Towards the National Virtual Observatory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
X-Ray Telescope
Early results of the Hitomi satellite Hiro Matsumoto Ux group & KMI Nagoya Univ.1 Outline •Hitomi instruments •Early scientific results –DM in Perseus –Turbulence in Perseus –others 2 Japanese history of X-ray satellites Launch, Feb. 17, 2016 Weight Suzaku Ginga ASCA Hitomi Tenma Hakucho Rocket 3 International collaboration More than 160 scientists from Japan/USA/Europe 4 Attitude anomaly Loss of communication (Mar. 26, 2016) spinning Gave up recovery (Apr. 28, 2016)5 Hitomi Obs. List Target Date Perseus Cluster of galaxies Feb. 25—27, 2016 Mar. 4—8, 2016 N132D Supernova remnants Mar. 8—11, 2016 IGR J16318-4848 Pulsar wind nebula Mar. 11—15, 2016 RXJ 1856-3754 Neutron star Mar. 17—19, 2016 Mar. 23—25, 2016 G21.5-0.9 Pulsar wind nebula Mar. 19—23, 2016 Crab Pulsar wind nebula Mar. 25, 2016 6 Scienfitic Instruments 7 4 systems Name X-Ray Telescope SXS Soft Micro-calorimeter (E<10keV) SXI Soft CCD (E<10keV) HXI Hard Si/CdTe (E<80keV) SGD --- Si/CdTe (Compton) 8 Wide energy range (0.3—600keV) HXT 1keV∼ 107K SXT SGD SXI HXI SXS 9 SXT + SXS (0.3—12keV) Soft X-ray Telescope Soft X-ray Spectrometer (X-ray micro-calorimeter) f=5.6m 10 Soft X-ray Spectrometer (SXS) FOV: 3′ × 3′ Δ푇 ∝ ℎ휈 6 × 6 pix 11 Energy Resolution Hitomi SXS Suzaku CCD Δ퐸 = 5 푒푉@ 6푘푒푉 (cf. CCD Δ퐸 = 130 푒푉)12 Before Hitomi: gratings Point source Extended Not good for extended objects 13 X-ray microcalorimeter Extended Non-dispersive type. Spatial extension doesn’t matter. -
Building the Coolest X-Ray Satellite
National Aeronautics and Space Administration Building the Coolest X-ray Satellite 朱雀 Suzaku A Video Guide for Teachers Grades 9-12 Probing the Structure & Evolution of the Cosmos http://suzaku-epo.gsfc.nasa.gov/ www.nasa.gov The Suzaku Learning Center Presents “Building the Coolest X-ray Satellite” Video Guide for Teachers Written by Dr. James Lochner USRA & NASA/GSFC Greenbelt, MD Ms. Sara Mitchell Mr. Patrick Keeney SP Systems & NASA/GSFC Coudersport High School Greenbelt, MD Coudersport, PA This booklet is designed to be used with the “Building the Coolest X-ray Satellite” DVD, available from the Suzaku Learning Center. http://suzaku-epo.gsfc.nasa.gov/ Table of Contents I. Introduction 1. What is Astro-E2 (Suzaku)?....................................................................................... 2 2. “Building the Coolest X-ray Satellite” ....................................................................... 2 3. How to Use This Guide.............................................................................................. 2 4. Contents of the DVD ................................................................................................. 3 5. Post-Launch Information ........................................................................................... 3 6. Pre-requisites............................................................................................................. 4 7. Standards Met by Video and Activities ...................................................................... 4 II. Video Chapter 1 -
Comprehensive Comparison Between APOGEE and LAMOST Radial Velocities and Atmospheric Stellar Parameters
