Cryptic Subtelomeric Translocations in the 22Q13 Deletion Syndrome J Med Genet: First Published As 10.1136/Jmg.37.1.58 on 1 January 2000

Total Page:16

File Type:pdf, Size:1020Kb

Cryptic Subtelomeric Translocations in the 22Q13 Deletion Syndrome J Med Genet: First Published As 10.1136/Jmg.37.1.58 on 1 January 2000 58 J Med Genet 2000;37:58–61 Cryptic subtelomeric translocations in the 22q13 deletion syndrome J Med Genet: first published as 10.1136/jmg.37.1.58 on 1 January 2000. Downloaded from Verayuth Praphanphoj, Barbara K Goodman, George H Thomas, Gerald V Raymond Abstract lieved to result from de novo, simple, subtelom- Cryptic subtelomeric rearrangements eric deletions,1–9 two cases were derived from are suspected to underlie a substantial balanced translocations,49 one case was the portion of terminal chromosomal dele- result of a familial chromosome 22 inversion,10 tions. We have previously described two and in one case the mechanism was not children, one with an unbalanced subtelo- determined.11 (It is possible that one of these meric rearrangement resulting in dele- cases may have been reported twice,17in which tion of 22q13→qter and duplication of case the total number would be 21 cases and the 1qter, and a second with an apparently simple deletions would be 17 cases.) This report simple 22q13→qter deletion. We have describes the clinical findings in a new case of examined two additional patients with 22q13→qter deletion and the identification of deletions of 22q13→qter. In one of the new translocated material on the deleted chromo- patients presented here, clinical findings some using multi-telomere fluorescence in situ were suggestive of the 22q13 deletion syn- hybridisation (FISH). drome and FISH for 22qter was re- Recent data indicate that some apparently quested. Chromosome studies suggested terminal chromosome deletions are, in fact, an abnormality involving the telomere of derivative chromosomes involving cryptic termi- one 22q (46,XX,?add(22)(q13.3)). FISH nal rearrangements.12 13 It is important to detect using Oncor D22S39 and Vysis ARSA and identify the presence of subtelomeric mate- probes confirmed a terminal deletion. A rial from other chromosomes in these deletions multi-telomere FISH assay showed a sig- in order to establish accurate karyotype- nal from 19qter on the deleted chromo- phenotype associations as well as to provide some 22. Results were confirmed with important genetic information to the parents 19qtel and 22qtel specific probes. The and the family members. One of the methods patient is therefore trisomic for 19qter used to investigate cryptic chromosomal abnor- and monosomic for 22qter. The patient’s malities in patients with unexplained mental 12 Department of mother was found to have a translocation retardation is multi-telomere FISH. This tech- Pediatrics, The Johns (19;22)(q13.42;q13.31). We also re- nique simultaneously detects all human telo- Hopkins University, examined chromosomes from two pa- meric regions on a single microscope slide using School of Medicine, tients previously diagnosed with 22q chromosome specific subtelomeric probes. We http://jmg.bmj.com/ Baltimore, MD, USA deletions who were not known to have a used this method to further analyse samples V Praphanphoj from patients in whom there was evidence G H Thomas rearrangement using the multi-telomere assay. One of these patients was found to suggesting the presence of a terminal chromo- Department of have a derivative chromosome 22 somal deletion or rearrangement. We studied → Gynecology and (der(22)t(6;22)(p25;q13)). No evidence of three patients known to have 22q13 qter dele- Obstetrics, The Johns tions in which the presence of translocated Hopkins University, rearrangement was detected in the other patient. Thus we have found the 22q13 material was either not suspected or was in School of Medicine, question. Including our previously reported case on October 1, 2021 by guest. Protected copyright. Baltimore, MD, USA deletion to be associated with a transloca- B K Goodman tion in three of four patients. This report (case 1 in reference 9), three of four deletion illustrates the usefulness of