Organization, Evolution and Function of Alpha Satellite Dna

Total Page:16

File Type:pdf, Size:1020Kb

Organization, Evolution and Function of Alpha Satellite Dna ORGANIZATION, EVOLUTION AND FUNCTION OF ALPHA SATELLITE DNA AT HUMAN CENTROMERES by M. KATHARINE RUDD Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Dr. Huntington F. Willard Department of Genetics CASE WESTERN RESERVE UNIVERSITY January, 2005 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. 1 Table of Contents Table of contents.................................................................................................1 List of Tables........................................................................................................2 List of Figures......................................................................................................3 Acknowledgements.............................................................................................5 Abstract................................................................................................................6 Chapter 1: Introduction.......................................................................................8 Chapter 2: Analysis of centromeric regions of the human genome.................49 Chapter 3: Alpha satellite evolution in primates: evidence for the homogenization of monomeric alpha satellite................................81 Chapter 4: Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag................................................................................122 Chapter 5: Conclusions and future studies....................................................155 Appendix: Sequence organization and functional annotation of human centromeres.................................................................................173 Bibliography.....................................................................................................198 2 List of Tables Table 2-1: Alpha satellite in the July 2003 (Build 34) assembly of the human genome..............................................................................62 Table 2-2: Repeat content of the July 2003 (Build 34) human genome assembly........................................................................................77 Table 3-1. Repeat content of the chromosome 17 satellite zone and flanking regions..............................................................................98 Table 3-2. Mean percent identity among monomers from particular regions of alpha satellite...........................................................................102 Table 4-1: Characteristics of human artificial chromosomes.........................135 Table 4-2: Segregation errors........................................................................147 3 List of Figures Figure 1-1: Centromere organization among organisms..................................12 Figure 1-2: Alpha satellite organization at the human centromere...................19 Figure 1-3: Alpha satellite evolution model.......................................................22 Figure 1-4: Centromere and pericentromere model.........................................33 Figure 2-1: Alpha satellite location in the July 2003 (Build 34) human genome assembly..........................................................................61 Figure 2-2: Genomic landscape of 1 Mb regions outside of the centromere gaps................................................................................................64 Figure 2-3: Types of alpha satellite in the human genome...............................68 Figure 2-4: Alpha satellite and centromere protein colocalization....................72 Figure 3-1: Alpha satellite organization in the centromeric region of chromosome 17..............................................................................95 Figure 3-2: Percent identity scores for pairwise comparisons of alpha satellite monomers.......................................................................100 Figure 3-3: Phylogenetic tree of alpha satellite on chromosome 17...............104 Figure 3-4: Neighbor-joining tree of monomers from different chromosomes...............................................................................107 Figure 3-5: Maximum likelihood tree of monomers from different chromosomes...............................................................................109 Figure 3-6: Distributions of interchromosomal and intrachromosomal monomeric monomer percent identities.......................................112 Figure 3-7: Genomic organization of 17q compared to the orthologous Pan troglodytes region.........................................................................115 Figure 4-1: FISH analysis of artificial chromosomes......................................137 4 Figure 4-2: Anaphase segregation assay.......................................................139 Figure 4-3: Missegregation of natural, artificial and variant chromosomes....141 Figure 5-1: Model of alpha satellite evolution.................................................161 Figure 5-2: Strategy for sequencing an entire human centromere.................165 Figure A-1: Alpha satellite organization in the human genome.......................178 Figure A-2: Gaps in the public genome assembly of chromosomes X and 17..........................................................................................181 Figure A-3: