Biogeosciences, 13, 6471–6486, 2016 www.biogeosciences.net/13/6471/2016/ doi:10.5194/bg-13-6471-2016 © Author(s) 2016. CC Attribution 3.0 License. The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime Florent Domine1,2,3,4, Mathieu Barrere1,3,4,5,6, and Samuel Morin5 1Takuvik Joint International Laboratory, Université Laval (Canada) and CNRS-INSU (France), Pavillon Alexandre Vachon, 1045 avenue de La Médecine, Québec, QC, G1V 0A6, Canada 2Department of Chemistry, Université Laval, Québec, QC, Canada 3Centre d’Études Nordiques, Université Laval, Québec, QC, Canada 4Department of Geography, Université Laval, Québec, QC, Canada 5Météo-France – CNRS, CNRM UMR 3589, CEN, Grenoble, France 6LGGE, CNRS-UGA, Grenoble, France Correspondence to: Florent Domine (fl
[email protected]) Received: 12 January 2016 – Published in Biogeosciences Discuss.: 4 February 2016 Revised: 17 November 2016 – Accepted: 24 November 2016 – Published: 12 December 2016 Abstract. With climate warming, shrubs have been observed model and the ISBA (Interactions between Soil–Biosphere– to grow on Arctic tundra. Their presence is known to in- Atmosphere) land surface scheme, driven by in situ and re- crease snow height and is expected to increase the thermal analysis meteorological data. These simulations did not take insulating effect of the snowpack. An important consequence into account the summer impact of shrubs. They predict that would be the warming of the ground, which will accelerate the ground at 5 cm depth at Bylot Island during the 2014– permafrost thaw, providing an important positive feedback 2015 winter would be up to 13 ◦C warmer in the presence of to warming.