UNITED STATES PATENT of FICE 2,455,205 Compositions Suitable for USE As Gas and Power PRODUCING Liquids Sohn

Total Page:16

File Type:pdf, Size:1020Kb

UNITED STATES PATENT of FICE 2,455,205 Compositions Suitable for USE As Gas and Power PRODUCING Liquids Sohn Patented Nov. 30, 1948 2,455,205 UNITED STATES PATENT of FICE 2,455,205 COMPOSITIONs suITABLE FOR USE As GAs AND PoweR PRODUCING LIQUIDs sohn. Whetstone, West Kilbride, and James Tay i lor, Saltcoats, Scotland, assignors to Imperial -Chemical Industries Limited, a corporation of Great Britain No Drawing. Application July 17, 1946, serial No. 684,242. In Great Britain August 24, 1945 1 Claim. (C1.52-14) 1. 2 The present inventionist; concerned with the 'hydrous: chemically-stable non-volatile eutectic provision of substantially... anhydrous homoge and non-eutectic compositions that are liquid-at neous compositions suitable for use as gas- and temperatures not substantially higher than room power-producing liquids for use in explosive com temperature. positions or otherwise for instance in internal The One or more compounds which are to be combustion engines or in reaction propelled or included in the ammonium nitrate-urea compo siet propelled devices. 'sitions are ammonium nitrate fusion point de It is an object of the invention to provide pressing inorganic - salts and Organic materials chemically stable non-volatile power producing which are of low-molecular weight and are freely compositions that are liquid at or about ordinary 10 soluble-in-fused - ammonium nitrate and urea; atmospheric temperatures. are not highly associated in ammonium nitrate It is known that ammonium nitrate-can-react solution (such substances are usually found to be With liquid ammonia, to form Diver's liquid, but freely water soluble in the cold); do not form this liquid is unstable: and has a considerable insoluble or sparsely soluble salts by decompo vapour pressure of ammonia. ... sition with ammonium nitrate, or by co-ordina Ammonium nitrate is the most important en tion. With urea, to an extent that the desired re ergy and gas-producing Salt used in the explosives duction in the fusion3point of the ammonium ni industry, and can also be employed in conjunction itrate urea, eutectic or composition is not attained. with Oxidisable materials for the production of ... The following are examples of suitable com power in other waysithan by explosion, but to a ipounds which can be added preferably two or certain extent the crystalline form of this com more than two at a time to ammonium nitrate pound limits its application. For instance the and urea mixtures namely -ammonium sulpha amount of ammonium nitrate that can be in mate, ammonium thiosulphate, ammonium for cluded in nitroglycerine gelatine explosive com mate, ammonium acetate, ammonium thiocyan positions is limited, rather by the necessity of 2:5 ate, ammonium hypophosphite, acetamide, pro maintaining the proper compactness of the ex pionamide, anhydrous sodium acetate, methyl plosive than by the considerations of sensitive amine nitrate. 'ness. Again, fuels for internal combustion en The following inorganic salts are described by gines must be liquids capable of flow at ordinary Beilstein as giving addition compounds With urea, or only slightly raised temperatures. To dissolve 30 and are thus unsuitable as additions at least in the- annonium nitrate in water, would seriously any quantity: sodium; chloride, ammonium chlo detract from the power...producing. value of the ride, calcium chloride, zinc chloride, cadmium composition. A chemically stable substantially chloride, mercuric chloride, calcium bromide, anhydrous homogeneous composition containing magnesium bromide, calcium iodide, sodium ni the annonium nitrate, and a material -oxidisable :35 trate, silver nitrate, calcium nitrate, magnesium by it in solution at or about: room-temperatures nitrate. Would thus be of considerable value as a power The following Substances which are freely: Wa producing liquid, but so far as we are aware, such ter:soluble and of low-molecular weight have been liquid has never been...produced. -- . " found to raise the crystallising temperature of It is known that ammonium nitrate and, urea, 40 the ammonium nitrate-urea, eutectic; sodium form a binary eutectic having a melting point of perchlorate, -ammonium fluoride, ... urea, nitrate, 44.7 and containing 47%. urea (Howells, Journ. potassium dihydrogen :phosphate. These sub Chem. Soc. 1929, p. 910), and that a ternary stances are thus, unsuitable as additions. eutectic can be formed containing .45% urea, According to the present invention therefore 47.5% ammonium nitrate and 7.5% sodium ni 45 substantially anhydrous homogeneous composi trate and having a melting point of 37.1° (How :tions suitable for use as gaS and power producing ells, Journ. Chem. Soc. 1930, p.2010). It is also liquids of -ammonium-nitrate and urea include known that a ternary eutectic having a melting such quantities of one or more-of-the compounds point of 42.5 can be produced from 45.5% urea, of the -kind hereinbefore - defined that the said 52.0% ammonium nitrate and 2.5% resorcinol 50 compositions are liquid at atmospheric tempera (Hrynakowski Z. Krist. 