Anti-CENP-E Code No

Total Page:16

File Type:pdf, Size:1020Kb

Anti-CENP-E Code No K0171-3 For Research Use Only. Page 1 of 2 Not for use in diagnostic procedures. MONOCLONAL ANTIBODY Anti-CENP-E Code No. Clone Subclass Quantity Concentration K0171-3 1H12 Mouse IgG1 100 g 1 mg/mL BACKGROUND: Centromere protein-E (CENP-E) is a INTENDED USE: kinesin-like protein that binds to kinetochores during For Research Use Only. Not for use in diagnostic procedures. mitosis. CENP-E is required for full chromosome alignment and normal progression through mitosis. REFERENCES: CENP-E is essential for stable, bioriented attachment of 1) Liu, S. T., et al., Mol. Biol. Cell 14, 1638-1651 (2003) chromosomes to spindle microtubules, for development of 2) McEwen, B. F., et al., Mol. Biol. Cell 12, 2776-2789 (2001) tension across aligned chromosomes, for stabilization of 3) Sudakin, V., et al., J. Cell Biol. 154, 925-936 (2001) spindle poles, and for satisfying the mitotic checkpoint. 4) Chan, G. K. T., et al., J. Cell Biol. 146, 941-954 (1999) The localization of CENP-E differs markedly from other centromere proteins, CENP-A, CENP-B, CENP-C and CENP-D. In contrast to these antigens, CENP-E RELATED PRODUCTS: expression is appeared at the centromere region of D115-3 anti-CENP-A (3-19) chromosomes during prometaphase but is not detected PD018 anti-CENP-K (polyclonal) during interphase. PD019 anti-CENP-50 (polyclonal) PD020 anti-CENP-O (polyclonal) SOURCE: This antibody was purified from hybridoma (clone 1H12) supernatant using protein A agarose. This hybridoma was established by fusion of mouse myeloma cell Sp2/0 with Balb/c mouse splenocyte immunized with the recombinant full-length human CENP-E. FORMULATION: 100 g IgG in 100 L volume of PBS containing 50% glycerol, pH 7.2. No preservative is contained. STORAGE: This antibody solution is stable for one year from the date of purchase when stored at -20°C. REACTIVITY: This antibody reacts with CENP-E on Immunocytochemical detection of Immunocytochemistry. CENP-E on acetone fixed HEp-II cells with K0171-3. APPLICATIONS: Western blotting; Not recommended PROTOCOL: Immunoprecipitation; Not tested Immunocytochemistry Immunohistochemistry; Not recommended 1) Culture the cells in the appropriate condition on a glass Immunocytochemistry; 10 g/mL slide. (for example, spread 104 of cells per one well, then Flow cytometry; Not tested incubate in a CO2 incubator for one night.) 2) Fix the cells by immersing the slide in acetone for 10 Detailed procedure is provided in the following minutes on ice. PROTOCOL. 3) Air dry the slides. 4) Add the primary antibody diluted with PBS as suggest in the APPLICATIONS onto the cells and incubate for 1 SPECIES CROSS REACTIVITY: hour at room temperature. (Optimization of antibody Species Human Mouse Rat concentration or incubation condition are recommended Cell HEp-II Not Tested Not Tested if necessary.) 5) Prepare a wash container such as a 500 mL beaker with a Reactivity on IF + magnetic stirrer. Then wash the cultured cells on the glass slide by soaking the slide with a plenty of PBS in MEDICAL & BIOLOGICAL LABORATORIES CO., LTD. URL https://ruo.mbl.co.jp e-mail [email protected], TEL 052-238-1904 K0171-3 Page 2 of 2 the wash container for 5 minutes. Take care not to touch the cells. Repeat another washes once more. 6) Add 30 L of 1:100 FITC conjugated anti-mouse IgG (MBL; code no. 238) diluted with PBS onto the cells. Incubate for 30 minutes at room temperature. Keep out light by aluminum foil. 7) Wash the slide in a plenty of PBS as in the step 5). 8) Wipe excess liquid from slide but take care not to touch the cells. Never leave the cells to dry. 9) Promptly add PermafluorTM aqueous mounting medium (MBL; code no. IM-0752) onto the slide, then put a cover slip on it. (Positive control for Immunocytochemistry; HEp-II) 071226-2.1 .