examining 22q13 cases investigated were, in fact, derivative Department of patients with hypotonia, severe language chromosomes resulting from subtle or cryptic Neurology, The Johns translocations. Hopkins University, delay, and mild facial dysmorphism for School of Medicine, this syndrome and suggests that most of Case report Baltimore, MD, USA these deletions may be unbalanced subte- The proband wasa4yearoldfemale who G V Raymond lomeric rearrangements. presented for evaluation of hypotonia, develop- (J Med Genet 2000;37:58–61) Kennedy Krieger mental delay, small stature, and microcephaly. Institute, Baltimore, Keywords: multi-telomere FISH; partial monosomy She was the 3204 g product of a 38 year old MD, USA 22q; 22qter deletion syndrome; subtelomeric rearrange- gravida 1. She was noted to have been inactive in V Praphanphoj ment utero, although ultrasound and amniocentesis B K Goodman studies carried out because of maternal age were G V Raymond G H Thomas Patients with the terminal 22q13 deletion unremarkable. Delivery was uncomplicated. syndrome share a number of clinical features, Problems in the newborn period included Correspondence to: including severe expressive language delay, gen- enlargement of the clitoris and subsequently Dr Raymond, Room 500, eralised hypotonia, developmental delay, and delay in acquisition of motor milestones devel- Kennedy Krieger Institute, 1 707 North Broadway, mild facial dysmorphism. The increasing oped. At 9 months, she was hypotonic and was Baltimore, Maryland, USA number of patients being reported suggests that not yet sitting. She sat at 12 months and walked this may be yet another important form of men- at 2 years. During the first year of life, there were Revised version received tal retardation resulting from a small terminal concerns about feeding and at 12 months she 9 July 1999 Accepted for publication deletion. Since first described in 1985, 22 cases was placed on a nutritional supplement, after 16 August 1999 have been reported. Eighteen cases were be- which she gained weight. Cryptic subtelomeric translocations in the 22q13 deletion syndrome 59 On examination at 4 years 5 months, her head mosomal karyotype and FISH analysis for circumference was 46.5 cm (<2nd centile), evaluation for a possible 22q terminal deletion. J Med Genet: first published as 10.1136/jmg.37.1.58 on 1 January 2000. Downloaded from height 90.9 cm (<5th centile), and weight 13.8 kg (<5th centile). She was alert and only mildly Material and methods dysmorphic with mild flattening of the nasal Prometaphase chromosomes were prepared bridge and the midface. She was very sociable using synchronised peripheral blood lym- and interactive. Although by history she does phocytes.14 Chromosomes were G banded by use sounds for four or five objects, no words Wright stain using trypsin (GTW) and ana- were spoken. She could vocalise, point to some lysed under the light microscope. FISH was body parts, and follow one or two step performed using standard techniques, with commands. She had moderate hypotonia, but rapid wash conditions (72°C, 2 × SSC) and no normal muscle mass and good strength. Sensa- signal amplification. Slides were counter- tion was intact. There was no ataxia. She was stained with either propidium iodide or DAPI able to walk and rise from the floor without dif- depending on the fluorophores used. The ficulty. Her reflexes were diminished. following probes were used for analysis of the Magnetic resonance imaging at 2 years 22qter region: STS WI-941 and D22S39 showed colpocephaly, a decrease in the peri- (Oncor) and ARSA (Vysis). These probes were ventricular white matter with some delay in originally developed as control probes for the white matter myelination, and a cerebellar DiGeorge critical region probes and were arachnoid cyst. A second MRI performed at a commercially available for that purpose. Spe- later age showed an increase in myelination and cific subtelomeric probes (Vysis) containing no progression of any abnormalities. Labora- the loci D19S238E (mapped to 19qtel), tory studies indicated normal lactic acid, MS607 (mapped to 22qtel), and a probe still plasma amino acids, and