified. The process of ageing is no longer considered to be limited to changes during senescence but is envisaged to involve all basic underlying changes in structure and function that lead to the gradual development and subsequent dysfunction of various systems in the body (Strehler, 1962; Getty, 1966). Thus, the science of gerontology incorporates the changes that occur in the organism during its post-natal life, growth, maturity and senescence. Many of the changes in structure and function represent the sum of changes which are of extrinsic and/or intrinsic origin. Since the process of ageing is considered as a fundamental property of the organism itself and not of the environment in which it lives, basic age-correlated changes should be characterized from those of extrinsic and patho­ logical origin. Strehler (1962) emphasized that any age- associated change should belong to the criteria of univer­ sality (occur in all members of the species), intrinsicality (even though widespread, should be of intrinsic origin), progressiveness (should resemble a process but not a sudden event) and deliteriousness (should contribute towards death of the organism). Thus, it is needless to emphasize that 3 gerontological research should involve aniinals maintained with the least possible variations in management and environment. Modern gerontological research aims at elucidating basic changes in structure and function with a view to delineate effectively causes and effects of the ageing process. Such a knowledge will contribute towards advances in human geriatrics and animal population. In the former, gerontology is applied to many social and psychological problems, such as treatment of the aged persons, prevention of disease and disability and preservation of vigor and good health (Getty, 1962). In the latter case, gerontology has been envisaged to enhance the reproductive and productive period in the life span of an animal. In modern biology, the science of gerontology has achieved considerable appreciation due to its wide range of application as a basic as well as applied science. Modem cell physiology has been elucidated to such a great extent that an understanding in basic age-correlated changes is necessary for a differential study of the physiological and pathological changes. Sines these changes follow a definite pattern in a particular species, study of the ageing process in a wide variety of species will contribute much towards such differential studies. Since earlier periods, role of endocrine glands in the process of ageing has attracted the attention of gerontolo- 4 gists. As growth and fimctlonal ability of many organs are influenced by the endocrine glands, ageing of the entire organism has been considered by some authors in terms of age- associated changes in these glands (Carlson, 1952; Verzar, 1966). With the advancement of knowledge in the field of neuroendocrinology, more emphasis is being laid at present on the neuroendocrine integration mechanism than on the endocrine system Itself. Shock (1966) considered the breakdown of neural and endocrine integrative functions in the individual as one of the major causes of age-correlated impairments in performance of the organism. VJith the hypophysis being the key organ associated with the mechanism of neuroendocrine integration, age-correlated changes in it have been considered as major contributing factors towards ageing of the individual (verzar, 1966). Furthermore, several physiological distur­ bances in the body which are characteristic of advanced age, are also manifested in conditions of decreased activity in some pituitary cells, independent of age of the aninal. Hypophysectomy leads to certain peculiar phenomena which are also manifested during senility (Verzar, 1966). Thus, age- correlated changes in the structure of the hypophysis will elucidate a basic xinderstanding of similar changes in other endocrine glands as well as the animal as an entity. There is considerable variation in histomorphology of the hypophysis, and a comparative study of age-correlated 5 changes in more than one species will contribute much towards the understanding of biological ageing in this organ. With this view in mind, hypophyses of the dog and the hog have
Recommended publications
  • The Ins and Outs of Circadian Timekeeping Steven a Brown* and Ueli Schibler†
    gd9507.qxd 11/10/1999 12:14 PM Page 588 588 The ins and outs of circadian timekeeping Steven A Brown* and Ueli Schibler† Recent research in Drosophila and in mammals has generated The mechanism by which light signals entrain the clock is fascinating new models for how circadian clocks in these another topic of intense interest, and will be our other focus. organisms are reset by light and how these clocks, in turn, direct circadian outputs. Though light perception by the central clock is Central clock mechanisms: a brief summary ocular in mammals, it probably proceeds via a mechanism In all cases examined to date, circadian clocks have been separate from traditional visual transduction. In Drosophila, one cell-autonomous: a single cell can generate and maintain mechanism is non-ocular and is in fact present in many different self-sustained circadian oscillations. The molecular basis tissues. In both organisms, the cryptochrome family of for these rhythms may rely on a negative feedback loop in photoreceptor-like molecules plays a role in the circadian clock, which clock proteins negatively regulate their own abun- though their function is incompletely understood. Moreover, dance or activity. This regulation may occur both at the although a master clock resides in the brain, a functional clock transcriptional and at the post-transcriptional level. For appears to reside in most cells of the body. In these tissues, at example, in the bread mold Neurospora crassa, the Fre- least some output genes are controlled at the transcriptional quency protein negatively regulates its own transcription level directly by clock proteins; others appear to be regulated by by interfering with the ability of the White-collar-1 and cascades of circadian transcription factors.