94, p. 358 (1938)). ture ranges. We have now found that by the inclusion of one Although the ratio of the ammonium nitrate or more compounds of the kind hereinafter de to urea in the binary eutectic formed by these fined in mixtures containing, ammonium nitrate two substances is 53:47 the ratio generally pre and urea it is possible to provide substantially an- 55 ferred is 50 to 30 or 50 to 25 in order to keep ...si:Iai: 2,455,205 3 the oxygen value of the mixtures nearer "bal Eacample 5 ance.” This necessitates the choice of the one or more of the compounds hereinbefore defined to A. B C be such that they will dissolve the exceSS amir monium nitrate. Parts Parts Parts Ammonium nitrate.---------------------- 45 40 50 It has been found that mixtures of the am Urea------------------ 30 30 25 monium nitrate-urea, eutectic plus about a total Ammonium formate.--------- - - - - 10 15 0 of 20-25% of two or more of the compounds Ammonium acetate---------- - - - - 15 5 15 hereinbefore defined have eutectics fusing in the range -10° C. to -30° C. 10 Oxygen value per gram------------------- -0.38 -0.43 -0.33 As it is usually desirable as hereinbefore mentioned, that for use in explosives the oxygen The mixture A is completely liquid at 20° C. values of the said anhydrous homogeneous ad though cooling below 14° C. induces the separa mixtures should not be allowed to become un tion of long-needle-like crystals, probably am favourably negative, the ammonium nitrate monium nitrate. content is usually arbitrarily kept in the region Mixture B, containing less ammonium nitrate, of 45-55% and consequently such liquid mixtures is fiuid at -10° C. are not true eutectic compositions, though their Mixture C is partly liquid at room temperatures. low lusion points are due to the formation of The differences in properties according to vari eutectics, ations in the ratio of four components are also The following are examples of substantially 2 O shown by the following table: anhydrous homogeneous admixtures according to Eacample 6 the invention wherein the parts are parts by weight. A B C Eacd.imple i. 2 5 Parts Parts Paris Parts Ammonium nitrate------ 50 45 40 Urea-------------------- 25 30 30 Ammonium nitrate ----------------------- 50 Ammonium formate --- 5 5 5 Urea ------------------------------------- 33 Acetamide------------------------------- 10 O 5 Methylamine nitrate ----------------------- 17 3 0. The urea, and methylamine nitrate together Oxygen value per gram------------- ------ -0.34 -0.39 -0.48 give a liquid containing Suspended matter at Composition A, on cooling, first crystallises at 20° C. The ammonium nitrate is dissolved in 28° C. and is still very fluid at 20° C. The liquid portions and gives a product almost completely When cooled to 0° C. remains Supercooled but liquid at 20° C. 35 on stirring complete solidification ensues with Eacample 2 rise of temperature to 15° C. Parts Composition B is liquid at room temperatures Ammonium nitrate ------------------------ 50 and crystallises partly at 15° C. Urea ------------------------------------- 25 40 Composition C does not crystallise after 48 Methylamine nitrate ---------------------- 17 hours at -10°C. Ammonium sulphamate -------------------- 8 Eacample 7 The urea, methylamine nitrate and annonium A. B sulphamate become liquid when mixed together 45 at room temperature. The ammonium nitrate Ports Parts dissolves almost completely on addition. There Ammonium nitrate-------- 50 40 Urea---------------- - 25 . 30 is little change in the amount of Suspended solid Ammonium acetate. - - - 15 15 between 18 and 55° C. The oxygen value per Acetamide------------ 10 5 gram is -0.18. 50 Eacample 3 Oxygen value per gram. -------------------------- -0.42 -0.55 Parts These two mixtures illustrate once again that Ammonium nitrate ------------------------ 50 the ratio of the four components is of great Urea ------------------------------------- 25 importance, for Whereas mixture A becomes Ammonium formate ----------------------- 15 55 pasty With Suspension of crystals at 30° C. mix Ammonium Sulphamate ------------------- 10 ture B. Withstands a few hours storage at -10° C. On mixing the above four ingredients together Without crystallisation. This is due to super at a somewhat raised temperature a slightly cooling. On prolonged standing at -10° C. the Wiscous liquid is obtained. On cooling crystallisa 60 liquid becomes filled with crystals which do not tion sets in at 17° C. and the temperature rises Wholly redissolve at room temperatures. to 23° C. and the liquid becomes pasty. Eacample 8 The oxygen value