Repeat content of the junction between the short arm euchromatin and centromere of the X chromosome.........................................183 Figure A-4: Organization of D17Z1 and D17Z1-B higher-order repeats at the centromere of chromosome 17....................................................185 Figure A-5: Phylogenetic analysis of 230 alpha satellite monomers from the X chromosome and chromosome 17...............................................188 Figure A-6: Functional centromere annotation using a human artificial chromosome assay......................................................................193 Figure A-7: Genome assembly of the centromeric regions of the X chromosome, chromosome 17 and 21.........................................196 5 ACKNOWLEDGEMENTS I would like to thank my advisor, Hunt Willard, for introducing me to alpha satellite and nurturing my scientific development for the past five years. Hunt has made me a better scientist, writer and speaker, and has challenged me to think beyond my view of the chromosome. I am also grateful to Pat Hunt and Terry Hassold. They have been a constant source of support throughout my graduate career, and have always made me feel like a part of their labs. The members of the Willard lab have provided scientific discussion, thoughtful debate, and lots of fun over the years. I am especially grateful to Brenda Grimes and Mary Schueler for educating me in the ways of artificial chromosomes and alpha satellite and for discussing the complex centromere. My friends at Case have been an integral part of my graduate school experience. Whether commiserating over proposal defenses, helping prepare for student seminars, or going out in Coventry to unwind, my friends have always been there for me. My mother and sisters have always encouraged and supported me, even when they weren’t exactly sure what I was doing in the lab. 6 Organization, evolution and function of alpha satellite DNA at human centromeres Abstract by M. KATHARINE RUDD The centromere is a specialized locus responsible for ensuring proper chromosome segregation at mitosis and meiosis. Human centromeres are comprised of large arrays of a primate-specific repeat known as alpha satellite DNA. Understanding the organization and evolution of alpha satellite is essential to delineate the requirements for centromere function. The basic unit of alpha satellite is an ~ 171 bp monomer, and monomers may be organized in one of two types of structure. Higher-order alpha satellite is made up of monomers arranged in homogeneous multimeric higher-order repeat units. In contrast, more divergent monomeric alpha satellite lacks any higher- order periodicity. We have analyzed the alpha satellite in the human genome assembly (Build 34, July 2003), and found regions of both higher-order and monomeric alpha satellite. Although previously identified at all human centromeres, higher-order alpha satellite has only been included in the assemblies of eleven chromosomes. Monomeric alpha satellite typically lies at 7 the edges of larger higher-order arrays, and has been included in all but three chromosome assemblies. The organization of alpha satellite in the human genome is a product of concerted evolutionary processes. We have analyzed the relationships between alpha satellite monomers from multiple chromosomes to discern the exchange mechanisms that have shaped the arrangement of alpha satellite in the genome. Like higher-order alpha satellite described previously, monomeric alpha satellite has a higher frequency of intrachromosomal
Recommended publications
  • Hierarchical Looping of Zigzag Nucleosome Chains in Metaphase Chromosomes
    Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes Sergei A. Grigoryeva,1, Gavin Bascomb, Jenna M. Buckwaltera, Michael B. Schuberta, Christopher L. Woodcockc, and Tamar Schlickb,d,1 aDepartment of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033; bDepartment of Chemistry and Courant Institute of Mathematical Sciences, New York University, New York, NY 10012; cBiology Department, University of Massachusetts, Amherst, MA 01003; and dNYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, China Edited by Michael Levitt, Stanford University School of Medicine, Stanford, CA, and approved December 22, 2015 (received for review September 14, 2015) The architecture of higher-order chromatin in eukaryotic cell nuclei is However, evidence for 30-nm fibers in interphase nuclei of living largely unknown. Here, we use electron microscopy-assisted nucleo- cells has been controversial (reviewed in refs. 9 and 10). For exam- some interaction capture (EMANIC) cross-linking experiments in ple, whereas a distinct 30-nm fiber architecture is observed in ter- combination with mesoscale chromatin modeling of 96-nucleosome minally differentiated cells (11, 12), neither continuous nor periodic arrays to investigate the internal organization of condensed chroma- 30-nm fibers are observed in the nuclei of proliferating cells (13–15). tin in interphase cell nuclei and metaphase chromosomes at nucleo- However, zigzag features of the chromatin fibers are well supported somal resolution. The combined data suggest a novel hierarchical by nucleosome interaction mapping in vitro (16) and in vivo (15). looping model for chromatin higher-order folding, similar to rope For chromatin architecture within metaphase chromosomes, flaking used in mountain climbing and rappelling.