    [Show full text]
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • A Valuable Stain for Connective Tissue, Keratin and Fungi* Michel Prunieras, M.D
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector PAB: A VALUABLE STAIN FOR CONNECTIVE TISSUE, KERATIN AND FUNGI* MICHEL PRUNIERAS, M.D. Since the papers by Steedman (1), Lison (2)tion. Most of the blocks were freshly prepared and Mowry (3), the use of Alcian Blue stain hasbut some were as old as 30 years. undergone considerable change. The PAB stain (routine) runs as follow: As pointed out by Pearse (4), staining with Alcian Blue is increased when acidic groups are Deparafflo and bring sections to water. introduced by sulfation or by oxidation, due Oxidize in Permanganate for 10 minutes (2.5% to the salt linkage of the dye with acidic groups.MnO4K: 100 cc.; 5% S04112: 100 cc.; distilled water: 700 cc.). The specificity of the stain might also be im- Bleach in 2% oxalic acid, 30 seconds. proved by lowering the pH of the staining bath, Wash in running water and rinse in distilled thus making Alcian Blue staining specific forwater. strong acidic groups, as shown by Adams and Stain ooe slide 30 minutes in 0.1% Alcian Blue Sloper (5). Different oxidative procedures,8GX (Imperial Chemical Industries) in 3% acetic followed by Alcian Blue stain at various pHacid (pH 2.7, 3.0) and one other slide 10 minutes have been already described in the literature:in 1% Alcian Blue in 10% sulphuric acid (pH 0.2, 0.4). A third slide might be stained 1 minute in performie acid (Adams and Sloper, 5), per-1% Alcian Blue in distilled water.
    [Show full text]
  • A Study of Rawitz's 'Inversion Staining' by ALEKSANDRA PRZEL^CKA
    231 A Study of Rawitz's 'Inversion Staining' By ALEKSANDRA PRZEL^CKA {From the Cytological Laboratory, Department of Zoology, University Museum, Oxford, and the Nencki Institute, 3 Pasteur St., Warsaw 22; present address, Nencki Institute) SUMMAHY The Rawitz method involves mordanting with tannic acid and potassium antimony tartrate, and staining with basic fuchsine. The mordanting causes basic fuchsine to act as though it were an acid dye ('inversion staining'). A modification of the method is described in the present paper. This modification makes it possible to obtain the same results in a shorter time. The chief substances stained by Rawitz's method are phospholipids, certain pro- teins, and certain polysaccharides. Although the method cannot be regarded as a cytochemical test in the strict sense, yet it gives useful indications of chemical composition and in addition is valuable to the morphological cytologist as a technique for showing certain cytoplasmic inclusions (mitotic spindle, acrosome, mitochondria, 'Golgi apparatus' of certain cells). INTRODUCTION T is well known that the so-called 'Golgi apparatus' is extremely difficult to I reveal by any staining method. Baker, in the course of his investigation on this organelle in the epididymis of the mouse, found that it can be stained by basic fuchsin after a special mordanting process (1957). The method was taken from Rawitz (1895), who found that basic fuchsin, if mordanted with tannic acid and potassium antimony tartrate, loses the character of a dye for chro- matin and colours the cytoplasm instead. Rawitz called this effect 'inversion staining'. Since this technique, when applied to various kinds of cytological material, gave good selectivity in visualizing certain delicate cell structures, it seemed interesting to investigate the nature of the chemical compounds which are responsible for positive Rawitz staining.