Recommended publications
  • Ammonium Formate As Green Hydrogen Source for Clean Semi-Continuous Enzymatic Dynamic Kinetic Resolution of (+/-)-Ααα-Methylbenzylamine
    RSC Advances Ammonium Formate as Green Hydrogen Source for Clean Semi-Continuous Enzymatic Dynamic Kinetic Resolution of (+/-)-ααα-Methylbenzylamine Journal: RSC Advances Manuscript ID: RA-ART-01-2014-000462.R1 Article Type: Paper Date Submitted by the Author: 21-Feb-2014 Complete List of Authors: Miranda, Leandro S. M.; Federal University of Rio de Janeiro, Biocatalysis and Organic Synthesis Lab, Chemistry Institute de Souza, Rodrigo Octavio; Federal University of Rio de Janeiro, de Miranda, Amanda; Federal University of Rio de Janeiro, Page 1 of 21 RSC Advances Graphical Abstract RSC Advances Page 2 of 21 Ammonium Formate as Green Hydrogen Source for Clean Semi-Continuous Enzymatic Dynamic Kinetic Resolution of (+/-)-α- Methylbenzylamine Amanda S. de Miranda, [a] Rodrigo O. M. A. de Souza, [ a] Leandro S. M. Miranda [a]* Keywords: Dynamic kinetic resolution • racemic amines • continuous flow . ammonium formate. Abstract: Abstract: The chemoenzymatic dynamic kinetic resolution of (+/-)-α- Methylbenzylamine under continuous flow conditions in the presence of Pd/BaSO 4 as racemization catalyst and ammonium formate as reductant is described. Under the conditions developed good conversions and excellent enantiomeric excess are reported Page 3 of 21 RSC Advances Introduction Recently, continuous processing and biocatalysis have been elected as key green engineering research areas for sustainable manufacturing 1a and it is clear that joint efforts between these areas can lead to great improvements on continuous manufacturing in agreement with green chemistry principles 1b,c . Optically pure amines are ubiquitously present in nature and active pharmaceutical ingredients (APIs). However, their synthesis still represents an ongoing synthetic challenge that can be inferred by the great amount of work and methodologies dealing with this issue in the literature.
    [Show full text]
  • Mechanochemical Catalytic Transfer Hydrogenation of Aromatic Nitro Derivatives
    Article Mechanochemical Catalytic Transfer Hydrogenation of Aromatic Nitro Derivatives Tomislav Portada, Davor Margetić and Vjekoslav Štrukil * Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; [email protected] (T.P.); [email protected] (D.M.) * Correspondence: [email protected]; Tel.: +385‐1‐468‐0197 Received: 15 November 2018; Accepted: 29 November 2018; Published: date Abstract: Mechanochemical ball milling catalytic transfer hydrogenation (CTH) of aromatic nitro compounds using readily available and cheap ammonium formate as the hydrogen source is demonstrated as a simple, facile and clean approach for the synthesis of substituted anilines and selected pharmaceutically relevant compounds. The scope of mechanochemical CTH is broad, as the reduction conditions tolerate various functionalities, for example nitro, amino, hydroxy, carbonyl, amide, urea, amino acid and heterocyclic. The presented methodology was also successfully integrated with other types of chemical reactions previously carried out mechanochemically, such as amide bond formation by coupling amines with acyl chlorides or anhydrides and click‐type coupling reactions between amines and iso(thio)cyanates. In this way, we showed that active pharmaceutical ingredients Procainamide and Paracetamol could be synthesized from the respective nitro‐precursors on milligram and gram scale in excellent isolated yields. Keywords: mechanochemistry; catalytic transfer hydrogenation; aromatic nitro derivatives; ammonium formate; aging; ball milling; synthesis 1. Introduction Catalytic hydrogenation is one of the most significant functional group transformation reactions in organic synthesis and numerous procedures and reagents have been developed for that purpose [1,2]. As such, the hydrogenation reaction plays one of the key roles in many industrially important processes, for example hydrogenation of carbon monoxide to methanol or in food industry for the conversion of unsaturated vegetable oils into saturated triglycerides [3].
