Journal of Water Resource and Protection, 2011, 3, 380-386 doi:10.4236/jwarp.2011.36048 Published Online June 2011 (http://www.scirp.org/journal/jwarp) Optimization of Ceric Ammonium Nitrate Initiated Graft Copolymerization of Acrylonitrile onto Chitosan Arumugam Shanmugapriya1, Ramya Ramammurthy2, Venkatachalam Munusamy3 , Sudha N. Parapurath4 1Bharathiar University, Coimbatore, Tamil Nadu, India 2Department of Chemistry, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India 3Department of Chemistry, Dravidian University, Kuppam, Andhra Pradesh, India 4DKM College, Thiruvalluvar University, Vellore, Tamil Nadu, India E-mail:
[email protected] Received March 14, 2011; revised April 21, 2011; accepted May 25, 2011 Abstract In the present work, graft copolymerization of polyacrylonitrile onto chitosan has been carried out in the pre- sence of ceric ammonium nitrate redox initiator. Optimization of grafting of polyacrylonitrile onto chitosan was performed by varying the process parameters such as ceric ammonium nitrate (CAN) concentration, polyacrylonitrile concentration and reaction time to study their influence on percent grafting and grafting ef- ficiency. The optimum reaction conditions obtained for grafting of acrylonitrile onto chitosan were reaction time 55 mins, CAN concentration 1% in Con. HNO3, and polyacrylonitrile concentration 0.75 mol/L. The characterization of the grafted products by means of FTIR, thermal analysis, X-ray diffraction and scanning electron microscopy furnished the evidence of grafting of polyacrylonitrile onto chitosan. Keywords: Chitosan-g-polyacrylonitrile, Ceric ammonium nitrate, Grafting efficiency, Grafting yield 1. Introduction synthetic polymers increased its properties tremendously. Besides these applications chitosan has few drawbacks Chitosan is a unique basic polysaccharide and partially such as acidic solubility, low thermal and mechanical deacetylated polymer of glucosamine obtained after alka- stability.