    [Show full text]
  • Mucin Histochemistry in Tumours of Colon, Ovaries and Lung
    ytology & f C H i o s l t a o n l o r g u y o Ali et al., J Cytol Histol 2012, 3:7 J Journal of Cytology & Histology DOI: 10.4172/2157-7099.1000163 ISSN: 2157-7099 ReviewResearch Article Article OpenOpen Access Access Mucin Histochemistry in Tumours of Colon, Ovaries and Lung Usman Ali*, Nagi AH, Nadia Naseem and Ehsan Ullah Department of Morbid Anatomy and Histopathology, University of Health Sciences, Lahore, Pakistan Abstract Introduction: Mucins implicated in cancers of various organs. The apical epithelial surfaces of mammalian respiratory, gastrointestinal, and reproductive tracts are coated by mucus, a mixture of water, ions, glycoproteins, proteins, and lipids. The purpose of this study was to confirm the presence of mucin production using Haematoxylin and Eosin (H&E) stain as the gold standard and to describe the types of mucins produced in tumors of lung, colon and ovaries using various types of histochemical techniques. Methods: The resection specimens and biopsies from tumours of colon (n=16), ovaries (n=13) and lung (n=5) were included and stained with H&E to determin the histological diagnosis for selecting tissues with mucin production. Slides were stained with PAS, Alcian blue, High iron diamine-Alcian blue, Meyer’s mucicarmine and Alcian blue-PAS to demonstrate the mucin production and to identify types of mucins. Results: In the present study we observed predominance of acid mucins over neutral mucins. In addition in these cases we observed sulphomucin predominating over sialomucin. Conclusion: Mucin histochemistry can effectively determine the types of mucins. Keywords: Haematoxylin and Eosin; Periodic acid schiff; High iron Materials and Methods diamine; Alcian blue Paraffin embedded sections were prepared using automatic tissue Introduction processor, followed by preparation of paraffin block using our embedding station.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,905,539 B2 Patel Et Al
    USOO6905539B2 (12) United States Patent (10) Patent No.: US 6,905,539 B2 Patel et al. (45) Date of Patent: Jun. 14, 2005 (54) BLACK ERADICABLE INK, METHODS OF 5,478,382. A 12/1995 Miller et al............... 106/22 B ERADICATION OF THE SAME, 5,486.228 A 1/1996 Miller et al. ..... ... 106/22 B ERADICABLE INK KIT, AND ERADICATED 5,489,331 A 2/1996 Miller et al. .............. 106/22 B INK COMPLEX 5,492,558 A 2/1996 Miller et al. .............. 106/22 B 5,498.282 A 3/1996 Miller et al. .. ... 106/22 B (75) Inventors: Sanjay Patel, Cypress, CA (US); David 5,498,285 A 3/1996 Hooykaas ................... 106/486 Godbout, Westmont, IL (US); Wing 5,499,881. A 3/1996 Chang........................ 401/17 Sum Vincent Kwan, Chicago, IL (US) E. A to: Eli - - - t; (73) Assignee: Sanford L.P., Freeport, IL (US) SEA GE Air O..."; (*) Notice: Subject to any disclaimer, the term of this SCA : R. S. G.O.". patent is extended or adjusted under 35 5.877234. A 3/1999 Xuetal... 523/161 U.S.C. 154(b) by 0 days. 5,916,357. A 6/1999 Wang et al. ............. 106/31.23 5,964,931 A 10/1999 Korper .................... 106/31.93 (21) Appl. No.: 10/619,706 5,977.211 A 11/1999 Koyama ..................... 523/161 5.997,891 A 12/1999 Fuerst et al. ................ 424/401 (22) Filed: Jul. 15, 2003 6,037,391 A 3/2000 Iida ............................ 523/161 6,048.914 A 4/2000 Goto et al.