    [Show full text]
  • Ftsk Actively Segregates Sister Chromosomes in Escherichia Coli
    FtsK actively segregates sister chromosomes in Escherichia coli Mathieu Stoufa,b, Jean-Christophe Meilea,b, and François Corneta,b,1 aLaboratoire de Microbiologie et de Génétique Moléculaires, Centre National de la Recherche Scientifique, F-31000, Toulouse, France; and bUniversité Paul Sabatier, Université de Toulouse, F-31000, Toulouse, France Edited by Nancy E. Kleckner, Harvard University, Cambridge, MA, and approved May 23, 2013 (received for review March 6, 2013) Bacteria use the replication origin-to-terminus polarity of their cir- with the divisome, is also required (13, 14). FtsK acts in a region cular chromosomes to control DNA transactions during the cell cy- about 400 kb long (15) and translocates DNA toward dif.Trans- cle. Segregation starts by active migration of the region of origin location is oriented by recognition of the FtsK-orienting polar followed by progressive movement of the rest of the chromo- sequences (KOPS) DNA motifs that are preferentially oriented somes. The last steps of segregation have been studied extensively toward dif, particularly in the ter region (4, 16–18). Upon reaching in the case of dimeric sister chromosomes and when chromosome the dif site, FtsK activates XerCD-mediated recombination that organization is impaired by mutations. In these special cases, the resolves chromosome dimers. The oriented translocation activity divisome-associated DNA translocase FtsK is required. FtsK pumps of FtsK also is strictly required when chromosome organization is chromosomes toward the dif chromosome dimer resolution site impaired by mutations, for instance by inactivation of the MukBEF using polarity of the FtsK-orienting polar sequence (KOPS) DNA complex (19, 20) or in strains carrying important asymmetry of the motifs.
    [Show full text]
  • An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial Chromosome
    The Proceedings of the International Conference on Creationism Volume 8 Print Reference: Pages 133-151 Article 7 2018 An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial chromosome Robert W. Carter Stephen Lee University of Idaho John C. Sanford Cornell University, Cornell University College of Agriculture and Life Sciences School of Integrative Plant Science,Follow this Plant and Biology additional Section works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y- chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 133–151. Pittsburgh, Pennsylvania: Creation Science Fellowship. Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y-chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H.
    [Show full text]
  • Kinetochore Kinesin CENP-E Is a Processive Bi-Directional Tracker of Dynamic Microtubule Tips
    ARTICLES Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips Nikita Gudimchuk1,5, Benjamin Vitre2,5, Yumi Kim2,6, Anatoly Kiyatkin1, Don W. Cleveland2, Fazly I. Ataullakhanov3,4 and Ekaterina L. Grishchuk1,7 During vertebrate mitosis, the centromere-associated kinesin CENP-E (centromere protein E) transports misaligned chromosomes to the plus ends of spindle microtubules. Subsequently, the kinetochores that form at the centromeres establish stable associations with microtubule ends, which assemble and disassemble dynamically. Here we provide evidence that after chromosomes have congressed and bi-oriented, the CENP-E motor continues to play an active role at kinetochores, enhancing their links with dynamic microtubule ends. Using a combination of single-molecule approaches and laser trapping in vitro, we demonstrate that once reaching microtubule ends, CENP-E converts from a lateral transporter into a microtubule tip-tracker that maintains association with both assembling and disassembling microtubule tips. Computational modelling of this behaviour supports our proposal that CENP-E tip-tracks bi-directionally through a tethered motor mechanism, which relies on both the motor and tail domains of CENP-E. Our results provide a molecular framework for the contribution of CENP-E to the stability of attachments between kinetochores and dynamic microtubule ends. Accurate chromosome segregation depends on interactions between proportion of lagging chromosomes in anaphase in mouse liver microtubules and the kinetochore, a protein structure localized at cells and embryonic fibroblasts11,17. Fourth, after CENP-E-mediated each centromere1. Initially, kinetochores often attach to the walls congression, CENP-E-dependent localization of protein phosphatase of microtubules with the chromosomes then moving towards a 1 (PP1) to kinetochores is still required for stable microtubule spindle pole in a dynein-dependent manner2,3.
    [Show full text]
  • Comparative Genomic Hybridization in the Detection of DNA Copy Number Abnormalities in Uveal Melanoma1
    [CANCER RESEARCH 54. 4764-4768. September 1. 1994] Comparative Genomic Hybridization in the Detection of DNA Copy Number Abnormalities in Uveal Melanoma1 Kathleen B. Gordon, Curtis T. Thompson, Devron H. Char,2 Joan M. O'Brien, Stewart Kroll, Siavash Ghazvini, and Joe W. Gray Ocular Oncology Unii IK. B. G., D. H. C., J. M. O., S. K., S. G.¡and Laboratory of Molecular Cylomelry ¡C.T. T., J. W. G.I, University of California, San Francisco, California 94143-0730 ABSTRACT identified, and the possibility that more than one locus is involved in tumor initiation and progression can be assessed. Genomic DNA from Genomic instability appears to play an important role in the develop tumor specimens is used so that genetic alterations identified with ment, growth, invasiveness, and eventual metastasis of the neoplastic cell. CGH are not artifactually altered by propagation in cell culture. In the We have used a powerful new technique, comparative genomic hybrid present study, we used CGH to detect alterations in gene copy number ization, to evaluate genetic alterations in 10 fresh frozen uveal melanomas. Comparative genomic hybridization utilizes dual fluorescence in situ hy in ten fresh frozen uveal melanomas. bridization to characterize chromosome deletions and duplications, allow ing for simultaneous evaluation of the entire human genome. Several MATERIALS AND METHODS consistent chromosomal abnormalities were detected. This study con Clinical Data. Ten uveal melanomas were evaluated after primary enucle- firmed previous findings obtained using standard cytogenetic techniques ation. The tumors were classified histologically according to the modified but demonstrated an increased incidence in abnormalities of chromo Callender classification (5).