urinary organic acids. under development (mapped to 6ptel) were Secondary to her presentation and with our also used to confirm the findings obtained from previous experience, blood was sent for chro- multi-telomere analysis. http://jmg.bmj.com/ on October 1, 2021 by guest. Protected copyright. Figure 1 FISH analysis of the patient. (A) Vysis DiGeorge probe cocktail (TUPLE1 red, ARSA green); arrow indicates deleted 22. (B) Oncor dual color DiGeorge probe cocktail (D22S75 red, WI-941 green); arrows indicate signal for WI-941 on both chromosomes 22. (C) Cytocell Multiprobe-T device, section 19 (short arm green, long arm red); arrow indicates red signal (long arm) on one chromosome 22. (D) Vysis 19qtel specific probe (red); arrows indicate signals on both chromosomes 19 and the der(22) chromosome. 60 Praphanphoj, Goodman, Thomas, et al The multi-telomere FISH assay (Cytocell Results Chromoprobe Multiprobe-T) was carried out High resolution chromosome analysis (650 J Med Genet: first published as 10.1136/jmg.37.1.58 on 1 January 2000. Downloaded from on peripheral blood lymphocytes according to bands) of the proband showed a subtle abnor- the manufacturer’s instructions. Two µl of fixed mality at the terminal end of one chromosome cell suspension were applied to each square 22. While a terminal deletion, rearrangement, area of the 24 square multiprobe sample slides or exchange was suspected, the abnormality and then flooded with 3:1 methanol:acetic acid was too subtle to permit the precise nature of solution. Metaphase spread quality was evalu- the alteration to be determined. FISH analysis ated using phase contrast and the slides were using Oncor D22S39 (not shown) and Vysis aged overnight at room temperature. The next ARSA (arylsulfatase A locus) (fig 1A) probes day, the slides were incubated in 2 × SSC for indicated a terminal deletion of the abnormal two minutes at room temperature and dehy- chromosome 22, while the Oncor STS WI-941 drated serially for two minutes each in 75%, probe (fig 1B), which hybridised more proxi- 80%, and 95% cold ethanol.
Recommended publications
  • A Brazilian Cohort of Individuals with Phelan-Mcdermid Syndrome
    Samogy-Costa et al. Journal of Neurodevelopmental Disorders (2019) 11:13 https://doi.org/10.1186/s11689-019-9273-1 RESEARCH Open Access A Brazilian cohort of individuals with Phelan-McDermid syndrome: genotype- phenotype correlation and identification of an atypical case Claudia Ismania Samogy-Costa1†, Elisa Varella-Branco1†, Frederico Monfardini1, Helen Ferraz2, Rodrigo Ambrósio Fock3, Ricardo Henrique Almeida Barbosa3, André Luiz Santos Pessoa4,5, Ana Beatriz Alvarez Perez3, Naila Lourenço1, Maria Vibranovski1, Ana Krepischi1, Carla Rosenberg1 and Maria Rita Passos-Bueno1* Abstract Background: Phelan-McDermid syndrome (PMS) is a rare genetic disorder characterized by global developmental delay, intellectual disability (ID), autism spectrum disorder (ASD), and mild dysmorphisms associated with several comorbidities caused by SHANK3 loss-of-function mutations. Although SHANK3 haploinsufficiency has been associated with the major neurological symptoms of PMS, it cannot explain the clinical variability seen among individuals. Our goals were to characterize a Brazilian cohort of PMS individuals, explore the genotype-phenotype correlation underlying this syndrome, and describe an atypical individual with mild phenotype. Methodology: A total of 34 PMS individuals were clinically and genetically evaluated. Data were obtained by a questionnaire answered by parents, and dysmorphic features were assessed via photographic evaluation. We analyzed 22q13.3 deletions and other potentially pathogenic copy number variants (CNVs) and also performed genotype-phenotype correlation analysis to determine whether comorbidities, speech status, and ASD correlate to deletion size. Finally, a Brazilian cohort of 829 ASD individuals and another independent cohort of 2297 ID individuals was used to determine the frequency of PMS in these disorders. Results: Our data showed that 21% (6/29) of the PMS individuals presented an additional rare CNV, which may contribute to clinical variability in PMS.