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Revisions Inserts Rev from Rev to JOB
    BALTSO0191 Version 11.0 Template 4 Revisions Inserts Rev from Rev to JOB # 06 07 52-17 Notes: 1. BD Catalog Number: 212525, 212526, 212527, 212528, 212531, 212532, 212539, 212542, 212543, 212544, 212545 2. Blank (Sheet) Size: Length: 25.5” Width: 22” 3. Number of Pages: 28 Number of Sheets: 1 4. Page Size: Length: 8.5” Width: 5.5” Final Folded Size: 4.25” x 5.5” 5. Ink Colors: No. of Colors: 2 PMS#: 032 Red; Standard Black 6. Printed two sides: Yes X No 7. Style (see illustrations below): # 5 W W W W W W W 8. Vendor Printed X Online/In House Printed Web 9. See specication control no. N/A for material information. 10. Graphics are approved by Becton, Dickinson and Company. Supplier has the responsibility for using the most current approved revision level. Label Design COMPANY CONFIDENTIAL. THIS DOCUMENT IS THE PROPERTY OF BECTON, DICKINSON AND Becton, Dickinson and Company Proofer COMPANY AND IS NOT TO BE USED OUTSIDE THE COMPANY WITHOUT WRITTEN PERMISSION. 7 Loveton Circle Sparks, MD 21152 USA Checked By Category and Description Sheet: 1 of 29 Part Number: Package Insert, 8820191JAA Gram Stain Kits and Reagents Scale: N/A A B Gram Stain Kits and Reagents English: pages 1 – 5 Italiano: pagine 14 – 18 8820191JAA(07) Français : pages 5 – 9 Español: páginas 19 – 23 2017-09 Deutsch: Seiten 10 – 14 Contact your local BD representative for instructions. / Свържете се с местния представител на BD за инструкзии. / Pokyny vám poskytne místní zástupce společnosti BD. / Kontakt den lokale BD repræsentant for at få instruktioner.
    [Show full text]
  • Student Safety Sheets Dyes, Stains & Indicators
    Student safety sheets 70 Dyes, stains & indicators Substance Hazard Comment Solid dyes, stains & indicators including: DANGER: May include one or more of the following Acridine orange, Congo Red (Direct dye 28), Crystal violet statements: fatal/toxic if swallowed/in contact (methyl violet, Gentian Violet, Gram’s stain), Ethidium TOXIC HEALTH with skin/ if inhaled; causes severe skin burns & bromide, Malachite green (solvent green 1), Methyl eye damage/ serious eye damage; may cause orange, Nigrosin, Phenolphthalein, Rosaniline, Safranin allergy or asthma symptoms or breathing CORR. IRRIT. difficulties if inhaled; may cause genetic defects/ cancer/damage fertility or the unborn child; causes damages to organs/through prolonged or ENVIRONMENT repeated exposure. Solid dyes, stains & indicators including Alizarin (1,2- WARNING: May include one or more of the dihydroxyanthraquinone), Alizarin Red S, Aluminon (tri- following statements: harmful if swallowed/in ammonium aurine tricarboxylate), Aniline Blue (cotton / contact with skin/if inhaled; causes skin/serious spirit blue), Brilliant yellow, Cresol Red, DCPIP (2,6-dichl- eye irritation; may cause allergic skin reaction; orophenolindophenol, phenolindo-2,6-dichlorophenol, HEALTH suspected of causing genetic PIDCP), Direct Red 23, Disperse Yellow 7, Dithizone (di- defects/cancer/damaging fertility or the unborn phenylthiocarbazone), Eosin (Eosin Y), Eriochrome Black T child; may cause damage to organs/respiratory (Solochrome black), Fluorescein (& disodium salt), Haem- HARMFUL irritation/drowsiness or dizziness/damage to atoxylin, HHSNNA (Patton & Reeder’s indicator), Indigo, organs through prolonged or repeated exposure. Magenta (basic Fuchsin), May-Grunwald stain, Methyl- ene blue, Methyl green, Orcein, Phenol Red, Procion ENVIRON. dyes, Pyronin, Resazurin, Sudan I/II/IV dyes, Sudan black (Solvent Black 3), Thymol blue, Xylene cyanol FF Solid dyes, stains & indicators including Some dyes may contain hazardous impurities and Acid blue 40, Blue dextran, Bromocresol green, many have not been well researched.
