Umwandlung Von Biomasse in Plattformchemikalien Mit Homogenen Polyoxometallat-Katalysatoren
Total Page:16
File Type:pdf, Size:1020Kb
Umwandlung von Biomasse in Plattformchemikalien mit homogenen Polyoxometallat-Katalysatoren Der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Grades DOKTOR-INGENIEUR vorgelegt von Chiraphat Kumpidet aus Ubon Ratchathani, Thailand Transformation of biomass to platform chemicals using homogeneous polyoxometalate catalysts Faculty of Engineering of the Friedrich-Alexander-Universität Erlangen-Nürnberg in partial fulfillment of the requirements for the degree of DOKTOR-ENGINEERING presented by Chiraphat Kumpidet from Ubon Ratchathani, Thailand Als Dissertation genehmigt von der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg. Tag der mündlichen Prüfung: 21.10.2020 Vorsitzende des Promotionsorgans: Prof. Dr.-Ing. Andreas Paul Fröba Gutachter: Prof. Dr. Peter Wasserscheid Gutachter: Prof. Dr. Anders Riisager To my family “I learned that courage was not the absence of fear, but the triumph over it. The brave man is not he who does not feel afraid, but he who conquers that fear” Nelson Mandela “If you hear a voice within you say “you cannot paint,” then by all means paint and that voice will be silenced” Vincent Van Gogh “Strive not to be a success, but rather to be of value” Albert Einstein “Your time is limited, so don’t waste it living someone else’s life” Steve Jobs Acknowledgements First, I would like to thank my doctoral supervisor Prof. Dr. Peter Wasserscheid very much for the challenging task and the professional and personal support of this work. I would like to thank Prof. Dr. Anders Riisager for accepting the second correspondent. Furthermore, my thanks go to the other members of the exam, Prof. Dr.-Ing. Hannsjörg Freund and Prof. Dr. Thomas Drewello. Furthermore, I would like to thank my longtime group leader Prof. Dr. –Ing. Jakob Albert, who always stood by my side with advice and support and always had an open ear for all my questions. In addition, I would like to express my sincere thanks to all who contributed to the success of this work. Special thanks go to Dr. Amalie Modvig and Prof. Anders Riisager for WD-POM catalysts supporting and to Dr. Peter Schulz for all kind help about analysis. For the financing and very good supporting of my PhD study in Germany from June 2016 to May 2020, I thank the OCSC, TISTR and especially OEA Berlin. I thank Michael Schmacks, Sascha Jeschke, Julian Karl, Achim Mannke, and Sebastian Hoffmann for their great patience and energetic support in all technical matters. I would like to thank Alex Busch and Hendryk Partsch for a quick remedy for electronic and computer-related problems. I would also like to thank our Secretariat with Mrs Menuet and Mrs Singer for the pleasant cooperation. Furthermore, I thank all colleagues at the CRT for the nice working atmosphere and the constructive discussions, especially, Dorothea Voß, Anna Bukowski, Lisa Wagner, Vera Haagen, Stefan Dürr, Julian Kadar, Raman Narayanan and Sebastian Oshin, for all kind of help and suggestions. My biggest thanks go to my sister for her great support and patience especially taking care everything instead of me in Thailand and thank you to my family for all supporting. I Vorwort Die vorliegende Doktorarbeit wurde unter der Anleitung von Universitätsprofessor Dr. Peter Wasserscheid am Lehrstuhl für Chemische Reaktionstechnik der Universität Erlangen-Nürnberg von Juni 2016 bis November 2020 durchgeführt. II Publications Parts of this work have already been published in the following journals or as conference papers: Patent: • J. Albert, C. Kumpidet, „Hochselektive Erzeugung von Ameisensäure aus Biomasse in Methanol“, invention message from 27.01.2020 (Az.: EP20153906) Journals: • S. Maerten, C. Kumpidet, D. Voß, A. Bukowski, P. Wasserscheid, J. Albert; „Glucose oxidation to formic acid and methyl formate in perfect selectivity”. Green Chemistry 2020, 22, 4311. • A. Modvig, C. Kumpidet, A. Riisager, J. Albert; „Ru-Doped Wells–Dawson Polyoxometalate as Efficient Catalyst for Glycerol Hydrogenolysis to Propanediols “. Materials 2019, 12, 2175. Conferences: • C. Kumpidet, A. Modvig, A. Riisager, P. Wasserscheid, J. Albert; „Production of Propanediols from Glycerol through Hydrogenolysis using Wells-Dawson Polyoxometalates (WD POMs)”; the Pure and Applied Chemistry International Conference PACCON-2020, 2020, Bangkok-Thailand. • C. Kumpidet, A. Modvig, A. Riisager, P. Wasserscheid, J. Albert; „Application of Transition Metal-Substituted Wells-Dawson Polyoxometalates (POMs) for Propanediols Production from By-product glycerol of Biodiesel industry”; 4th International Conference on New Energy and Applications ICNEA-2019, 2019, Yokohama-Japan. III • C. Kumpidet, A. Modvig, A. Riisager, J. Albert; „Bio-based 1,2 Propanediol Production from Glycerol via Hydrogenolysis