Iclean – Loitering Attack UCAV

Total Page:16

File Type:pdf, Size:1020Kb

Iclean – Loitering Attack UCAV iCLEAN – Loitering Attack UCAV 1 ABSTRACT The following report presents the entire work process that had been done during the year of 2011-2012, as part of a student project of the Aerospace faculty at the Technion Institute of Technology. The "iCLEAN" project. "iCLEAN" is a suicide Unmanned Combat Air Vehicle (UCAV) with loitering and reconnaissance capabilities, designed to perform missions beyond line-of-sight in a range of 400 [NM] and for a long period of time, suggesting a long endurance of just about 5[hr]. Carrying a 20+ warhead and equipped with an EO/IR (Electro-Optical and Infra-Red) sensor, the "iCLEAN" provides an advantage to the forces on the ground and constitute a big threat on the enemy during combat. During the work process a UCAV configuration survey was conducted, two configurations were chosen for the preliminary design. One of those configurations had been chosen due to several comparisons and requirements arose during the process. A detailed design and a wind tunnel model test were conducted on the chosen configuration in order to ensure that the theoretical calculations and design are valid. 2 TABLE OF CONTENTS Abstract ......................................................................................................................... 2 Table of Contents .......................................................................................................... 3 1. Introduction ............................................................................................................ 13 2. Customer Specifications ......................................................................................... 14 3. Mission Profile ........................................................................................................ 15 4. Market Survey ......................................................................................................... 16 4.1. Market Survey – Configurations ............................................................................... 16 4.1.1. HARPY ................................................................................................................. 17 4.1.2. HAROP ................................................................................................................ 19 4.1.3. HARPY, HAROP and Required UAV Comparison ............................................. 21 4.2. Market Survey - Sub Systems .................................................................................... 22 4.2.1. Sensors ............................................................................................................... 22 4.2.2. Engines ............................................................................................................... 24 4.2.3. Launcher Technology Selection ........................................................................ 25 5. Preliminary Design ................................................................................................. 27 5.1. Initial Sizing ................................................................................................................ 27 5.1.1. Initial Weight Estimation .................................................................................. 27 5.1.2. Initial Wing Geometry Evaluation .................................................................... 30 5.1.3. Power-to-Weight Ratio and Wing Loading ...................................................... 42 5.1.4. Revised Weight Estimation ............................................................................... 46 5.1.5. Initial and Revised Evaluation Comparison..................................................... 50 5.1.6. Revised Geometry Evaluation ........................................................................... 51 5.2. Configurations Review .............................................................................................. 52 5.2.1. Configuration A .................................................................................................. 53 5.2.2. Configuration B ............................................................................................ 57 5.2.3. Configurations Comparison .............................................................................. 62 5.2.4. Final Combined Configuration .......................................................................... 66 5.3. Radar Cross Section- RCS .......................................................................................... 67 5.3.1. RCS Calculated ................................................................................................... 67 6. PDR Remarks .......................................................................................................... 69 7. Detailed Design ....................................................................................................... 70 7.1. Propeller Selection ..................................................................................................... 70 7.2. Airfoil Selection .......................................................................................................... 76 7.3. Rocket Booster ........................................................................................................... 79 7.3.1. Booster Design and Sizing ................................................................................. 79 3 7.3.2. Moment vs. Time For Different Booster Angles .............................................. 79 7.4. Plane Geometry Improvements ................................................................................ 82 7.5. Aerodynamic .............................................................................................................. 84 7.5.1. Lift Coefficient .................................................................................................... 84 7.5.2. Drag Coefficient .................................................................................................. 91 7.6. Performance Calculations ......................................................................................... 92 7.6.1. Thrust Calculations ............................................................................................ 92 7.6.2. Velocity Calculations ......................................................................................... 93 7.6.3. Climb & Turn Calculations ................................................................................ 94 7.6.4. Range and Endurance ........................................................................................ 96 8. Wing Detailed Design.............................................................................................. 98 8.1. Wing Structure - Introduction .................................................................................. 98 8.2. Wing Structure – Design .......................................................................................... 101 8.3. Calculations of The Thickness of The Web ............................................................ 104 8.4. Calculation of The Hinges Area ............................................................................... 105 8.5. Calculation of The Skin Thickness .......................................................................... 107 8.6. Wing Root Joints ...................................................................................................... 110 8.7. Pivot Modeling ......................................................................................................... 115 8.8. Pivot Stress Calculatiobs and Analysis ................................................................... 117 8.8.1. Stress Calculations ........................................................................................... 117 8.8.2. Analysis ............................................................................................................. 119 9. Wing's Folding Mechanism ................................................................................... 122 9.1. Description of The Displayed Solution ................................................................... 123 9.2. Calculations .............................................................................................................. 124 9.3. Mechanism Components ......................................................................................... 126 9.3.1. The Calculation of Bearing and Hinge Diameters ......................................... 126 9.3.2. Choosing of The Main Spring ................................................................. 128 9.3.3. Connecting Rods Between The Spring and The Wings ................................. 131 9.3.4. Movement Limiters Design ............................................................................. 131 10. Final Configuration ............................................................................................. 133 10.1. Internal Layout of The Components .................................................................... 135 10.2. Weights Table ........................................................................................................ 136 10.3. Aerodynamic Calculations .................................................................................... 137 10.3.1. Center of Gravity ............................................................................................ 137 10.3.2. Aerodynamic Center ...................................................................................... 139 10.3.3.