    [Show full text]
  • Deleterious Effects of Formic Acid Without Salt Additives on the HILIC Analysis of Basic Compounds
    HPLC TN-1040 Deleterious Effects of Formic Acid without Salt Additives on the HILIC Analysis of Basic Compounds A. Carl Sanchez and Monika Kansal Phenomenex, Inc., Torrance, CA, USA Abstract Formic acid is an often-used mobile phase additive for of weak acids increase. The pKa shifts can be quite significant adjusting pH in reversed phase liquid chromatography (RPLC), in the high organic environment used for HILIC. For example, especially when using mass spectrometric (MS) detection. This weak bases with aqueous pKa less than ~4 typically will not be practice has been carried over to hydrophilic interaction liquid protonated in HILIC mobile phases when 0.1 v/v % formic acid chromatography (HILIC) separations. However, the mechanisms is used. The pKa of the base is decreased in HILIC mobile phase of action and the relative importance of buffer cation and while the pKa of the formic acid is increased. The increased pKa anion are much different in HILIC than RPLC. For this reason of formic acid leads to an increase in mobile phase pH. The buffer selection in HILIC mode requires consideration of buffer, combination of these opposing changes in pKa results in 0.1 v/v analyte and chromatographic sorbent chemical properties to % formic acid being too weak to protonate bases with pKa < ~4. make an appropriate choice. Proper choice of buffer can make Therefore, formic acid can provide acceptable chromatographic the difference between success and failure with HILIC. In this performance for weak bases with aqueous pKa < ~4. However, paper, the behavior of formic acid with and without the addition basic compounds with aqueous pKa greater than ~4 can be of various salts on the HILIC separation of basic analytes is protonated under HILIC conditions with formic acid.
    [Show full text]
  • FLUID COMPATIBILITY CHART for Metal Threaded Fittings Sealed with Loctite¨ Sealants LIQUIDS, SOLUTIONS & SUSPENSIONS
    FLUID COMPATIBILITY CHART for metal threaded fittings sealed with Loctite® Sealants LIQUIDS, SOLUTIONS & SUSPENSIONS LEGEND: Bagasse Fibers.......................... Chlorobenzene Dry ................... Ferrous Chloride ...................... Ion Exclusion Glycol ................. Nickel Chloride.......................... All Loctite® Anaerobic Sealants are Barium Acetate ........................ Chloroform Dry......................... Ferrous Oxalate......................... Irish Moss Slurry...................... Nickel Cyanide ......................... Compatible Including #242®, 243, Barium Carbonate..................... Chloroformate Methyl............... Ferrous Sulfate10%.................. Iron Ore Taconite ..................... Nickel Fluoborate ..................... 542, 545, 565, 567, 569, 571, 572, Barium Chloride........................ Chlorosulfonic Acid .................. Ferrous Sulfate (Sat)................. Iron Oxide ................................ Nickel Ore Fines ....................... 577, 580, 592 Barium Hydroxide..................... Chrome Acid Cleaning .............. Fertilizer Sol ............................. Isobutyl Alcohol ....................... Nickel Plating Bright ................. † Use Loctite® #270, 271™, 277, 554 Barium Sulfate.......................... Chrome Liquor.......................... Flotation Concentrates.............. Isobutyraldehyde ..................... Nickel Sulfate ........................... Not Recommended Battery Acid .............................. Chrome Plating
    [Show full text]
  • Selected Analytical Methods for Environmental Remediation and Recovery (SAM) 2017
