Kinetochore-Microtubule Attachment Throughout Mitosis Potentiated By

Total Page:16

File Type:pdf, Size:1020Kb

Kinetochore-Microtubule Attachment Throughout Mitosis Potentiated By Washington University School of Medicine Digital Commons@Becker Open Access Publications 2014 Kinetochore-microtubule attachment throughout mitosis potentiated by the elongated stalk of the kinetochore kinesin CENP-E Benjamin Vitre University of California - San Diego Nikita Gudimchuk University of Pennsylvania Ranier Borda University of California - San Diego Yumi Kim University of California - San Diego John E. Heuser Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Vitre, Benjamin; Gudimchuk, Nikita; Borda, Ranier; Kim, Yumi; Heuser, John E.; Cleveland, Don W.; and Grishchuk, Ekaterina L., ,"Kinetochore-microtubule attachment throughout mitosis potentiated by the elongated stalk of the kinetochore kinesin CENP-E." Molecular Biology of the Cell.25,15. 2272-2281. (2014). https://digitalcommons.wustl.edu/open_access_pubs/3207 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Benjamin Vitre, Nikita Gudimchuk, Ranier Borda, Yumi Kim, John E. Heuser, Don W. Cleveland, and Ekaterina L. Grishchuk This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/3207 M BoC | ARTICLE Kinetochore–microtubule attachment throughout mitosis potentiated by the elongated stalk of the kinetochore kinesin CENP-E Benjamin Vitrea,*, Nikita Gudimchukb,*,†, Ranier Bordaa, Yumi Kima,‡, John E. Heuserc,d, Don W. Clevelanda, and Ekaterina L. Grishchukb aLudwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093; bPhysiology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; cDepartment of Cell Biology, Washington University in Saint Louis, St Louis, MO 63110; dWPI Institute for Cell and Material Sciences, Kyoto University, Kyoto 606-8501, Japan ABSTRACT Centromere protein E (CENP-E) is a highly elongated kinesin that transports Monitoring Editor pole-proximal chromosomes during congression in prometaphase. During metaphase, it Kerry S. Bloom facilitates kinetochore–microtubule end-on attachment required to achieve and maintain University of North Carolina chromosome alignment. In vitro CENP-E can walk processively along microtubule tracks and Received: Jan 31, 2014 follow both growing and shrinking microtubule plus ends. Neither the CENP-E–dependent Revised: May 27, 2014 transport along microtubules nor its tip-tracking activity requires the unusually long coiled- Accepted: May 28, 2014 coil stalk of CENP-E. The biological role for the CENP-E stalk has now been identified through creation of “Bonsai” CENP-E with significantly shortened stalk but wild-type motor and tail domains. We demonstrate that Bonsai CENP-E fails to bind microtubules in vitro unless a cargo is contemporaneously bound via its C-terminal tail. In contrast, both full-length and truncated CENP-E that has no stalk and tail exhibit robust motility with and without cargo binding, highlighting the importance of CENP-E stalk for its activity. Correspondingly, kineto- chore attachment to microtubule ends is shown to be disrupted in cells whose CENP-E has a shortened stalk, thereby producing chromosome misalignment in metaphase and lagging chromosomes during anaphase. Together these findings establish an unexpected role of CENP-E elongated stalk in ensuring stability of kinetochore–microtubule attachments during chromosome congression and segregation. INTRODUCTION Accurate chromosome segregation in mitosis depends on the micro tubules. Kinetochores are complex multiprotein structures that dynamic interactions between the kinetochore and spindle localize at the centromeres of duplicated chromosomes during mi- tosis. The main function of the kinetochores is to connect chromo- This article was published online ahead of print in MBoC in Press (http://www somes to the mitotic spindle and mediate signaling the state of this .molbiolcell.org/cgi/doi/10.1091/mbc.E14-01-0698) on June 11, 2014. attachment to the cell cycle machinery (Cleveland et al., 2003). One *These authors contributed equally. kinetochore component, centromere protein E (CENP-E), is a plus Present addresses: †Center for Theoretical Problems of Physicochemical Pharma- cology, Russian Academy of Sciences, Moscow 