    [Show full text]
  • © Copyright 2016 Wendy Yang
    © Copyright 2016 Wendy Yang Role for cell-to-cell communication in stem cell specification toward pancreatic progenitors: relevance to the design of novel therapies for diabetes. Wendy Yang A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2016 Reading Committee: Vincenzo Cirulli, Chair Laura Crisa Paul D. Lampe Program Authorized to Offer Degree: Pharmacology University of Washington Abstract Role for cell-to-cell communication in stem cell specification toward pancreatic progenitors: relevance to the design of novel therapies for diabetes. Wendy Yang Chair of the Supervisory Committee: Vincenzo Cirulli Metabolism, Endocrinology & Nutrition Pancreatic islets of Langerhans, responsible for the production of hormones such as insulin and glucagon, develop from pluripotent pancreatic progenitors following their specification toward an endocrine phenotype. Based on the established role of cell-to-cell communication as an important mechanism regulating developmental decisions during embryonic life, I investigated the expression pattern of Connexins (Cxs), the building blocks of Gap Junction channels, in the developing human pancreas, and in an in vitro model of pancreatic progenitor differentiation from human embryonic stem cells (hESC). I also investigated the role of β1 integrins and an associated downstream effector, integrin-linked kinase (ILK), on islet development in mice. In a first series of experiments, I investigated the expression pattern of Cxs in the developing human pancreas. Results from these studies revealed that while Cx32 is predominantly expressed in the acinar tissue, Cx36 is primarily expressed in developing islet β- cells. Cx43 exhibited the most interesting expression pattern, being primarily detected in putative islet cell progenitors that delaminate from the pancreatic ductal epithelium and aggregate with developing islet cell clusters.
    [Show full text]
  • International
    2021 Revision 3 Our Commitment to the Customer We at ScyTek Laboratories, Inc. have committed ourselves to producing only the highest quality products for the laboratory market. Since the company was founded in 1991, ScyTek has continued to grow at a rapid rate as a result of our commitment to continuous improvement of each and every product line. In addition, aggressive pricing through vigilant cost containment and continuous improvements in efficiency combined with our commitment to quality have helped to foster strong customer bonds. While the majority of our business consists of producing custom reagents for the resale/OEM market, we still insist on providing only the highest quality service for those customers that use the product in their own laboratories. Being a primary manufacturer allows ScyTek to continually identify areas that can be improved through the implementation of Kaizen and other manufacturing management techniques. Being a primary manufacturer also allows the customer to have maximum flexibility in the products specifications making ScyTek an ideal manufacturing partner. ScyTek has the ability to produce and vial products in various environmental conditions up to Class 1000. For our OEM customers, we have the capability of producing most any liquid or dry blend for the laboratory and can customize packaging to meet nearly any requirement. Whether the product is an off- the-shelf item, or one made specifically to meet the customer’s needs, we are committed to delivering the product when expected and matching the anticipated specifications. As the President of ScyTek Laboratories, Inc., I encourage you to contact me directly with any questions or comments regarding the performance of our company or our products.
    [Show full text]
  • The Islet Ghrelin Cell 52:1 R35–R49 Review
    N WIERUP and others The islet ghrelin cell 52:1 R35–R49 Review The islet ghrelin cell Nils Wierup, Frank Sundler and R Scott Heller1 Correspondence should be addressed Unit of Neuroendocrine Cell Biology, Department of Clinical Sciences in Malmo¨ , Lund University Diabetes Centre, to N Wierup Clinical Research Centre, Scania University Hospital, Jan Waldenstro¨ ms gata 35, SE 205 02 Malmo¨ , Sweden Email 1Imaging Team, Novo Nordisk A/S, Novo Nordisk Park, DK2760 Ma˚ løv, Denmark [email protected] Abstract The islets of Langerhans are key regulators of glucose homeostasis and have been known Key Words as a structure for almost one and a half centuries. During the twentieth century several " ghrelin different cell types were described in the islets of different species and at different " islet developmental stages. Six cell types with identified hormonal product have been described " ghrelin cell so far by the use of histochemical staining methods, transmission electron microscopy, " pancreas and immunohistochemistry. Thus, glucagon-producing a-cells, insulin-producing b-cells, " human somatostatin-producing d-cells, pancreatic polypeptide-producing PP-cells, serotonin- " rat producing enterochromaffin-cells, and gastrin-producing G-cells have all been found in the " mouse mammalian pancreas at least at some developmental stage. Species differences are at hand " diabetes and age-related differences are also to be considered. Eleven years ago a novel cell type, " development the ghrelin cell, was discovered in the human islets. Subsequent studies have shown the presence of islet ghrelin cells in several animals, including mouse, rat, gerbils, and fish. The developmental regulation of ghrelin cells in the islets of mice has gained a lot of interest and several studies have added important pieces to the puzzle of molecular mechanisms and the genetic regulation that lead to differentiation into mature ghrelin cells.
    [Show full text]