Recommended publications
  • Kinetochore Kinesin CENP-E Is a Processive Bi-Directional Tracker of Dynamic Microtubule Tips
    ARTICLES Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips Nikita Gudimchuk1,5, Benjamin Vitre2,5, Yumi Kim2,6, Anatoly Kiyatkin1, Don W. Cleveland2, Fazly I. Ataullakhanov3,4 and Ekaterina L. Grishchuk1,7 During vertebrate mitosis, the centromere-associated kinesin CENP-E (centromere protein E) transports misaligned chromosomes to the plus ends of spindle microtubules. Subsequently, the kinetochores that form at the centromeres establish stable associations with microtubule ends, which assemble and disassemble dynamically. Here we provide evidence that after chromosomes have congressed and bi-oriented, the CENP-E motor continues to play an active role at kinetochores, enhancing their links with dynamic microtubule ends. Using a combination of single-molecule approaches and laser trapping in vitro, we demonstrate that once reaching microtubule ends, CENP-E converts from a lateral transporter into a microtubule tip-tracker that maintains association with both assembling and disassembling microtubule tips. Computational modelling of this behaviour supports our proposal that CENP-E tip-tracks bi-directionally through a tethered motor mechanism, which relies on both the motor and tail domains of CENP-E. Our results provide a molecular framework for the contribution of CENP-E to the stability of attachments between kinetochores and dynamic microtubule ends. Accurate chromosome segregation depends on interactions between proportion of lagging chromosomes in anaphase in mouse liver microtubules and the kinetochore, a protein structure localized at cells and embryonic fibroblasts11,17. Fourth, after CENP-E-mediated each centromere1. Initially, kinetochores often attach to the walls congression, CENP-E-dependent localization of protein phosphatase of microtubules with the chromosomes then moving towards a 1 (PP1) to kinetochores is still required for stable microtubule spindle pole in a dynein-dependent manner2,3.
    [Show full text]
  • Organization, Evolution and Function of Alpha Satellite Dna
    ORGANIZATION, EVOLUTION AND FUNCTION OF ALPHA SATELLITE DNA AT HUMAN CENTROMERES by M. KATHARINE RUDD Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Dr. Huntington F. Willard Department of Genetics CASE WESTERN RESERVE UNIVERSITY January, 2005 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. 1 Table of Contents Table of contents.................................................................................................1 List of Tables........................................................................................................2 List of Figures......................................................................................................3 Acknowledgements.............................................................................................5 Abstract................................................................................................................6
    [Show full text]
  • WNT16 Is a New Marker of Senescence
    Table S1. A. Complete list of 177 genes overexpressed in replicative senescence Value Gene Description UniGene RefSeq 2.440 WNT16 wingless-type MMTV integration site family, member 16 (WNT16), transcript variant 2, mRNA. Hs.272375 NM_016087 2.355 MMP10 matrix metallopeptidase 10 (stromelysin 2) (MMP10), mRNA. Hs.2258 NM_002425 2.344 MMP3 matrix metallopeptidase 3 (stromelysin 1, progelatinase) (MMP3), mRNA. Hs.375129 NM_002422 2.300 HIST1H2AC Histone cluster 1, H2ac Hs.484950 2.134 CLDN1 claudin 1 (CLDN1), mRNA. Hs.439060 NM_021101 2.119 TSPAN13 tetraspanin 13 (TSPAN13), mRNA. Hs.364544 NM_014399 2.112 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 2.070 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 2.026 DCBLD2 discoidin, CUB and LCCL domain containing 2 (DCBLD2), mRNA. Hs.203691 NM_080927 2.007 SERPINB2 serpin peptidase inhibitor, clade B (ovalbumin), member 2 (SERPINB2), mRNA. Hs.594481 NM_002575 2.004 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 1.989 OBFC2A Oligonucleotide/oligosaccharide-binding fold containing 2A Hs.591610 1.962 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 1.947 PLCB4 phospholipase C, beta 4 (PLCB4), transcript variant 2, mRNA. Hs.472101 NM_182797 1.934 PLCB4 phospholipase C, beta 4 (PLCB4), transcript variant 1, mRNA. Hs.472101 NM_000933 1.933 KRTAP1-5 keratin associated protein 1-5 (KRTAP1-5), mRNA. Hs.534499 NM_031957 1.894 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 1.884 CYTL1 cytokine-like 1 (CYTL1), mRNA. Hs.13872 NM_018659 tumor necrosis factor receptor superfamily, member 10d, decoy with truncated death domain (TNFRSF10D), 1.848 TNFRSF10D Hs.213467 NM_003840 mRNA.