    [Show full text]
  • Two Distinct Domains in Drosophila Melanogaster Telomeres
    Copyright Ó 2005 by the Genetics Society of America DOI: 10.1534/genetics.105.048827 Two Distinct Domains in Drosophila melanogaster Telomeres Harald Biessmann,* Sudha Prasad,† Valery F. Semeshin,‡ Eugenia N. Andreyeva,‡ Quang Nguyen,§ Marika F. Walter* and James M. Mason†,1 *Developmental Biology Center, University of California, Irvine, California 92697, †Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, ‡Laboratory of Molecular Cytogenetics, Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk 630090, Russia and §Department of Biological Chemistry, University of California, Irvine, California 92697 Manuscript received July 27, 2005 Accepted for publication August 16, 2005 ABSTRACT Telomeres are generally considered heterochromatic. On the basis of DNA composition, the telomeric region of Drosophila melanogaster contains two distinct subdomains: a subtelomeric region of repetitive DNA, termed TAS, and a terminal array of retrotransposons, which perform the elongation function instead of telomerase. We have identified several P-element insertions into this retrotransposon array and compared expression levels of transgenes with similar integrations into TAS and euchromatic regions. In contrast to insertions in TAS, which are silenced, reporter genes in the terminal HeT-A, TAHRE,orTART retroelements did not exhibit repressed expression in comparison with the same transgene construct in euchromatin. These data, in combination with cytological studies, provide evidence that the subtelomeric TAS region exhibits features resembling heterochromatin, while the terminal retrotransposon array exhibits euchromatic characteristics. NA sequences at the ends of eukaryotic chromo- tandem repeats of 457 bp (Walter et al. 1995; Mason D somes are the products of a telomere elongation et al.
    [Show full text]
  • Staining, and in Situ Digestion with Restriction Endonucleases
    Heredity66 (1991) 403—409 Received 23 August 1990 Genetical Society of Great Britain An analysis of coho salmon chromatin by means of C-banding, AG- and fluorochrome staining, and in situ digestion with restriction endonucleases R. LOZANO, C. RUIZ REJON* & M. RUIZ REJON* Departamento de Biologia Animal, Ecologia y Genética. E. /ngenierIa T. AgrIcola, Campus Universitario de Almeria, 04120 AlmerIa and *Facu/tad de Ciencias, 18071 Granada, Universidad de Granada, Spain Thechromosome complement of the coho salmon (Oncorhynchus kisutch) has been analysed by means of C-banding, silver and fluorochrome staining, and in situ digestion with restriction endo- nucleases. C-banding shows heterochromatic regions in the centromeres of most chromosomes but not in the telomeric areas. The fifteenth metacentric chromosome pair contains a large block of constitutive heterochromatin, which occupies almost all of one chromosome arm. This region is also the site where the ribosomal cistrons are located and it reacts positively to CMA3/DA fluorochrome staining. The NORs are subject to chromosome polymorphism, which might be explicable in terms of an amplification of ribosomal cistrons. The digestion banding patterns produced by four types of restriction endonucleases on the euchromatic and heterochromatic regions are described. Two kinds of highly repetitive DNAs can be distinguished and the role of restriction endonucleases as a valuable tool in chromosome characterization studies, as well as in the analysis of the structure and organization of fish chromatin, are also discussed. Keywords:C-banding,coho salmon, fluorochrome staining, restriction endonuclease banding. (Oncorhynchus kisutch), as well as applying conven- Introduction tional banding techniques, we have analysed the Theuse of restriction endonucleases (REs) is becom- mitotic chromosomes using DNA base-pair-specific ing common not only in molecular biology but also as fluorochromes and in situ digestion with restriction an important tool in molecular cytogenetics.