119991, Russia; ‡Department of end–directed, microtubule-dependent motor from the kinesin-7 Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94704. family. Similar to other members of the kinesin superfamily, CENP-E Address correspondence to: Don W. Cleveland ([email protected]), Ekaterina is a homodimer, in which two motor domains are linked with two tail L. Grishchuk ([email protected]). domains via a dimerizing coiled coil. The stalk domain of CENP-E is Abbreviations used: aa, amino acid; ACA, anti–centromere antibodies; AMPPNP, adenylyl imidodiphosphate; ATP, adenosine triphosphate; BRB80, Brinkley re- highly elongated, spanning >200 nm (Kim et al., 2008), significantly assembly buffer; BS, Bonsai; DIC, differential interference contrast; FL, full length; longer than in most kinesins. This fibrillar kinesin accumulates before GFP, green fluorescent protein; MT, microtubule; NEB, nuclear envelope break- down; TIRF, total internal reflection fluorescence. mitosis (Brown et al., 1994), but soluble CENP-E molecules in the © 2014 Vitre, Gudimchuk, et al. This article is distributed by The American Society for cytoplasm of a mitotic cell are believed to be folded and inactive, as Cell Biology under license from the author(s). Two months after publication it is avail- the tail of CENP-E can bind the motor domains, inhibiting the micro- able to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported tubule-stimulated ATPase activity (Espeut et al., 2008). Previous Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of work also suggested that the initially autoinhibited CENP-E be- the Cell®” are registered trademarks of The American Society of Cell Biology. comes activated during mitosis via phosphorylation, which disrupts Supplemental Material can be found at: 2272 | B. Vitre, N. Gudimchuk, et al. http://www.molbiolcell.org/content/suppl/2014/06/02/mbc.E14-01-0698v1.DC1.html Molecular Biology of the Cell tail-mediated motor inhibition (Espeut et al., 2008). At mitosis onset, vitro, the truncated motor falls off microtubule ends and fails to CENP-E also becomes recruited to the outer layer of each kineto- track (Gudimchuk et al., 2013). Of interest, when purified tail and chore via its kinetochore-binding site located near its C-terminus motor domains are joined together using Quantum Dots, this pro- (Chan et al., 1998). A fully elongated extension of the active, kineto- duces conjugates that walk well along a microtubule wall and are chore-bound CENP-E may help to increase the span of the amino- able to recapitulate the processive association with the plus end of terminal motor domain from a bound kinetochore cargo, thereby dynamic microtubules characteristic of full-length CENP-E (Gudim- potentiating capture of spindle microtubules during prometaphase chuk et al., 2013). These experiments suggested that neither the (Kim et al., 2008, 2010; Gudimchuk et al., 2013). At the kinetochores tip-tracking activity nor the CENP-E–dependent transport along a of aligned chromosomes in metaphase, however, the CENP-E is not microtubule wall in vitro requires the elongated stalk of CENP-E, fully extended, and its conformation changes when the kinetochore raising a question about its contribution to CENP-E functions. is under tension (Wan et al., 2009). Through creation of “Bonsai” versions of CENP-E in which its stalk Results of the genetic depletion of CENP-E (Putkey et al., 2002; is significantly shortened but wild-type motor and tail domains are Weaver et al., 2003), its removal from kinetochores (McEwen et al., retained, we now identify the biological role for the CENP-E stalk. 2001), and inhibition of its motor activity (Gudimchuk et al., 2013) implicate CENP-E as an important kinetochore component that con- RESULTS tributes to high fidelity of chromosome segregation. CENP-E plays CENP-E coiled-coil stalk regulates motor function in vitro an essential role in transporting pole-proximal chromosomes to the Previous structural work visualizing purified CENP-E dimers with spindle equator during prometaphase, a process called chromo- electron microscopy reported that soluble CENP-E can adopt some congression (Yen et al., 1991; Schaar et al., 1997; Wood et al., many different conformations (Kim et al., 2008), consistent with a 1997). The initial congression of misaligned chromosomes takes highly flexible coiled-coil region. Direct examination of full-length place along already established kinetochore fibers and along the Xenopus CENP-E by electron microscopy using quick-freeze deep- microtubules directed to the spindle equator (Kapoor et al., 2006; etch and platinum replication (Heuser, 1989) identified a small pro- Cai et al., 2009). CENP-E–mediated chromosome motility requires portion of CENP-E molecules in a folded conformation