    [Show full text]
  • Klinefelter, Turner & Down Syndrome
    Klinefelter, Turner & Down Syndrome A brief discussion of gamete forma2on, Mitosis and Meiosis: h7ps://www.youtube.com/watch?v=zGVBAHAsjJM Non-disjunction in Meiosis: • Nondisjunction "not coming apart" is the failure of a chromosome pair to separate properly during meiosis 1, or of two chromatids of a chromosome to separate properly during meiosis 2 or mitosis. • Can effect each pair. • Not a rare event. • As a result, one daughter cell has two chromosomes or two chromatids and the other has none • The result of this error is ANEUPLOIDY. 4 haploid gametes 2 gametes with diploid 2 gametes with haploid number of x and 2 lacking number of X chromosome, 1 x chromosome gamete with diploid number of X chromosome, and 1 gamete lacking X chromosome MEIOSIS MITOSIS Nondisjunc2on at meiosis 1 = All gametes will be abnormal Nondisjunc2on at meiosis 2 = Half of the gametes are normal (%50 normal and %50 abnormal) Down’s Syndrome • Karyotype: 47, XY, +21 Three copies of chromosome 21 (21 trisomy) • The incidence of trisomy 21 rises sharply with increasing maternal age (above 37), but Down syndrome can also be the result of nondisjunction of the father's chromosome 21 (%15 of cases) • A small proportion of cases is mosaic* and probably arise from a non-disjunction event in early zygotic division. *“Mosaicism, used to describe the presence of more than one type of cells in a person. For example, when a baby is born with Down syndrome, the doctor will take a blood sample to perform a chromosome study. Typically, 20 different cells are analyzed.
    [Show full text]
  • A Randomized Controlled Trial of Intranasal Oxytocin in Phelan-Mcdermid Syndrome
    A Randomized Controlled Trial of Intranasal Oxytocin in Phelan-McDermid Syndrome Jarrett Fastman Icahn School of Medicine at Mount Sinai Jennifer Foss-Feig Icahn School of Medicine at Mount Sinai Yitzchak Frank Icahn School of Medicine at Mount Sinai Danielle Halpern Icahn School of Medicine at Mount Sinai Hala Harony-Nicolas Icahn School of Medicine at Mount Sinai Christina Layton Icahn School of Medicine at Mount Sinai Sven Sandin Icahn School of Medicine at Mount Sinai Paige Siper Icahn School of Medicine at Mount Sinai Lara Tang Icahn School of Medicine at Mount Sinai Pilar Trelles Icahn School of Medicine at Mount Sinai Jessica Zweifach Icahn School of Medicine at Mount Sinai Joseph D. Buxbaum Icahn School of Medicine at Mount Sinai Alexander Kolevzon ( [email protected] ) Icahn School of Medicine at Mount Sinai https://orcid.org/0000-0001-8129-2671 Research Article Keywords: Phelan-McDermid syndrome, PMS, shank3, autism spectrum disorder, ASD, oxytocin Posted Date: March 5th, 2021 Page 1/24 DOI: https://doi.org/10.21203/rs.3.rs-268151/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/24 Abstract Background Phelan-McDermid syndrome (PMS) is a rare neurodevelopmental disorder caused by haploinsuciency of the SHANK3 gene and characterized by global developmental delays, decits in speech and motor function, and autism spectrum disorder (ASD). Monogenic causes of ASD such as PMS are well suited to investigations with novel therapeutics, as interventions can be targeted based on established genetic etiology. While preclinical studies have demonstrated that the neuropeptide oxytocin can reverse electrophysiological, attentional, and social recognition memory decits in Shank3-decient rats, there have been no trials in individuals with PMS.
    [Show full text]
  • 22Q13.3 Deletion Syndrome
    22q13.3 deletion syndrome Description 22q13.3 deletion syndrome, which is also known as Phelan-McDermid syndrome, is a disorder caused by the loss of a small piece of chromosome 22. The deletion occurs near the end of the chromosome at a location designated q13.3. The features of 22q13.3 deletion syndrome vary widely and involve many parts of the body. Characteristic signs and symptoms include developmental delay, moderate to profound intellectual disability, decreased muscle tone (hypotonia), and absent or delayed speech. Some people with this condition have autism or autistic-like behavior that affects communication and social interaction, such as poor eye contact, sensitivity to touch, and aggressive behaviors. They may also chew on non-food items such as clothing. Less frequently, people with this condition have seizures or lose skills they had already acquired (developmental regression). Individuals with 22q13.3 deletion syndrome tend to have a decreased sensitivity to pain. Many also have a reduced ability to sweat, which can lead to a greater risk of overheating and dehydration. Some people with this condition have episodes of frequent vomiting and nausea (cyclic vomiting) and backflow of stomach acids into the esophagus (gastroesophageal reflux). People with 22q13.3 deletion syndrome typically have distinctive facial features, including a long, narrow head; prominent ears; a pointed chin; droopy eyelids (ptosis); and deep-set eyes. Other physical features seen with this condition include large and fleshy hands and/or feet, a fusion of the second and third toes (syndactyly), and small or abnormal toenails. Some affected individuals have rapid (accelerated) growth.