    [Show full text]
  • A Free-Living Protist That Lacks Canonical Eukaryotic DNA Replication and Segregation Systems
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.14.435266; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A free-living protist that lacks canonical eukaryotic DNA replication and segregation systems 2 Dayana E. Salas-Leiva1, Eelco C. Tromer2,3, Bruce A. Curtis1, Jon Jerlström-Hultqvist1, Martin 3 Kolisko4, Zhenzhen Yi5, Joan S. Salas-Leiva6, Lucie Gallot-Lavallée1, Geert J. P. L. Kops3, John M. 4 Archibald1, Alastair G. B. Simpson7 and Andrew J. Roger1* 5 1Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of 6 Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2 2 7 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 8 3Oncode Institute, Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences) 9 and University Medical Centre Utrecht, Utrecht, The Netherlands 10 4Institute of Parasitology Biology Centre, Czech Acad. Sci, České Budějovice, Czech Republic 11 5Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, 12 South China Normal University, Guangzhou 510631, China 13 6CONACyT-Centro de Investigación en Materiales Avanzados, Departamento de medio ambiente y 14 energía, Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chih., México 15 7Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of 16 Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2 17 *corresponding author: [email protected] 18 D.E.S-L ORCID iD: 0000-0003-2356-3351 19 E.C.T.
    [Show full text]
  • The Genetic Program of Pancreatic Beta-Cell Replication in Vivo
    Page 1 of 65 Diabetes The genetic program of pancreatic beta-cell replication in vivo Agnes Klochendler1, Inbal Caspi2, Noa Corem1, Maya Moran3, Oriel Friedlich1, Sharona Elgavish4, Yuval Nevo4, Aharon Helman1, Benjamin Glaser5, Amir Eden3, Shalev Itzkovitz2, Yuval Dor1,* 1Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 2Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel. 3Department of Cell and Developmental Biology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel 4Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University and Hadassah, The Institute for Medical Research Israel- Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 5Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel *Correspondence: [email protected] Running title: The genetic program of pancreatic β-cell replication 1 Diabetes Publish Ahead of Print, published online March 18, 2016 Diabetes Page 2 of 65 Abstract The molecular program underlying infrequent replication of pancreatic beta- cells remains largely inaccessible. Using transgenic mice expressing GFP in cycling cells we sorted live, replicating beta-cells and determined their transcriptome. Replicating beta-cells upregulate hundreds of proliferation- related genes, along with many novel putative cell cycle components. Strikingly, genes involved in beta-cell functions, namely glucose sensing and insulin secretion were repressed. Further studies using single molecule RNA in situ hybridization revealed that in fact, replicating beta-cells double the amount of RNA for most genes, but this upregulation excludes genes involved in beta-cell function.
    [Show full text]
  • Kinetochore-Microtubule Attachment Throughout Mitosis Potentiated By
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2014 Kinetochore-microtubule attachment throughout mitosis potentiated by the elongated stalk of the kinetochore kinesin CENP-E Benjamin Vitre University of California - San Diego Nikita Gudimchuk University of Pennsylvania Ranier Borda University of California - San Diego Yumi Kim University of California - San Diego John E. Heuser Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Vitre, Benjamin; Gudimchuk, Nikita; Borda, Ranier; Kim, Yumi; Heuser, John E.; Cleveland, Don W.; and Grishchuk, Ekaterina L., ,"Kinetochore-microtubule attachment throughout mitosis potentiated by the elongated stalk of the kinetochore kinesin CENP-E." Molecular Biology of the Cell.25,15. 2272-2281. (2014). https://digitalcommons.wustl.edu/open_access_pubs/3207 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Benjamin Vitre, Nikita Gudimchuk, Ranier Borda, Yumi Kim, John E. Heuser, Don W. Cleveland, and Ekaterina L. Grishchuk This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/3207 M BoC | ARTICLE Kinetochore–microtubule attachment
    [Show full text]
  • The Kinesin Spindle Protein Inhibitor Filanesib Enhances the Activity of Pomalidomide and Dexamethasone in Multiple Myeloma