Recommended publications
  • Kinetochore Kinesin CENP-E Is a Processive Bi-Directional Tracker of Dynamic Microtubule Tips
    ARTICLES Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips Nikita Gudimchuk1,5, Benjamin Vitre2,5, Yumi Kim2,6, Anatoly Kiyatkin1, Don W. Cleveland2, Fazly I. Ataullakhanov3,4 and Ekaterina L. Grishchuk1,7 During vertebrate mitosis, the centromere-associated kinesin CENP-E (centromere protein E) transports misaligned chromosomes to the plus ends of spindle microtubules. Subsequently, the kinetochores that form at the centromeres establish stable associations with microtubule ends, which assemble and disassemble dynamically. Here we provide evidence that after chromosomes have congressed and bi-oriented, the CENP-E motor continues to play an active role at kinetochores, enhancing their links with dynamic microtubule ends. Using a combination of single-molecule approaches and laser trapping in vitro, we demonstrate that once reaching microtubule ends, CENP-E converts from a lateral transporter into a microtubule tip-tracker that maintains association with both assembling and disassembling microtubule tips. Computational modelling of this behaviour supports our proposal that CENP-E tip-tracks bi-directionally through a tethered motor mechanism, which relies on both the motor and tail domains of CENP-E. Our results provide a molecular framework for the contribution of CENP-E to the stability of attachments between kinetochores and dynamic microtubule ends. Accurate chromosome segregation depends on interactions between proportion of lagging chromosomes in anaphase in mouse liver microtubules and the kinetochore, a protein structure localized at cells and embryonic fibroblasts11,17. Fourth, after CENP-E-mediated each centromere1. Initially, kinetochores often attach to the walls congression, CENP-E-dependent localization of protein phosphatase of microtubules with the chromosomes then moving towards a 1 (PP1) to kinetochores is still required for stable microtubule spindle pole in a dynein-dependent manner2,3.
    [Show full text]
  • Organization, Evolution and Function of Alpha Satellite Dna
    ORGANIZATION, EVOLUTION AND FUNCTION OF ALPHA SATELLITE DNA AT HUMAN CENTROMERES by M. KATHARINE RUDD Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Dr. Huntington F. Willard Department of Genetics CASE WESTERN RESERVE UNIVERSITY January, 2005 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. 1 Table of Contents Table of contents.................................................................................................1 List of Tables........................................................................................................2 List of Figures......................................................................................................3 Acknowledgements.............................................................................................5 Abstract................................................................................................................6
    [Show full text]
  • WNT16 Is a New Marker of Senescence