    EPA/600/R-17/356 | September 2017 www.epa.gov/homeland-security-research Selected Analytical Methods for Environmental Remediation and Recovery (SAM) 2017 Office of Research and Development Homeland Security Research Program This page left intentionally blank EPA/600/R-17/356 | September 2017 Selected Analytical Methods for Environmental Remediation and Recovery (SAM) 2017 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Cincinnati, OH 45268 Office of Research and Development Homeland Security Research Program Disclaimer Disclaimer The U.S. Environmental Protection Agency (EPA) through its Office of Research and Development funded and managed the research described here under Contract EP-C-15-012 to CSRA Inc. This document is undergoing review and has not been approved for publication. The contents reflect the views of the contributors and technical work groups and do not necessarily reflect the views of the Agency. Mention of trade names or commercial products in this document or in the methods referenced in this document does not constitute endorsement or recommendation for use. Questions concerning this document or its application should be addressed to: Romy Campisano National Homeland Security Research Center Office of Research and Development (NG16) U.S. Environmental Protection Agency 26 West Martin Luther King Drive Cincinnati, OH 45268 (513) 569-7016 [email protected] Kathy Hall National Homeland Security Research Center Office of Research and Development (NG16) U.S. Environmental Protection Agency 26 West Martin Luther King
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Making LC Methods MS Friendly
    Making LC Methods MS Friendly Mark Powell Applications Engineer Columns and Supplies Technical Support 8 October 2013 Topics •LC/MS ionization techniques •ESI •APCI •APPI •Appropriate conditions •Volatile buffers for MS •Ion pair chromatography •HILIC •Appropriate columns •Column diameter •Bonded phase •Particle size •Adapting existing methods to LC/MS •Maximizing Sensitivity •Minimize extra column volume •Avoiding interferences •Sample preparation LC/MS Techniques and Applications •Atmospheric pressure ionization (API) •Three typical API methods: •ESI - electrospray ionization •APCI - atmospheric pressure chemical ionization •APPI - atmospheric pressure photoionization •Appropriate ionization method depends largely on analyte polarity •Positive ion mode (protonation) or negative ion mode (deprotonation) •Masses measured as mass to charge ratio (m/z) Applicability of Atmospheric Pressure Ionization Techniques Electrospray Ionization • Most common ionization technique • Used for high and low molecular weight compounds • Ions are formed in solution and then the droplets are evaporated • Analyte volatility not required • Compounds containing heteroatoms such as N, S, and O typically analyze well • Can form multiply-charged ions • Like UV detection, ESI is concentration sensitive • ESI is generally more sensitive for samples that are ionized in solution Electrospray Ionization Electrospray Ions Nebulizer (gas Heated nitrogen drying gas shown in red) Solvent spray + + Dielectric capillary entrance APCI and APPI Sources •APCI •Analyte and mobile
    [Show full text]
  • Ammonium Formate Afm
    AMMONIUM FORMATE AFM CAUTIONARY RESPONSE INFORMATION 4. FIRE HAZARDS 7. SHIPPING INFORMATION 4.1 Flash Point: 7.1 Grades of Purity: Analytical grade; Organic Common Synonyms Solid White Weak ammonia Not flammable chemical grade odor Formic acid, ammonium salt 4.2 Flammable Limits in Air: Not pertinent 7.2 Storage Temperature: Ambient 4.3 Fire Extinguishing Agents: Water, foam 7.3 Inert Atmosphere: No requirement Sinks and mixes slowly with water. 4.4 Fire Extinguishing Agents Not to Be 7.4 Venting: Open Used: Currently not available 7.5 IMO Pollution Category: Currently not available Stop discharge if possible. Keep people away. 4.5 Special Hazards of Combustion Avoid contact with solid and dust; avoid inhalation. Products: Toxic and irritating ammonia 7.6 Ship Type: Currently not available Isolate and remove discharged material. and formic acid gases may form in fire. 7.7 Barge Hull Type: Currently not available Notify local health and pollution control agencies. 4.6 Behavior in Fire: Currently not available Protect water intakes. 4.7 Auto Ignition Temperature: Not pertinent 8. HAZARD CLASSIFICATIONS Combustible 4.8 Electrical Hazards: Not pertinent 8.1 49 CFR Category: Not listed Fire POISONOUS GASES MAY BE PRODUCED IN FIRE. 4.9 Burning Rate: Not pertinent 8.2 49 CFR Class: Not pertinent Irritating gases may be produced when heated. 4.10 Adiabatic Flame Temperature: Not 8.3 49 CFR Package Group: Not listed. Wear goggles, self-contained breathing apparatus and rubber overclothing pertinent (including gloves). 4.11 Stoichometric Air to Fuel Ratio: Not 8.4 Marine Pollutant: No Extinguish with water or foam.