    Plasma Cell Disorders SUPPLEMENTARY APPENDIX The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma Susana Hernández-García, 1 Laura San-Segundo, 1 Lorena González-Méndez, 1 Luis A. Corchete, 1 Irena Misiewicz- Krzeminska, 1,2 Montserrat Martín-Sánchez, 1 Ana-Alicia López-Iglesias, 1 Esperanza Macarena Algarín, 1 Pedro Mogollón, 1 Andrea Díaz-Tejedor, 1 Teresa Paíno, 1 Brian Tunquist, 3 María-Victoria Mateos, 1 Norma C Gutiérrez, 1 Elena Díaz- Rodriguez, 1 Mercedes Garayoa 1* and Enrique M Ocio 1* 1Centro Investigación del Cáncer-IBMCC (CSIC-USAL) and Hospital Universitario-IBSAL, Salamanca, Spain; 2National Medicines Insti - tute, Warsaw, Poland and 3Array BioPharma, Boulder, Colorado, USA *MG and EMO contributed equally to this work ©2017 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2017.168666 Received: March 13, 2017. Accepted: August 29, 2017. Pre-published: August 31, 2017. Correspondence: [email protected] MATERIAL AND METHODS Reagents and drugs. Filanesib (F) was provided by Array BioPharma Inc. (Boulder, CO, USA). Thalidomide (T), lenalidomide (L) and pomalidomide (P) were purchased from Selleckchem (Houston, TX, USA), dexamethasone (D) from Sigma-Aldrich (St Louis, MO, USA) and bortezomib from LC Laboratories (Woburn, MA, USA). Generic chemicals were acquired from Sigma Chemical Co., Roche Biochemicals (Mannheim, Germany), Merck & Co., Inc. (Darmstadt, Germany). MM cell lines, patient samples and cultures. Origin, authentication and in vitro growth conditions of human MM cell lines have already been characterized (17, 18). The study of drug activity in the presence of IL-6, IGF-1 or in co-culture with primary bone marrow mesenchymal stromal cells (BMSCs) or the human mesenchymal stromal cell line (hMSC–TERT) was performed as described previously (19, 20).
    [Show full text]
  • Evolutionarily Conserved Protein ERH Controls CENP-E Mrna Splicing and Is Required for the Survival of KRAS Mutant Cancer Cells
    Evolutionarily conserved protein ERH controls CENP-E PNAS PLUS mRNA splicing and is required for the survival of KRAS mutant cancer cells Meng-Tzu Wenga,b,c, Jih-Hsiang Leea, Shu-Chen Weid, Qiuning Lia, Sina Shahamatdara, Dennis Hsua, Aaron J. Schettere, Stephen Swatkoskif, Poonam Mannang, Susan Garfieldg, Marjan Gucekf, Marianne K. H. Kima, Christina M. Annunziataa, Chad J. Creightonh, Michael J. Emanuelei, Curtis C. Harrise, Jin-Chuan Sheud, Giuseppe Giacconea, and Ji Luoa,1 aMedical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; bGraduate Institute of Clinical Medicine, National Taiwan University, Taipei 100, Taiwan; cFar-Eastern Memorial Hospital, Taipei 220, Taiwan; dDepartment of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan; eLaboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; fProteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; gConfocal Microscopy Core Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; hDepartment of Medicine and Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX 77030; and iDepartment of Genetics, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115 Edited by Bert Vogelstein, Johns Hopkins University, Baltimore, MD, and approved November 12, 2012 (received for review June 1, 2012) Cancers with Ras mutations represent a major therapeutic prob- anaphase-promoting complex (APC/C) that coordinately maintain lem. Recent RNAi screens have uncovered multiple nononcogene the fidelity of chromosome segregation (6). Symmetrical distribu- addiction pathways that are necessary for the survival of Ras mu- tion of chromosomes during mitosis is critical for genomic stability tant cells.
    [Show full text]
  • Induction of Therapeutic Tissue Tolerance Foxp3 Expression Is
    Downloaded from http://www.jimmunol.org/ by guest on October 2, 2021 is online at: average * The Journal of Immunology , 13 of which you can access for free at: 2012; 189:3947-3956; Prepublished online 17 from submission to initial decision 4 weeks from acceptance to publication September 2012; doi: 10.4049/jimmunol.1200449 http://www.jimmunol.org/content/189/8/3947 Foxp3 Expression Is Required for the Induction of Therapeutic Tissue Tolerance Frederico S. Regateiro, Ye Chen, Adrian R. Kendal, Robert Hilbrands, Elizabeth Adams, Stephen P. Cobbold, Jianbo Ma, Kristian G. Andersen, Alexander G. Betz, Mindy Zhang, Shruti Madhiwalla, Bruce Roberts, Herman Waldmann, Kathleen F. Nolan and Duncan Howie J Immunol cites 35 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/09/17/jimmunol.120044 9.DC1 This article http://www.jimmunol.org/content/189/8/3947.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of October 2, 2021.