    Table S1. A. Complete list of 177 genes overexpressed in replicative senescence Value Gene Description UniGene RefSeq 2.440 WNT16 wingless-type MMTV integration site family, member 16 (WNT16), transcript variant 2, mRNA. Hs.272375 NM_016087 2.355 MMP10 matrix metallopeptidase 10 (stromelysin 2) (MMP10), mRNA. Hs.2258 NM_002425 2.344 MMP3 matrix metallopeptidase 3 (stromelysin 1, progelatinase) (MMP3), mRNA. Hs.375129 NM_002422 2.300 HIST1H2AC Histone cluster 1, H2ac Hs.484950 2.134 CLDN1 claudin 1 (CLDN1), mRNA. Hs.439060 NM_021101 2.119 TSPAN13 tetraspanin 13 (TSPAN13), mRNA. Hs.364544 NM_014399 2.112 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 2.070 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 2.026 DCBLD2 discoidin, CUB and LCCL domain containing 2 (DCBLD2), mRNA. Hs.203691 NM_080927 2.007 SERPINB2 serpin peptidase inhibitor, clade B (ovalbumin), member 2 (SERPINB2), mRNA. Hs.594481 NM_002575 2.004 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 1.989 OBFC2A Oligonucleotide/oligosaccharide-binding fold containing 2A Hs.591610 1.962 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 1.947 PLCB4 phospholipase C, beta 4 (PLCB4), transcript variant 2, mRNA. Hs.472101 NM_182797 1.934 PLCB4 phospholipase C, beta 4 (PLCB4), transcript variant 1, mRNA. Hs.472101 NM_000933 1.933 KRTAP1-5 keratin associated protein 1-5 (KRTAP1-5), mRNA. Hs.534499 NM_031957 1.894 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 1.884 CYTL1 cytokine-like 1 (CYTL1), mRNA. Hs.13872 NM_018659 tumor necrosis factor receptor superfamily, member 10d, decoy with truncated death domain (TNFRSF10D), 1.848 TNFRSF10D Hs.213467 NM_003840 mRNA.
    [Show full text]
  • A Free-Living Protist That Lacks Canonical Eukaryotic DNA Replication and Segregation Systems
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.14.435266; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A free-living protist that lacks canonical eukaryotic DNA replication and segregation systems 2 Dayana E. Salas-Leiva1, Eelco C. Tromer2,3, Bruce A. Curtis1, Jon Jerlström-Hultqvist1, Martin 3 Kolisko4, Zhenzhen Yi5, Joan S. Salas-Leiva6, Lucie Gallot-Lavallée1, Geert J. P. L. Kops3, John M. 4 Archibald1, Alastair G. B. Simpson7 and Andrew J. Roger1* 5 1Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of 6 Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2 2 7 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 8 3Oncode Institute, Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences) 9 and University Medical Centre Utrecht, Utrecht, The Netherlands 10 4Institute of Parasitology Biology Centre, Czech Acad. Sci, České Budějovice, Czech Republic 11 5Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, 12 South China Normal University, Guangzhou 510631, China 13 6CONACyT-Centro de Investigación en Materiales Avanzados, Departamento de medio ambiente y 14 energía, Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chih., México 15 7Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of 16 Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2 17 *corresponding author: [email protected] 18 D.E.S-L ORCID iD: 0000-0003-2356-3351 19 E.C.T.
    [Show full text]
  • The Genetic Program of Pancreatic Beta-Cell Replication in Vivo
    Page 1 of 65 Diabetes The genetic program of pancreatic beta-cell replication in vivo Agnes Klochendler1, Inbal Caspi2, Noa Corem1, Maya Moran3, Oriel Friedlich1, Sharona Elgavish4, Yuval Nevo4, Aharon Helman1, Benjamin Glaser5, Amir Eden3, Shalev Itzkovitz2, Yuval Dor1,* 1Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 2Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel. 3Department of Cell and Developmental Biology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel 4Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University and Hadassah, The Institute for Medical Research Israel- Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 5Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel *Correspondence: [email protected] Running title: The genetic program of pancreatic β-cell replication 1 Diabetes Publish Ahead of Print, published online March 18, 2016 Diabetes Page 2 of 65 Abstract The molecular program underlying infrequent replication of pancreatic beta- cells remains largely inaccessible. Using transgenic mice expressing GFP in cycling cells we sorted live, replicating beta-cells and determined their transcriptome. Replicating beta-cells upregulate hundreds of proliferation- related genes, along with many novel putative cell cycle components. Strikingly, genes involved in beta-cell functions, namely glucose sensing and insulin secretion were repressed. Further studies using single molecule RNA in situ hybridization revealed that in fact, replicating beta-cells double the amount of RNA for most genes, but this upregulation excludes genes involved in beta-cell function.