A&A 620, A76 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833387 & c ESO 2018 Astrophysics Comprehensive comparison between APOGEE and LAMOST Radial velocities and atmospheric stellar parameters B. Anguiano1,2, S. R. Majewski1, C. Allende-Prieto3,4, S. Meszaros5,6, H. Jönsson7, D. A. García-Hernández3,4, R. L. Beaton8,9, ?, G. S. Stringfellow10, K. Cunha11,12, and V. V. Smith13 1 Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325, USA e-mail: [email protected] 2 Department of Physics & Astronomy, Macquarie University, Balaclava Rd, NSW 2109, Australia 3 Instituto de Astrofísica de Canarias (IAC), 38205 La Laguna, Tenerife, Spain 4 Universidad de La Laguna (ULL), Departamento de Astrofísica, 38206 La Laguna, Tenerife, Spain 5 ELTE Eötvös Lorand University, Gothárd Astrophysical Observatory, Szombathely, Hungary 6 Premium Postdoctoral Fellow of the Hungarian Academy of Sciences, Hungary 7 Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University, Box 43, 22100 Lund, Sweden 8 Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544, USA 9 The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101, USA 10 Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-0389, USA 11 University of Arizona, Tucson, AZ 85719, USA 12 Observatório Nacional, São Cristóvõ, Rio de Janeiro, Brazil 13 National Optical Astronomy Observatories, Tucson, AZ 85719, USA Received 7 May 2018 / Accepted 18 July 2018 ABSTRACT Context. In the era of massive spectroscopy surveys, automated stellar parameter pipelines and their validation are extremely impor- tant for an efficient scientific exploitation of the spectra. -
Download the AAS 2011 Annual Report
2011 ANNUAL REPORT AMERICAN ASTRONOMICAL SOCIETY aas mission and vision statement The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the universe. 1. The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public. 2. The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests. 3. The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science. 4. The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy. A 5. The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering. Adopted 7 June 2009 A S 2011 ANNUAL REPORT - CONTENTS 4 president’s message 5 executive officer’s message 6 financial report 8 press & media 9 education & outreach 10 membership 12 charitable donors 14 AAS/division meetings 15 divisions, committees & workingA groups 16 publishing 17 public policy A18 prize winners 19 member deaths 19 society highlights Established in 1899, the American Astronomical Society (AAS) is the major organization of professional astronomers in North America. -
Arxiv:2007.08994V2 [Astro-Ph.CO] 21 Dec 2020
MNRAS 000,1–39 (2020) Preprint 22 December 2020 Compiled using MNRAS LATEX style file v3.0 The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the luminous red galaxy sample from the anisotropic power spectrum between redshifts 0.6 and 1.0 Hector´ Gil-Mar´ın1;2?, Julian´ E. Bautista3, Romain Paviot4, Mariana Vargas-Magana˜ 5, Sylvain de la Torre4, Sebastien Fromenteau6, Shadab Alam7, Santiago Avila´ 8, Eti- enne Burtin9, Chia-Hsun Chuang10, Kyle S. Dawson 11, Jiamin Hou12, Arnaud de Mattia9, Faizan G. Mohammad13;14, Eva-Maria Muller¨ 15, Seshadri Nadathur3, Richard Neveux9, Will J. Percival13;14;16, Anand Raichoor17, Mehdi Rezaie18, Ashley J. Ross18, Graziano Rossi19, Vanina Ruhlmann-Kleider9, Alex Smith9, Amelie´ Tamone17, Jeremy L. Tinker20, Rita Tojeiro21, Yuting Wang22, Gong-Bo Zhao22; 3, Cheng Zhao17, Jonathan Brinkmann23, Joel R. Brownstein11, Peter D. Choi19, Stephanie Escoffier24, Axel de la Macorra5, Jeongin Moon19, Jeffrey A. Newman25, Donald P. Schneider26, Hee-Jong Seo18, Mariappan Vivek26;27 1 Institut de Ciencies` del Cosmos, Universitat de Barcelona, ICCUB, Mart´ı i Franques` 1, E08028 Barcelona, Spain 2 Institut d’Estudis Espacials de Catalunya (IEEC), E08034 Barcelona, Spain 3 Institute of Cosmology & Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX, United Kingdom 4 Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France. 5 Instituto de F´ısica, Universidad Nacional Autonoma´ de Mexico,´ Apdo. Postal 20-364, Ciudad -
Orbiting Debris: a Space Environmental Problem (Part 4 Of