    [Show full text]
  • An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial Chromosome
    The Proceedings of the International Conference on Creationism Volume 8 Print Reference: Pages 133-151 Article 7 2018 An Overview of the Independent Histories of the Human Y Chromosome and the Human Mitochondrial chromosome Robert W. Carter Stephen Lee University of Idaho John C. Sanford Cornell University, Cornell University College of Agriculture and Life Sciences School of Integrative Plant Science,Follow this Plant and Biology additional Section works at: https://digitalcommons.cedarville.edu/icc_proceedings DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y- chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 133–151. Pittsburgh, Pennsylvania: Creation Science Fellowship. Carter, R.W., S.S. Lee, and J.C. Sanford. An overview of the independent histories of the human Y-chromosome and the human mitochondrial chromosome. 2018. In Proceedings of the Eighth International Conference on Creationism, ed. J.H.
    [Show full text]
  • Organization, Evolution and Function of Alpha Satellite Dna
    ORGANIZATION, EVOLUTION AND FUNCTION OF ALPHA SATELLITE DNA AT HUMAN CENTROMERES by M. KATHARINE RUDD Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Dr. Huntington F. Willard Department of Genetics CASE WESTERN RESERVE UNIVERSITY January, 2005 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. 1 Table of Contents Table of contents.................................................................................................1 List of Tables........................................................................................................2 List of Figures......................................................................................................3 Acknowledgements.............................................................................................5 Abstract................................................................................................................6
    [Show full text]
  • Dr. Fern Tsien, Dept. of Genetics, LSUHSC, NO, LA Down Syndrome
    COMMON TYPES OF CHROMOSOME ABNORMALITIES Dr. Fern Tsien, Dept. of Genetics, LSUHSC, NO, LA A. Trisomy: instead of having the normal two copies of each chromosome, an individual has three of a particular chromosome. Which chromosome is trisomic determines the type and severity of the disorder. Down syndrome or Trisomy 21, is the most common trisomy, occurring in 1 per 800 births (about 3,400) a year in the United States. It is one of the most common genetic birth defects. According to the National Down Syndrome Society, there are more than 400,000 individuals with Down syndrome in the United States. Patients with Down syndrome have three copies of their 21 chromosomes instead of the normal two. The major clinical features of Down syndrome patients include low muscle tone, small stature, an upward slant to the eyes, a single deep crease across the center of the palm, mental retardation, and physical abnormalities, including heart and intestinal defects, and increased risk of leukemia. Every person with Down syndrome is a unique individual and may possess these characteristics to different degrees. Down syndrome patients Karyotype of a male patient with trisomy 21 What are the causes of Down syndrome? • 95% of all Down syndrome patients have a trisomy due to nondisjunction before fertilization • 1-2% have a mosaic karyotype due to nondisjunction after fertilization • 3-4% are due to a translocation 1. Nondisjunction refers to the failure of chromosomes to separate during cell division in the formation of the egg, sperm, or the fetus, causing an abnormal number of chromosomes. As a result, the baby may have an extra chromosome (trisomy).