    [Show full text]
  • The Kinesin Spindle Protein Inhibitor Filanesib Enhances the Activity of Pomalidomide and Dexamethasone in Multiple Myeloma
    Plasma Cell Disorders SUPPLEMENTARY APPENDIX The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma Susana Hernández-García, 1 Laura San-Segundo, 1 Lorena González-Méndez, 1 Luis A. Corchete, 1 Irena Misiewicz- Krzeminska, 1,2 Montserrat Martín-Sánchez, 1 Ana-Alicia López-Iglesias, 1 Esperanza Macarena Algarín, 1 Pedro Mogollón, 1 Andrea Díaz-Tejedor, 1 Teresa Paíno, 1 Brian Tunquist, 3 María-Victoria Mateos, 1 Norma C Gutiérrez, 1 Elena Díaz- Rodriguez, 1 Mercedes Garayoa 1* and Enrique M Ocio 1* 1Centro Investigación del Cáncer-IBMCC (CSIC-USAL) and Hospital Universitario-IBSAL, Salamanca, Spain; 2National Medicines Insti - tute, Warsaw, Poland and 3Array BioPharma, Boulder, Colorado, USA *MG and EMO contributed equally to this work ©2017 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2017.168666 Received: March 13, 2017. Accepted: August 29, 2017. Pre-published: August 31, 2017. Correspondence: [email protected] MATERIAL AND METHODS Reagents and drugs. Filanesib (F) was provided by Array BioPharma Inc. (Boulder, CO, USA). Thalidomide (T), lenalidomide (L) and pomalidomide (P) were purchased from Selleckchem (Houston, TX, USA), dexamethasone (D) from Sigma-Aldrich (St Louis, MO, USA) and bortezomib from LC Laboratories (Woburn, MA, USA). Generic chemicals were acquired from Sigma Chemical Co., Roche Biochemicals (Mannheim, Germany), Merck & Co., Inc. (Darmstadt, Germany). MM cell lines, patient samples and cultures. Origin, authentication and in vitro growth conditions of human MM cell lines have already been characterized (17, 18). The study of drug activity in the presence of IL-6, IGF-1 or in co-culture with primary bone marrow mesenchymal stromal cells (BMSCs) or the human mesenchymal stromal cell line (hMSC–TERT) was performed as described previously (19, 20).
    [Show full text]
  • Evolutionarily Conserved Protein ERH Controls CENP-E Mrna Splicing and Is Required for the Survival of KRAS Mutant Cancer Cells
    Evolutionarily conserved protein ERH controls CENP-E PNAS PLUS mRNA splicing and is required for the survival of KRAS mutant cancer cells Meng-Tzu Wenga,b,c, Jih-Hsiang Leea, Shu-Chen Weid, Qiuning Lia, Sina Shahamatdara, Dennis Hsua, Aaron J. Schettere, Stephen Swatkoskif, Poonam Mannang, Susan Garfieldg, Marjan Gucekf, Marianne K. H. Kima, Christina M. Annunziataa, Chad J. Creightonh, Michael J. Emanuelei, Curtis C. Harrise, Jin-Chuan Sheud, Giuseppe Giacconea, and Ji Luoa,1 aMedical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; bGraduate Institute of Clinical Medicine, National Taiwan University, Taipei 100, Taiwan; cFar-Eastern Memorial Hospital, Taipei 220, Taiwan; dDepartment of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei 100, Taiwan; eLaboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; fProteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; gConfocal Microscopy Core Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; hDepartment of Medicine and Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX 77030; and iDepartment of Genetics, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115 Edited by Bert Vogelstein, Johns Hopkins University, Baltimore, MD, and approved November 12, 2012 (received for review June 1, 2012) Cancers with Ras mutations represent a major therapeutic prob- anaphase-promoting complex (APC/C) that coordinately maintain lem. Recent RNAi screens have uncovered multiple nononcogene the fidelity of chromosome segregation (6). Symmetrical distribu- addiction pathways that are necessary for the survival of Ras mu- tion of chromosomes during mitosis is critical for genomic stability tant cells.