Orbiting Debris: A Since Environmential Problem ● 3 Table 2--of Hazardous Interference by environment. Yet, orbital debris is part of a Orbital Debris larger problem of pollution in space that in- cludes radio-frequency interference and inter- 1. Loss or damage to space assets through collision; ference to scientific observations in all parts of 2. Accidental re-entry of space hardware; the spectrum. For example, emissions at ra- 3. Contamination by nuclear material of manned or unmanned spacecraft, both in space and on Earth; dio frequencies often interfere with radio as- 4. Interference with astronomical observations, both from the tronomy observations. For several years, ground and in space; gamma-ray astronomy data have been cor- 5. Interference with scientific and military experiments in space; rupted by Soviet intelligence satellites that 14 6. Potential military use. are powered by unshielded nuclear reactors. The indirect emissions from these satellites SOURCE: Space Debris, European Space Agency, and Office of Technology As- sessment. spread along the Earth’s magnetic field and are virtually impossible for other satellites to Earth. The largest have attracted worldwide escape. The Japanese Ginga satellite, attention. 10 Although the risk to individuals is launched in 1987 to study gamma-ray extremely small, the probability of striking bursters, has been triggered so often by the populated areas still finite.11 For example: 1) Soviet reactors that over 40 percent of its available observing time has been spent trans- the U.S.S.R. Kosmos 954, which contained a 15 nuclear power source,12 reentered the atmos- mitting unintelligible “data.” All of these phere over northwest Canada in 1978, scatter- problem areas will require attention and posi- ing debris over an area the size of Austria; 2) a tive steps to guarantee access to space by all Japanese ship was hit in 1969 by pieces of countries in the future. -
Calibration Against Spectral Types and VK Color Subm
Draft version July 19, 2021 Typeset using LATEX default style in AASTeX63 Direct Measurements of Giant Star Effective Temperatures and Linear Radii: Calibration Against Spectral Types and V-K Color Gerard T. van Belle,1 Kaspar von Braun,1 David R. Ciardi,2 Genady Pilyavsky,3 Ryan S. Buckingham,1 Andrew F. Boden,4 Catherine A. Clark,1, 5 Zachary Hartman,1, 6 Gerald van Belle,7 William Bucknew,1 and Gary Cole8, ∗ 1Lowell Observatory 1400 West Mars Hill Road Flagstaff, AZ 86001, USA 2California Institute of Technology, NASA Exoplanet Science Institute Mail Code 100-22 1200 East California Blvd. Pasadena, CA 91125, USA 3Systems & Technology Research 600 West Cummings Park Woburn, MA 01801, USA 4California Institute of Technology Mail Code 11-17 1200 East California Blvd. Pasadena, CA 91125, USA 5Northern Arizona University Department of Astronomy and Planetary Science NAU Box 6010 Flagstaff, Arizona 86011, USA 6Georgia State University Department of Physics and Astronomy P.O. Box 5060 Atlanta, GA 30302, USA 7University of Washington Department of Biostatistics Box 357232 Seattle, WA 98195-7232, USA 8Starphysics Observatory 14280 W. Windriver Lane Reno, NV 89511, USA (Received April 18, 2021; Revised June 23, 2021; Accepted July 15, 2021) Submitted to ApJ ABSTRACT We calculate directly determined values for effective temperature (TEFF) and radius (R) for 191 giant stars based upon high resolution angular size measurements from optical interferometry at the Palomar Testbed Interferometer. Narrow- to wide-band photometry data for the giants are used to establish bolometric fluxes and luminosities through spectral energy distribution fitting, which allow for homogeneously establishing an assessment of spectral type and dereddened V0 − K0 color; these two parameters are used as calibration indices for establishing trends in TEFF and R. -