using Transition Metal-substituted Wells-Dawson Polyoxometalates (POMs)“; 11th Samaggi Academic Conference and Careers Fair and the 8th Thai Student Academic Conference SACC-TSAC-2019, 2019, London-the United Kingdom. • C. Kumpidet, A. Modvig, A. Riisager, P. Wasserscheid, J. Albert; „Selective Hydrogenation of Glycerol to Propanediols over Transition Metal-Substituted Wells-Dawson Polyoxometalates“; 51.Jahrestreffen Deutscher Katalytiker, 2018, Weimar-Deutschland. • C. Kumpidet, P. Wasserscheid, J. Albert; „ Screening and selection of various solvents for selective oxidation of glucose to formic acid“; International Congress Engineering of Advanced Materials ICEAM-2017, 2017, Erlangen-Deutschland. IV Table of Contents Acknowledgements ...................................................................................................................................................... I Vorwort ........................................................................................................................................................................... II Publications .................................................................................................................................................................. III Table of Contents ........................................................................................................................................................ V List of abbreviations and symbols ...................................................................................................................... IX 1 Introduction ............................................................................................................................................................. 1 2 Theoretical and technical background ......................................................................................................... 3 2.1 Biomass ............................................................................................................................................................ 3 2.2 Suitable biogenic substrates for technical relevant processes .................................................. 7 2.2.1 Glucose ................................................................................................................................................. 7 2.2.1.1 Conventional manufacturing processes....................................................................... 8 2.2.1.2 Valuable products from Glucose ..................................................................................... 8 2.2.1.3 Glucose oxidation (OxFA process) .............................................................................. 16 2.2.2 Glycerol ............................................................................................................................................. 18 2.2.2.1 Conventional manufacturing processes (as a by-product from biodiesel production) .............................................................................................................................................. 18 2.2.2.2 Valuable products from glycerol .................................................................................. 19 2.3 Polyoxometalates as catalysts .............................................................................................................. 27 2.3.1 Molecular Structure ..................................................................................................................... 27 2.3.2 Classification ................................................................................................................................... 28 2.4 Use of heteropolyacids in biomass oxidation ................................................................................ 29 2.5 Use of heteropolyacids in biomass hydrogenolysis .................................................................... 31 3 Objective of this work ....................................................................................................................................... 33 4 Experimental section ........................................................................................................................................ 35 4.1 Materials and chemicals ......................................................................................................................... 35 V 4.1.1 Biogenic materials as substrate .............................................................................................. 35 4.1.2 Solvents and Gases ....................................................................................................................... 35 4.1.3 Catalysts ...........................................................................................................................................