    [Show full text]
  • Centromere Protein F Includes Two Sites That Couple Efficiently to Depolymerizing Microtubules
    JCB: Article Centromere protein F includes two sites that couple efficiently to depolymerizing microtubules Vladimir A. Volkov,1,2,3 Paula M. Grissom,4 Vladimir K. Arzhanik,6 Anatoly V. Zaytsev,7 Kutralanathan Renganathan,4 Tristan McClure‑Begley,4 William M. Old,4 Natalie Ahn,5 and J. Richard McIntosh4 1Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia, 119991 2Laboratory of Biophysics, Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia, 117513 3N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Moscow, Russia, 123098 4Department of Molecular, Cellular, and Developmental Biology, and 5Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309 6Department of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia, 119991 7Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Firm attachments between kinetochores and dynamic spindle microtubules (MTs) are important for accurate chromosome segregation. Centromere protein F (CENP-F) has been shown to include two MT-binding domains, so it may participate in this key mitotic process. Here, we show that the N-terminal MT-binding domain of CENP-F prefers curled oligomers of tubulin relative to MT walls by approximately fivefold, suggesting that it may contribute to the firm bonds between kinetochores and the flared plus ends of dynamic MTs. A polypeptide from CENP-F’s C terminus also bound MTs, and either protein fragment diffused on a stable MT wall. They also followed the ends of dynamic MTs as they shortened. When either fragment was coupled to a microbead, the force it could transduce from a shortening MT averaged 3–5 pN but could exceed 10 pN, identifying CENP-F as a highly effective coupler to shortening MTs.
    [Show full text]
  • Welburnetaleb2020leavingnoo
    Edinburgh Research Explorer Leaving no-one behind Citation for published version: Craske, B & Welburn, J 2020, 'Leaving no-one behind: How CENP-E facilitates chromosome alignment ', Essays in biochemistry. https://doi.org/10.1042/EBC20190073 Digital Object Identifier (DOI): 10.1042/EBC20190073 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Essays in biochemistry General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 Essays in Biochemistry (2020) EBC20190073 https://doi.org/10.1042/EBC20190073 Review Article Leaving no-one behind: how CENP-E facilitates chromosome alignment Benjamin Craske and Julie P.I. Welburn Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, U.K. Downloaded from https://portlandpress.com/essaysbiochem/article-pdf/doi/10.1042/EBC20190073/873075/ebc-2019-0073c.pdf by UK user on 01 May 2020 Correspondence: Julie P.I. Welburn ([email protected]) Chromosome alignment and biorientation is essential for mitotic progression and ge- nomic stability.
    [Show full text]
  • Cell Cycle Arrest Through Indirect Transcriptional Repression by P53: I Have a DREAM
    Cell Death and Differentiation (2018) 25, 114–132 Official journal of the Cell Death Differentiation Association OPEN www.nature.com/cdd Review Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM Kurt Engeland1 Activation of the p53 tumor suppressor can lead to cell cycle arrest. The key mechanism of p53-mediated arrest is transcriptional downregulation of many cell cycle genes. In recent years it has become evident that p53-dependent repression is controlled by the p53–p21–DREAM–E2F/CHR pathway (p53–DREAM pathway). DREAM is a transcriptional repressor that binds to E2F or CHR promoter sites. Gene regulation and deregulation by DREAM shares many mechanistic characteristics with the retinoblastoma pRB tumor suppressor that acts through E2F elements. However, because of its binding to E2F and CHR elements, DREAM regulates a larger set of target genes leading to regulatory functions distinct from pRB/E2F. The p53–DREAM pathway controls more than 250 mostly cell cycle-associated genes. The functional spectrum of these pathway targets spans from the G1 phase to the end of mitosis. Consequently, through downregulating the expression of gene products which are essential for progression through the cell cycle, the p53–DREAM pathway participates in the control of all checkpoints from DNA synthesis to cytokinesis including G1/S, G2/M and spindle assembly checkpoints. Therefore, defects in the p53–DREAM pathway contribute to a general loss of checkpoint control. Furthermore, deregulation of DREAM target genes promotes chromosomal instability and aneuploidy of cancer cells. Also, DREAM regulation is abrogated by the human papilloma virus HPV E7 protein linking the p53–DREAM pathway to carcinogenesis by HPV.Another feature of the pathway is that it downregulates many genes involved in DNA repair and telomere maintenance as well as Fanconi anemia.
    [Show full text]