Arxiv:2106.01477V1 [Astro-Ph.IM] 2 Jun 2021 Document in Their Instructions to Authors
Draft version June 4, 2021 Typeset using LATEX twocolumn style in AASTeX63 Best Practices for Data Publication in the Astronomical Literature Tracy X. Chen,1 Marion Schmitz,1 Joseph M. Mazzarella,1 Xiuqin Wu,1 Julian C. van Eyken,2 Alberto Accomazzi,3 Rachel L. Akeson,2 Mark Allen,4 Rachael Beaton,5 G. Bruce Berriman,2 Andrew W. Boyle,2 Marianne Brouty,4 Ben Chan,1 Jessie L. Christiansen,2 David R. Ciardi,2 David Cook,1 Raffaele D'Abrusco,3 Rick Ebert,1 Cren Frayer,1 Benjamin J. Fulton,2 Christopher Gelino,2 George Helou,1 Calen B. Henderson,2 Justin Howell,6 Joyce Kim,1 Gilles Landais,4 Tak Lo,1 Cecile Loup,4 Barry Madore,7, 8 Giacomo Monari,4 August Muench,9 Anais Oberto,4 Pierre Ocvirk,4 Joshua E. G. Peek,10, 11 Emmanuelle Perret,4 Olga Pevunova,1 Solange V. Ramirez,7 Luisa Rebull,6 Ohad Shemmer,12 Alan Smale,13 Raymond Tam,2 Scott Terek,1 Doug Van Orsow,13, 14 Patricia Vannier,4 and Shin-Ywan Wang1 1Caltech/IPAC-NED, Mail Code 100-22, Caltech, 1200 E. California Blvd., Pasadena, CA 91125, USA 2Caltech/IPAC-NExScI, Mail Code 100-22, Caltech, 1200 E. California Blvd., Pasadena, CA 91125, USA 3Center for Astrophysics j Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA 4Centre de Donn´eesastronomiques de Strasbourg, Observatoire de Strasbourg, 11, rue de l'Universit´e,67000 STRASBOURG, France 5Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544, USA 6Caltech/IPAC-IRSA, Mail Code 100-22, Caltech, 1200 E. -
Filltex: Automatic Queries to ADS and INSPIRE Databases to Fill Latex Bibliography
filltex: Automatic queries to ADS and INSPIRE databases to fill LaTex bibliography Davide Gerosa1 and Michele Vallisneri1,2 1 TAPIR 350-17, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA 2 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, DOI: 10.21105/joss.00222 Pasadena, CA 91109, USA Software • Review Summary • Repository • Archive filltex is a simple tool to fill LaTex reference lists with records from the ADS andIN- Licence SPIRE databases. ADS (“SAO/Nasa Astrophysics Data System,” n.d.) and INSPIRE Authors of JOSS papers retain (“High-Energy Physics Literature Database,” n.d.) are the most common databases copyright and release the work un- used among the theoretical physics and astronomy scientific communities, respectively. der a Creative Commons Attri- filltex automatically looks for all citation labels present in a tex document and, by bution 4.0 International License means of web-scraping, downloads all the required citation records from either of the (CC-BY). two databases. filltex significantly speeds up the LaTex scientific writing workflow, as all required actions (compile the tex file, fill the bibliography, compile the bibliography, compile the tex file again) are automated in a single command. We also provide anin- tegration of filltex for the macOS LaTex editor TexShop (“Cocoa Tex Previewer for macOS,” n.d.). References “Cocoa Tex Previewer for macOS.” n.d. http://pages.uoregon.edu/koch/texshop. “High-Energy Physics Literature Database.” n.d. http://inspirehep.net. “SAO/Nasa Astrophysics Data System.” n.d. http://adsabs.harvard.edu. Gerosa et al., (2017). filltex: Automatic queries to ADS and INSPIRE databases to fill LaTex bibliography. -
Securing Japan an Assessment of Japan´S Strategy for Space
Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology -
Lectures on Stellar Astrophysics