Recommended publications
  • Operationalizing Robotic and Autonomous Systems in Support of Multi-Domain Operations White Paper
    Operationalizing Robotic and Autonomous Systems in Support of Multi-Domain Operations White Paper Prepared by: Army Capabilities Integration Center – Future Warfare Division 30 November 2018 Distribution Unclassified Distribution is unlimited This page intentionally left blank ii Executive Summary Robotic and Autonomous Systems (RAS) and artificial intelligence (AI) are fundamental to the future Joint Force realizing the full potential of Multi-Domain Operations (MDO 1.5). These systems, in particular AI, offer the ability to outmaneuver adversaries across domains, the electromagnetic (EM) spectrum, and the information environment. The employment of these systems during competition allows the Joint Force to understand the operational environment (OE) in real time, and thus better employ both manned and unmanned capabilities to defeat threat operations meant to destabilize a region, deter escalation of violence, and turn denied spaces into contested spaces. In the transition from competition to armed conflict, RAS and AI maneuver, fires, and intelligence, surveillance, and reconnaissance (ISR) capabilities provide the Joint Force with the ability to deny the enemy’s efforts to seize positions of advantage. Improved sustainment throughput combined with the ability to attack the enemy’s anti- access/aerial denial networks provides U.S. Forces the ability to seize positions of operational, strategic, and tactical advantage. Increased understanding through an AI-enabled joint Common Operating Picture (COP) allows U.S. Forces the ability to orchestrate multi-domain effects to create windows of advantage. Post-conflict application of RAS and AI offer increased capacity to produce sustainable outcomes and the combat power to set conditions for deterrence. Developing an operational concept for RAS allows the Army to understand better the potential impact of those technologies on the nature and character of war.
    [Show full text]
  • LUH Clears 6 Kms Altitude Flight
    www.aeromag.in n January - February 2019 | Vol 13 | Issue 1 LUH Clears 6 KMs Altitude Flight World’s Largest Importer, in association with Yet Indian Armed Forces Society of Indian Aerospace Technologies & Industries Need to be Better Equipped - Page 14 Official Media Partner Feb 20 - 24, 2019. Yelahanka Air Force Station, Bangalore Advertise with AEROMAG Show Dailies 1 Total Air and Missile Defense Sky Capture BARAK 8 - Naval-based BARAK 8 - Land-based ARROW 2 - Anti-Ballistic ARROW 3 - Anti-Ballistic Air & Missile Defense Air & Missile Defense Missile Defense Missile Defense Full Spectrum of Integrated, Networked Meet us at AERO INDIA 2019 Air and Missile Defense Solutions to Defeat Hall B: B2.1, B2.2 Threats at Any Range and Altitude IAI offers a comprehensive range of Air and Missile Defense Systems for land and naval applications. From VSHORAD to long-range, to theater and exo-atmospheric systems against ballistic missiles. Our unique solutions, based on lessons derived from vast operational experience, incorporate state-of-the-art technology and full networking for the most effective System of Systems. The result: IAI’s solutions. www.iai.co.il • [email protected] 2 Total Air and Missile Defense Advertise with Official Show Dailies of AEROMAG AEROMAG OFFICIAL MEDIA PARTNER Sky Capture BARAK 8 - Naval-based BARAK 8 - Land-based ARROW 2 - Anti-Ballistic ARROW 3 - Anti-Ballistic Air & Missile Defense Air & Missile Defense Missile Defense Missile Defense Full Spectrum of Integrated, Networked Meet us at AERO INDIA 2019 AERO INDIA 2019 Air and Missile Defense Solutions to Defeat Hall B: B2.1, B2.2 Threats at Any Range and Altitude 20-24 FEBRUARY, BENGALURU IAI offers a comprehensive range of Air and Missile Defense Systems for land and naval applications.