    [Show full text]
  • Holocentric Chromosomes: Convergent Evolution, Meiotic Adaptations, and Genomic Analysis
    Chromosome Res DOI 10.1007/s10577-012-9292-1 Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis Daniël P. Melters & Leocadia V. Paliulis & Ian F. Korf & Simon W. L. Chan # Springer Science+Business Media B.V. 2012 Abstract In most eukaryotes, the kinetochore protein trait has arisen at least 13 independent times (four times in complex assembles at a single locus termed the centro- plants and at least nine times in animals). Holocentric mere to attach chromosomes to spindle microtubules. chromosomes have inherent problems in meiosis because Holocentric chromosomes have the unusual property of bivalents can attach to spindles in a random fashion. attaching to spindle microtubules along their entire Interestingly, there are several solutions that have evolved length. Our mechanistic understanding of holocentric to allow accurate meiotic segregation of holocentric chro- chromosome function is derived largely from studies in mosomes. Lastly, we describe how extensive genome the nematode Caenorhabditis elegans, but holocentric sequencing and experiments in nonmodel organisms chromosomes are found over a broad range of animal may allow holocentric chromosomes to shed light on and plant species. In this review, we describe how hol- general principles of chromosome segregation. ocentricity may be identified through cytological and molecular methods. By surveying the diversity of organ- Keywords centromere . holocentric . meiosis . isms with holocentric chromosomes, we estimate that the phylogeny. tandem repeat . chromosome Abbreviations Responsible Editor: Rachel O’Neill and Beth Sullivan. ChIP-seq Chromatin immunoprecipitation Electronic supplementary material The online version of this followed by sequencing article (doi:10.1007/s10577-012-9292-1) contains ChIP-chip Chromatin immunoprecipitation supplementary material, which is available to authorized users.
    [Show full text]
  • Basic Genetic Mechanisms— the Ways in Which the Cell Maintains, Replicates, Expresses, and Occasionally Improves the Genetic Information Carried in Its DNA
    BASIC GENETIC PART MECHANISMS II 4 DNA AND CHROMOSOMES 5 DNA REPLICATION, REPAIR, AND RECOMBINATION 6 HOW CELLS READ THE GENOME: FROM DNA TO PROTEIN 7 CONTROL OF GENE EXPRESSION The ribosome. The large subunit of the bacterial ribosome is shown here with the ribosomal RNA shown in gray and the ribosomal proteins in gold.The ribosome is the complex catalytic machine at the heart of protein synthesis. (From N. Ban et al., Science 289:905–920, 2000. © AAAS.) The nucleosome. The basic structural unit of all eucaryotic chromosomes is the nucleosome.The DNA double helix (gray) is wrapped around a core particle of histone proteins (colored) to create the nucleosome. Nucleosomes are spaced roughly 200 nucleotide pairs apart along the chromosomal DNA. (Reprinted by permission from K. Luger et al., Nature 389:251–260, 1997. © Macmillan Magazines Ltd.) 4 THE STRUCTURE AND FUNCTION DNA AND OF DNA CHROMOSOMAL DNA AND ITS PACKAGING IN THE CHROMATIN CHROMOSOMES FIBER THE GLOBAL STRUCTURE OF CHROMOSOMES Life depends on the ability of cells to store, retrieve, and translate the genetic instructions required to make and maintain a living organism. This hereditary information is passed on from a cell to its daughter cells at cell division, and from one generation of an organism to the next through the organism’s repro- ductive cells. These instructions are stored within every living cell as its genes, the information-containing elements that determine the characteristics of a species as a whole and of the individuals within it. As soon as genetics emerged as a science at the beginning of the twentieth century, scientists became intrigued by the chemical structure of genes.