    [Show full text]
  • Rare Double Aneuploidy in Down Syndrome (Down- Klinefelter Syndrome)
    Research Article Journal of Molecular and Genetic Volume 14:2, 2020 DOI: 10.37421/jmgm.2020.14.444 Medicine ISSN: 1747-0862 Open Access Rare Double Aneuploidy in Down Syndrome (Down- Klinefelter Syndrome) Al-Buali Majed J1*, Al-Nahwi Fawatim A2, Al-Nowaiser Naziha A2, Al-Ali Rhaya A2, Al-Khamis Abdullah H2 and Al-Bahrani Hassan M2 1Deputy Chairman of Medical Genetic Unite, Pediatrics Department, Maternity Children Hospital Al-hassa, Hofuf, Saudi Arabia 2Pediatrics Resident, Pediatrics Department, Maternity Children Hospital Alhassa, Hofuf, Saudi Arabia Abstract Background: The chromosomal aneuploidy described as Cytogenetic condition characterized by abnormality in numbers of the chromosome. Aneuploid patient either trisomy or monosomy, can occur in both sex chromosomes as well as autosome chromosomes. However, double aneuploidies involving both sex and autosome chromosomes relatively a rare phenomenon. In present study, we reported a double aneuploidy (Down-Klinefelter syndrome) in infant from Saudi Arabia. Materials and Methods: In the present investigation, chromosomal analysis (standard chromosomal karyotyping) and fluorescence in situ hybridization (FISH) were performed according to the standard protocols. Results: Here, we report a single affected individual (boy) having Saudi origin, suffering from double chromosomal aneuploidy. The main presenting complaint is the obvious dysmorphic features suggesting Down syndrome. Chromosomal analysis and FISH revealed 48,XXY,+21, show the presence of three copies of chromosome 21, two copies of X chromosome and one copy of Y chromosome chromosomes. Conclusion: Patients with Down syndrome must be tested for other associated sex chromosome aneuploidies. Hence, proper diagnosis is needed for proper management and the cytogenetic tests should be performed as the first diagnostic approach.
    [Show full text]
  • Down-Syndrome.Pdf
    Down syndrome Description Down syndrome is a chromosomal condition that is associated with intellectual disability, a characteristic facial appearance, and weak muscle tone (hypotonia) in infancy. All affected individuals experience cognitive delays, but the intellectual disability is usually mild to moderate. People with Down syndrome often have a characteristic facial appearance that includes a flattened appearance to the face, outside corners of the eyes that point upward ( upslanting palpebral fissures), small ears, a short neck, and a tongue that tends to stick out of the mouth. Affected individuals may have a variety of birth defects. Many people with Down syndrome have small hands and feet and a single crease across the palms of the hands. About half of all affected children are born with a heart defect. Digestive abnormalities, such as a blockage of the intestine, are less common. Individuals with Down syndrome have an increased risk of developing several medical conditions. These include gastroesophageal reflux, which is a backflow of acidic stomach contents into the esophagus, and celiac disease, which is an intolerance of a wheat protein called gluten. About 15 percent of people with Down syndrome have an underactive thyroid gland (hypothyroidism). The thyroid gland is a butterfly-shaped organ in the lower neck that produces hormones. Individuals with Down syndrome also have an increased risk of hearing and vision problems. Additionally, a small percentage of children with Down syndrome develop cancer of blood-forming cells (leukemia). Delayed development and behavioral problems are often reported in children with Down syndrome. Affected individuals can have growth problems and their speech and language develop later and more slowly than in children without Down syndrome.
    [Show full text]
  • Three-Dimensional Fluorescence in Situ Hybridization in Mouse
    Three-Dimensional Fluorescence In Situ Hybridization in Mouse Embryos Using Repetitive Probe Sequences Walid Maalouf, Tiphaine Aguirre-Lavin, Laetitia Herzog, Isabelle Bataillon, Pascale Debey, Nathalie Beaujean To cite this version: Walid Maalouf, Tiphaine Aguirre-Lavin, Laetitia Herzog, Isabelle Bataillon, Pascale Debey, et al.. Three-Dimensional Fluorescence In Situ Hybridization in Mouse Embryos Using Repetitive Probe Sequences. Fluorescence in situ Hybridization (FISH), 659 (4), Springer, pp.401-408, 2010, Methods in Molecular Biology, 10.1007/978-1-60761-789-1_31. hal-02610638 HAL Id: hal-02610638 https://hal.archives-ouvertes.fr/hal-02610638 Submitted on 17 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Three-Dimensional Fluorescent In Situ Hybridisation in Mouse Embryos Walid E. Maalouf1,2, Tiphaine Aguirre-Lavin1, Laetitia Herzog1, Isabelle Bataillon1, Pascale Debey1 and Nathalie Beaujean1 1INRA, UMR 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas, France 32 Present Address: QMRI, 47 Little France Crescent, University of Edinburgh, Edinburgh, UK Contact : Dr Walid Maalouf <[email protected]>, Tel. +33 (0)1 34 65 29 03 / Fax: 29 09 Abstract A common problem in research laboratories that study the mammalian embryo is the limited supply of live material.