Lectures on stellar astrophysics Antonino Milone email: [email protected] web: http://progetti.dfa.unipd.it/GALFOR/ A. P. Milone Padova March 1st 2021 Antonino Milone Department of Physics and Astronomy, Padua University email: [email protected] Address: Vicolo dell’osservatorio 3, office 307 My office hours: Monday 16.30-17.30 Telephone: +39 049 827 8259 web: http://progetti.dfa.unipd.it/GALFOR/ Stellar astrophysics... in the time of covid SKYPE: ID antonino.milone My office hours: Monday 16.30-17.30 Telephone: +39 049 827 8259 My story: – Born in Milazzo A. P. Milone Padova March 1st 2021 My story: – Born in Milazzo A. P. Milone Padova March 1st 2021 My story: – Born in Milazzo; – Master and PhD in Astronomy in Padova. A. P. Milone Padova March 1st 2021 My story: – Born in Milazzo. – Master and PhD in Astronomy in Padova. – Tenerife My story: – Born in Milazzo. – Master and PhD in Astronomy in Padova. – Tenerife A. P. Milone Padova March 1st 2021 My story: – Born in Milazzo. – Master thesys and PhD in Astronomy in Padova. – Instituto de Astrofisica de Canarias (Tenerife). A. P. Milone Padova March 1st 2021 My story: – Born in Milazzo. – Master thesys and PhD in Astronomy in Padova. – Instituto de Astrofisica de Canarias (Tenerife). – Australian National University (Canberra). A. P. Milone Padova March 1st 2021 My research field: Galactic archaeology with star clusters /http://progetti.dfa.unipd.it/GALFOR MyMy researchresearch field:field: GalacticGalactic archaeologyarchaeology withwith starstar clustersclusters Stars are the fundamental units of the Universe /http://progetti.dfa.unipd.it/GALFOR/ MyMy researchresearch field:field: GalacticGalactic archaeologyarchaeology withwith starstar clustersclusters Most stars form in clusters /http://progetti.dfa.unipd.it/GALFOR/ Galactic archaeology with star clusters We study the clusters that we see today to infer information on the primordial Universe /http://progetti.dfa.unipd.it/GALFOR/ Stellar Astrophysics: Outline of the course Antonino Milone Department of Physics and Astronomy `G. -
MIT Japan Program Working Paper 01.10 the GLOBAL COMMERCIAL
MIT Japan Program Working Paper 01.10 THE GLOBAL COMMERCIAL SPACE LAUNCH INDUSTRY: JAPAN IN COMPARATIVE PERSPECTIVE Saadia M. Pekkanen Assistant Professor Department of Political Science Middlebury College Middlebury, VT 05753 [email protected] I am grateful to Marco Caceres, Senior Analyst and Director of Space Studies, Teal Group Corporation; Mark Coleman, Chemical Propulsion Information Agency (CPIA), Johns Hopkins University; and Takashi Ishii, General Manager, Space Division, The Society of Japanese Aerospace Companies (SJAC), Tokyo, for providing basic information concerning launch vehicles. I also thank Richard Samuels and Robert Pekkanen for their encouragement and comments. Finally, I thank Kartik Raj for his excellent research assistance. Financial suppport for the Japan portion of this project was provided graciously through a Postdoctoral Fellowship at the Harvard Academy of International and Area Studies. MIT Japan Program Working Paper Series 01.10 Center for International Studies Massachusetts Institute of Technology Room E38-7th Floor Cambridge, MA 02139 Phone: 617-252-1483 Fax: 617-258-7432 Date of Publication: July 16, 2001 © MIT Japan Program Introduction Japan has been seriously attempting to break into the commercial space launch vehicles industry since at least the mid 1970s. Yet very little is known about this story, and about the politics and perceptions that are continuing to drive Japanese efforts despite many outright failures in the indigenization of the industry. This story, therefore, is important not just because of the widespread economic and technological merits of the space launch vehicles sector which are considerable. It is also important because it speaks directly to the ongoing debates about the Japanese developmental state and, contrary to the new wisdom in light of Japan's recession, the continuation of its high technology policy as a whole.