    [Show full text]
  • WNT16 Is a New Marker of Senescence
    Table S1. A. Complete list of 177 genes overexpressed in replicative senescence Value Gene Description UniGene RefSeq 2.440 WNT16 wingless-type MMTV integration site family, member 16 (WNT16), transcript variant 2, mRNA. Hs.272375 NM_016087 2.355 MMP10 matrix metallopeptidase 10 (stromelysin 2) (MMP10), mRNA. Hs.2258 NM_002425 2.344 MMP3 matrix metallopeptidase 3 (stromelysin 1, progelatinase) (MMP3), mRNA. Hs.375129 NM_002422 2.300 HIST1H2AC Histone cluster 1, H2ac Hs.484950 2.134 CLDN1 claudin 1 (CLDN1), mRNA. Hs.439060 NM_021101 2.119 TSPAN13 tetraspanin 13 (TSPAN13), mRNA. Hs.364544 NM_014399 2.112 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 2.070 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 2.026 DCBLD2 discoidin, CUB and LCCL domain containing 2 (DCBLD2), mRNA. Hs.203691 NM_080927 2.007 SERPINB2 serpin peptidase inhibitor, clade B (ovalbumin), member 2 (SERPINB2), mRNA. Hs.594481 NM_002575 2.004 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 1.989 OBFC2A Oligonucleotide/oligosaccharide-binding fold containing 2A Hs.591610 1.962 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 1.947 PLCB4 phospholipase C, beta 4 (PLCB4), transcript variant 2, mRNA. Hs.472101 NM_182797 1.934 PLCB4 phospholipase C, beta 4 (PLCB4), transcript variant 1, mRNA. Hs.472101 NM_000933 1.933 KRTAP1-5 keratin associated protein 1-5 (KRTAP1-5), mRNA. Hs.534499 NM_031957 1.894 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 1.884 CYTL1 cytokine-like 1 (CYTL1), mRNA. Hs.13872 NM_018659 tumor necrosis factor receptor superfamily, member 10d, decoy with truncated death domain (TNFRSF10D), 1.848 TNFRSF10D Hs.213467 NM_003840 mRNA.
    [Show full text]
  • A Free-Living Protist That Lacks Canonical Eukaryotic DNA Replication and Segregation Systems
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.14.435266; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A free-living protist that lacks canonical eukaryotic DNA replication and segregation systems 2 Dayana E. Salas-Leiva1, Eelco C. Tromer2,3, Bruce A. Curtis1, Jon Jerlström-Hultqvist1, Martin 3 Kolisko4, Zhenzhen Yi5, Joan S. Salas-Leiva6, Lucie Gallot-Lavallée1, Geert J. P. L. Kops3, John M. 4 Archibald1, Alastair G. B. Simpson7 and Andrew J. Roger1* 5 1Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of 6 Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2 2 7 Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom 8 3Oncode Institute, Hubrecht Institute – KNAW (Royal Netherlands Academy of Arts and Sciences) 9 and University Medical Centre Utrecht, Utrecht, The Netherlands 10 4Institute of Parasitology Biology Centre, Czech Acad. Sci, České Budějovice, Czech Republic 11 5Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, 12 South China Normal University, Guangzhou 510631, China 13 6CONACyT-Centro de Investigación en Materiales Avanzados, Departamento de medio ambiente y 14 energía, Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Chih., México 15 7Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of 16 Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2 17 *corresponding author: [email protected] 18 D.E.S-L ORCID iD: 0000-0003-2356-3351 19 E.C.T.
    [Show full text]
  • 22Q12 and 22Q13 Duplications
    22q12 and 22q13 duplications rarechromo.org Duplications of 22q12 and 22q13 A duplication of 22q12 and/or 22q13 is a very rare genetic condition in which the cells of the body have a small but variable amount of extra genetic material from one of the body’s 46 chromosomes – chromosome 22. For healthy development, chromosomes should contain just the right amount of genetic material (DNA) – not too much and not too little. Like most other chromosome disorders, having an extra part of chromosome 22 may increase the risk of birth defects, developmental delay and intellectual disability. However, there is individual variation. Background on Chromosomes Chromosomes are structures which contain our DNA and are found in almost every cell of the body. Every chromosome contains thousands of genes which may be thought of as individual instruction booklets (or recipes) that contain all the genetic information telling the body how to develop, grow and function. Chromosomes (and genes) usually come in pairs with one member of each chromosome pair being inherited from each parent. Most cells of the human body have a total of 46 (23 pairs of) chromosomes. The egg and the sperm cells, however have 23 unpaired chromosomes, so that when the egg and sperm join together at conception, the chromosomes pair up and the number is restored to 46. Of these 46 chromosomes, two are the sex chromosomes that determine gender. Females have two X chromosomes and males have one X chromosome and one Y chromosome. The remaining 44 chromosomes are grouped in 22 pairs, numbered 1 to 22 approximately from the largest to the smallest.
    [Show full text]