    [Show full text]
  • Lab & Reagent Chemicals Pat Impex
    LAB CHEMICALS & REAGENTS – FINE CHEMICALS Manufacturer, Suppliers & Distributor MANUFACTURER SUPPLIER AND DISTRIBUTOR OF LABORATORY CHEMICALS, FINE CHEMICALS, AR LR GRADE, SUPERFINE CHEMICALS IN VADODARA, GUJARAT, INDIA. Our Introduction LAB CHEMICALS, REAGENTS GRADE CHEMICALS, BULK PACKING Our Range of Products • Laboratory chemicals & Reagents • Fine Chemicals AR LR ACS PH EUR • General Chemicals by Trading • Nanotechnology chemicals LABORATORY CHEMICALS, REAGENTS, FINE CHEMICALS • Acetamide Pure • Acetanilide Extrapure • Adipic Acid Pure • Acetanilide Exiplus • Aerosil 200 (Fumed Silica Gel) • Acetic Acid Glacial Extrapure • Agar Powder Regular Grade • Acetic Acid Glacial Extrapure Ar • Agar Powder Exiplus • Acetic Acid Glacial Extrapure Ar,acs,exiplus • Agar Powder Extrapure Bacto Grade • Acetic Acid Dried • Agar Granulated Bacto Grade • Acetic Acid For Hplc • Ajowan Seed Oil Extrapure • Acetic Acid Glacial For Molecular Biology • L-alanine Extrapure Chr • Acetone Pure • Aliquat 336 • Acetone Extrapure Ar • Alloxan Monohydrate • Acetone Extrapure Ar,acs,exiplus • Allyl Alcohol Pure • Acetone Gc-hs • Allylamine Pure • Acetone For Hplc & Uv Spectroscopy • Allyl Bromide Pure • Acetone For Uv Spectroscopy • Almond Oil Pure • Acetone Electronic Grade • Aluminium Ammonium Sulphate Dodecahydrate Pure • Acetone For Molecular Biology • Aluminium Ammonium Sulphate Dodecahydrate Extrapure Ar • Acetone -d6 For Nmr Spectroscopy • Aliminium Atomic Absorption Std.soln.aas • Acetonitrile(Acn)extrapure • Aluminium Metal Powder • Acetonitrile(Acn)extrapure
    [Show full text]
  • Increase Analytical Accuracy LC/MS: Solvents, Blends, Standards, Surfactants
    Increase Analytical Accuracy LC/MS: Solvents, Blends, Standards, Surfactants Reliability. Purity. Certainty. Discover. Synthesize. Analyze. Customize. Chemicals from Thermo Fisher Scientific brands offer a wide range of reagents, blends and standards designed to deliver more accurate results for liquid chromatography and mass spectrometry (LC/MS) analysis. The products in this brochure are specifically formulated, tested and validated on the latest instruments from leading brands to offer superior performance for LC/MS, and they’re conveniently provided in ready-to-use sizes with innovative packaging. Table of Contents Surfactants .........................................................1 Standards ...........................................................2 Specialty Flush Solutions and Probe Washes ......2 Mobile Phase Blends, Optima LC/MS Grade .......3 Solvents, Optima LC/MS Grade ..........................5 Reagents, Optima LC/MS Grade ........................6 Innovative Packaging .........................................10 Surfactants Alfa Aesar™ surfactants are compatible with mass spectrometry used in proteomics analysis. The compounds listed here showed minimal matrix interference in proteomics target analysis by mass spectrometry. Description Pack Size Cat. No. Anionic Acid Labile Surfactant I (AALS I) 5mg AAJ67647LB0 Anionic Acid Labile Surfactant II (AALS II) 5mg AAJ67832LB0 Cationic Acid Labile Surfactant I (CALS I) 5mg AAJ67743LB0 Cationic Acid Labile Surfactant II (CALS II) 5mg AAJ67525LB0 Non-Ionic Acid Labile Surfactant I (NALS I) 5mg AAJ67592LB0 Non-Ionic Acid Labile Surfactant II (NALS II) 5mg AAJ67682LB0 Zwitterionic Acid Labile Surfactant I (ZALS I) 5mg AAJ67729LB0 Zwitterionic Acid Labile Surfactant II (ZALS II) 5mg AAJ67721LB0 1 Discover. Synthesize. Analyze. Customize. Preserving Product Integrity Standards Standardization verifies instrument function and its suitability for the next analysis. By regularly calibrating your instruments using reliable chromatography standards, you’ll always have confidence in the accuracy of your data.