    [Show full text]
  • Induction of Therapeutic Tissue Tolerance Foxp3 Expression Is
    Downloaded from http://www.jimmunol.org/ by guest on October 2, 2021 is online at: average * The Journal of Immunology , 13 of which you can access for free at: 2012; 189:3947-3956; Prepublished online 17 from submission to initial decision 4 weeks from acceptance to publication September 2012; doi: 10.4049/jimmunol.1200449 http://www.jimmunol.org/content/189/8/3947 Foxp3 Expression Is Required for the Induction of Therapeutic Tissue Tolerance Frederico S. Regateiro, Ye Chen, Adrian R. Kendal, Robert Hilbrands, Elizabeth Adams, Stephen P. Cobbold, Jianbo Ma, Kristian G. Andersen, Alexander G. Betz, Mindy Zhang, Shruti Madhiwalla, Bruce Roberts, Herman Waldmann, Kathleen F. Nolan and Duncan Howie J Immunol cites 35 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/09/17/jimmunol.120044 9.DC1 This article http://www.jimmunol.org/content/189/8/3947.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of October 2, 2021.
    [Show full text]
  • Centromere Protein F Includes Two Sites That Couple Efficiently to Depolymerizing Microtubules
    JCB: Article Centromere protein F includes two sites that couple efficiently to depolymerizing microtubules Vladimir A. Volkov,1,2,3 Paula M. Grissom,4 Vladimir K. Arzhanik,6 Anatoly V. Zaytsev,7 Kutralanathan Renganathan,4 Tristan McClure‑Begley,4 William M. Old,4 Natalie Ahn,5 and J. Richard McIntosh4 1Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia, 119991 2Laboratory of Biophysics, Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia, 117513 3N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Moscow, Russia, 123098 4Department of Molecular, Cellular, and Developmental Biology, and 5Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309 6Department of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia, 119991 7Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 Firm attachments between kinetochores and dynamic spindle microtubules (MTs) are important for accurate chromosome segregation. Centromere protein F (CENP-F) has been shown to include two MT-binding domains, so it may participate in this key mitotic process. Here, we show that the N-terminal MT-binding domain of CENP-F prefers curled oligomers of tubulin relative to MT walls by approximately fivefold, suggesting that it may contribute to the firm bonds between kinetochores and the flared plus ends of dynamic MTs. A polypeptide from CENP-F’s C terminus also bound MTs, and either protein fragment diffused on a stable MT wall. They also followed the ends of dynamic MTs as they shortened. When either fragment was coupled to a microbead, the force it could transduce from a shortening MT averaged 3–5 pN but could exceed 10 pN, identifying CENP-F as a highly effective coupler to shortening MTs.
    [Show full text]
  • Welburnetaleb2020leavingnoo
    Edinburgh Research Explorer Leaving no-one behind Citation for published version: Craske, B & Welburn, J 2020, 'Leaving no-one behind: How CENP-E facilitates chromosome alignment ', Essays in biochemistry. https://doi.org/10.1042/EBC20190073 Digital Object Identifier (DOI): 10.1042/EBC20190073 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Essays in biochemistry General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 Essays in Biochemistry (2020) EBC20190073 https://doi.org/10.1042/EBC20190073 Review Article Leaving no-one behind: how CENP-E facilitates chromosome alignment Benjamin Craske and Julie P.I. Welburn Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, U.K. Downloaded from https://portlandpress.com/essaysbiochem/article-pdf/doi/10.1042/EBC20190073/873075/ebc-2019-0073c.pdf by UK user on 01 May 2020 Correspondence: Julie P.I. Welburn ([email protected]) Chromosome alignment and biorientation is essential for mitotic progression and ge- nomic stability.