    [Show full text]
  • Double Aneuploidy in Down Syndrome
    Chapter 6 Double Aneuploidy in Down Syndrome Fatma Soylemez Additional information is available at the end of the chapter http://dx.doi.org/10.5772/60438 Abstract Aneuploidy is the second most important category of chromosome mutations relat‐ ing to abnormal chromosome number. It generally arises by nondisjunction at ei‐ ther the first or second meiotic division. However, the existence of two chromosomal abnormalities involving both autosomal and sex chromosomes in the same individual is relatively a rare phenomenon. The underlying mechanism in‐ volved in the formation of double aneuploidy is not well understood. Parental ori‐ gin is studied only in a small number of cases and both nondisjunctions occurring in a single parent is an extremely rare event. This chapter reviews the characteristics of double aneuploidies in Down syndrome have been discussed in the light of the published reports. Keywords: Double aneuploidy, Down Syndrome, Klinefelter Syndrome, Chromo‐ some abnormalities 1. Introduction With the discovery in 1956 that the correct chromosome number in humans is 46, the new area of clinical cytogenetic began its rapid growth. Several major chromosomal syndromes with altered numbers of chromosomes were reported, such as Down syndrome (trisomy 21), Turner syndrome (45,X) and Klinefelter syndrome (47,XXY). Since then it has been well established that chromosome abnormalities contribute significantly to genetic disease resulting in reproductive loss, infertility, stillbirths, congenital anomalies, abnormal sexual development, mental retardation and pathogenesis of malignancy [1]. Clinical features of patients with common autosomal or sex chromosome aneuploidy is shown in Table 1. © 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Basic Genetic Mechanisms— the Ways in Which the Cell Maintains, Replicates, Expresses, and Occasionally Improves the Genetic Information Carried in Its DNA
    BASIC GENETIC PART MECHANISMS II 4 DNA AND CHROMOSOMES 5 DNA REPLICATION, REPAIR, AND RECOMBINATION 6 HOW CELLS READ THE GENOME: FROM DNA TO PROTEIN 7 CONTROL OF GENE EXPRESSION The ribosome. The large subunit of the bacterial ribosome is shown here with the ribosomal RNA shown in gray and the ribosomal proteins in gold.The ribosome is the complex catalytic machine at the heart of protein synthesis. (From N. Ban et al., Science 289:905–920, 2000. © AAAS.) The nucleosome. The basic structural unit of all eucaryotic chromosomes is the nucleosome.The DNA double helix (gray) is wrapped around a core particle of histone proteins (colored) to create the nucleosome. Nucleosomes are spaced roughly 200 nucleotide pairs apart along the chromosomal DNA. (Reprinted by permission from K. Luger et al., Nature 389:251–260, 1997. © Macmillan Magazines Ltd.) 4 THE STRUCTURE AND FUNCTION DNA AND OF DNA CHROMOSOMAL DNA AND ITS PACKAGING IN THE CHROMATIN CHROMOSOMES FIBER THE GLOBAL STRUCTURE OF CHROMOSOMES Life depends on the ability of cells to store, retrieve, and translate the genetic instructions required to make and maintain a living organism. This hereditary information is passed on from a cell to its daughter cells at cell division, and from one generation of an organism to the next through the organism’s repro- ductive cells. These instructions are stored within every living cell as its genes, the information-containing elements that determine the characteristics of a species as a whole and of the individuals within it. As soon as genetics emerged as a science at the beginning of the twentieth century, scientists became intrigued by the chemical structure of genes.
    [Show full text]