    [Show full text]
  • UNION CHRISTIAN COLLEGE Aluva- 683 102 (Affiliated to Mahatma Gandhi University, Kottayam) Ernakulam Dt
    Post Box: 5 UNION CHRISTIAN COLLEGE Aluva- 683 102 (Affiliated to Mahatma Gandhi University, Kottayam) Ernakulam Dt. Kerala Fax: 91-484- 2607534 Accredited by NAAC with “A” Grade, Cycle-4 91-484-2606033, 2609194 Email: [email protected] LIMITED TENDER NOTICE No. Department: Chemistry Sealed tenders are invited for the supply of the following Items: CHEMICALS ACETANILIDE ACETONE ACETONE COMML ACETOPHENONE ACETIC ACID GLACIAL ACID HYDROCHLORIC PURE ACID HYDROCHLORIC COMML ACID NITRIC COMML ACID NITRIC PURE ACID ORTHO- PHOSPHORIC ACID SULPHURIC COMML ACID SULPHURIC PURE AGAR AGAR ALCOHOL AMYL ISO – AMYL ALCOHOL ALUMINA (NEUTRAL) ALUMINIUM CHLORIDE ALUMINIUM NITRATE ALUMINIUM SULPHATE AMINO NAPHTHALENE- ALPHA AMINO PHENOL AMMONIA SOLUTION ER / AR AMMONIUM CARBONATE AMMONIUM ACETATE AMMONIUM BROMIDE AMMONIUM BORATE AMMONIUM CERIC SULPHATE AMMONIUM CERIC NITRATE AMMONIUM CHLORIDE AR AMMONIUM CHLORIDE PURE AMMONIUM CHLORIDE COMML AMMONIUM FORMATE AMMONIUM FLURIDE AMMONIUM NITRITE AMMONIUM NITRATE AMMONIUM NICKEL(II) SULPHATE AMMONIUM OXALATE AMMONIUM PURPURATE (MUREXIDE) AMMONIUM SULPHATE AMMONIUM SULPHIDE AMMONIUM IRON SULPHATE AMMONIUM FERROUS SULFATE AMMONIUM MOLYBDATE AMMONIUM IRON (II) SULPHATE 2-AMINO PYRIDINE Mohr's Salt AMMONIUM THIO CYNATE AMMONIUM THIOSULPHATE ANILINE ANISOLE PARA ANISALDEHYDE ANTHRACENE ANTHRANILIC ACID BARIUM CHLORIDE AR BARIUM CHLORIDE PURE BARIUM NITRATE BENZALDEHYDE BENZENE BENZOIC ACID BENZOIN BENZOPHENONE BENZIL BENZYL ALCOHOL BROMINE BIPHENYLE CALCIUM CHLORIDE (ANHYDROUS) CALCIUM FLURIDE CALCIUM HYDROXIDE CALCIUM
    [Show full text]
  • Chemistry of Strontium in Natural Water
    Chemistry of Strontium in Natural Water GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1496 This water-supply paper was printed as separate chapters A-D UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows: U.S. Geological Survey. Chemistry of strontium in natural water. Washington, U.S. Govt. Print. Off., 1962. iii, 97 p. illus., diagrs., tables. 24 cm. (Its Water-supply paper 1496) Issued as separate chapters A-D. Includes bibliographies. 1. Strontium. 2. Water-Analysis. I. Title. (Series) CONTENTS [The letters in parentheses preceding the titles are those used to designate the separate chapters] Page (A) A survey of analytical methods for the determination of strontium in natural water, by C. Albert Horr____________________________ 1 (B) Copper-spark method for spectrochemical determination of strontirm in water, by Marvin W. Skougstad-______-_-_-_--_~__-___-_- 19 (C) Flame photometric determination of strontium in natural water, by C. Albert Horr_____._____._______________... 33 (D) Occurrence and distribution of strontium in natural water, by Margin W. Skougstad and C. Albert Horr____________.___-._-___-. 55 iii A Survey of Analytical Methods fc r The Determination of Strontium in Natural Water By C. ALBERT HORR CHEMISTRY OF STRONTIUM IN NATURAL rVATER GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1496-A This report concerns work done on behalf of the U.S. Atomic Energy Commission and is published with the permission of the Commission UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A.
    [Show full text]