    [Show full text]
  • Cell Cycle Arrest Through Indirect Transcriptional Repression by P53: I Have a DREAM
    Cell Death and Differentiation (2018) 25, 114–132 Official journal of the Cell Death Differentiation Association OPEN www.nature.com/cdd Review Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM Kurt Engeland1 Activation of the p53 tumor suppressor can lead to cell cycle arrest. The key mechanism of p53-mediated arrest is transcriptional downregulation of many cell cycle genes. In recent years it has become evident that p53-dependent repression is controlled by the p53–p21–DREAM–E2F/CHR pathway (p53–DREAM pathway). DREAM is a transcriptional repressor that binds to E2F or CHR promoter sites. Gene regulation and deregulation by DREAM shares many mechanistic characteristics with the retinoblastoma pRB tumor suppressor that acts through E2F elements. However, because of its binding to E2F and CHR elements, DREAM regulates a larger set of target genes leading to regulatory functions distinct from pRB/E2F. The p53–DREAM pathway controls more than 250 mostly cell cycle-associated genes. The functional spectrum of these pathway targets spans from the G1 phase to the end of mitosis. Consequently, through downregulating the expression of gene products which are essential for progression through the cell cycle, the p53–DREAM pathway participates in the control of all checkpoints from DNA synthesis to cytokinesis including G1/S, G2/M and spindle assembly checkpoints. Therefore, defects in the p53–DREAM pathway contribute to a general loss of checkpoint control. Furthermore, deregulation of DREAM target genes promotes chromosomal instability and aneuploidy of cancer cells. Also, DREAM regulation is abrogated by the human papilloma virus HPV E7 protein linking the p53–DREAM pathway to carcinogenesis by HPV.Another feature of the pathway is that it downregulates many genes involved in DNA repair and telomere maintenance as well as Fanconi anemia.
    [Show full text]
  • Download, Print and Save Electronic Copies of Whole Works for Their Own Personal Non-Commercial Use
    - 1 - - 2 - Abstract Human centromeres contain large arrays of α-satellite DNA that are thought to provide centromere function. These arrays show size and sequence variations. However, the lower limit of the sizes of these DNA arrays in normal centromeres is unknown. Using a set of chromosome-specific α-satellite probes for each of the human chromosomes, interphase Fluorescence In Situ Hybridisation (FISH) was performed in a population screening study. This study demonstrated that extreme reduction of chromosome-specific α-satellite is unusually common in chromosome 21 (screened with the αRI probe), with a prevalence of 3.70%, compared to ≤0.12 % for each of chromosomes 13 and 17, and 0 % for the other chromosomes. No analphoid centromere was identified in over 17,000 morphologically normal chromosomes studied. All the low- alphoid centromeres are fully functional as indicated by their mitotic stability and binding to centromere proteins including CENtromere Protein-A (CENP-A), CENtromere Protein-B (CENP-B), CENtromere Protein-C (CENP-C), and CENtromere Protein-E (CENP-E). Sensitive metaphase FISH analysis of the low-alphoid chromosome 21 centromeres established the presence of residual αRI as well as other non-αRI α-satellite DNA suggesting that centromere function may be provided by (i) the residual αRI DNA, (ii) other non-αRI α-satellite sequences, (iii) a combination of i and ii, or (iv) an activated neocentromere DNA. These low-alphoid centromeres contained 51-184 kb (mean = 78 kb) of α-satellite, determined using a novel Quantitative-FISH (Q-FISH) methodology. Further delineation of the boundaries of CENP-A binding domain and the small α- satellite array, however, has been hindered by the low resolution offered by fluorescence microscopy and the lack of genomic markers.
    [Show full text]