    [Show full text]
  • Loitering Munitions
    Loitering Munitions The Soldiers’ Hand Held Cruise Missiles Jerome Bilet, PhD Loitering munitions (LMs) are low-cost guided precision munitions which can be maintained in a holding pattern in the air for a certain time and rapidly attack, land or sea, non-line-of-sight (NLOS) targets. LMs are under the control of an operator who sees a real-time image of the target and its surrounding area, giving the capacity to control the exact time, attitude and direction of the attack of a static, re-locatable or moving target, including providing a contribution to the formal target identification and confirmation process1. Whether labelled as hand held cruise missiles, pocket artillery or miniature air force, loitering munitions will be – and in some instances already are – part of the toolbox of the modern warfighter. This is a logical add-on to the way unmanned systems are becoming preponderant in contemporary warfare. There is no need to demonstrate any longer the fact that unmanned systems2 are part of the everyday life of the warfighter, whether in the air, on the ground, and above or under the water. Unmanned aerial vehicles, the well-known UAVs, represent the largest subset of the unmanned systems. A rather new subclass of UAVs are the weaponised unmanned air vehicles. Loitering munitions are part of this family. This article will focus mainly on short range man-portable loitering munitions used by small tactical units. Two main options exist to create a small weaponised UAV. The first option is to produce miniature munitions to be attached to existing standard ISR drones.
    [Show full text]
  • Unmanned Aerial Vehicles and Their Growing Role in Shaping Military Doctrine Paweł Bernat
    3. ARMED FORCES, MILITRY TECHNOLOGY UNMANNED AERIAL VEHICLES AND THEIR GROWING ROLE IN SHAPING MILITARY DOCTRINE Paweł Bernat ABSTRACT DOI: 10.26410/SF_1/18/7 The goal of the paper is to present growing influence of unmanned aerial vehicles (UAVs) on the shape of mili- tary doctrine. Author, in the first part of article, presents terminology and classifications of the UAVs, as well as, the main criteria of the classification which are: thrust, purpose, weight, and range/endurance. The second part of the article is dedicated to military technology. In that part of the article, author presents possible kind of utilization of the UAVs, presenting in the more details military drones. In description of the drones is also part of initial conclusions addressing to the challenges new doctrine and battlefield strategy. In the conclusion au- thor presents the expecting changes in a military doc- trine, caused by employing of a new military technology, Dr Paweł Bernat a specially the new kind of drones on the battle field. National Security and Logistics KEY WORDS Department. Polish Airforce Unmanned aerial vehicle, drone, tactics, military doctrine. academy, Dęblin Introduction The goal of the paper is to present to the The classic NATO UAS classification is pro- general reader the up-to-day military drone vided. The last classification discussed is technology, as well as its growing influence pertinent to UAVs’ maximal range, altitude, on military doctrine. and endurance. Here the following types In the first section of the paper the ba- are described: low cost close range, close sic terminology is explained and four main range, short range, medium range, me- classifications of the unmanned aerial ve- dium altitude long endurance (MALE), and hicles are introduced and discussed.
    [Show full text]
  • Use of Unmanned Air, Maritime and Land Platforms by the Australian
    Chapter 2 Background Introduction 2.1 This chapter will provide a background to the inquiry including the increasing use of military unmanned platforms, use of unmanned aerial vehicles (UAVs) by the United States (US), the proliferation of UAV capability and ADF use of unmanned platforms. Terminology 2.2 While popularly referred to as 'drones', unmanned platforms are an area of defence technology rich in acronyms and abbreviations. The range of terminology has been increased by a differing focus on the unmanned vehicle/unit itself and the associated systems of communication and control. In particular, the numbers and categories of UAV (also referred to as remotely piloted aircraft (RPA) or unmanned aircraft systems (UAS)) have soared in recent years. For convenience, the term 'unmanned platform' has been used in the committee's report to refer to all complex remotely operated devices and their associated communication and control systems. Unmanned platforms 2.3 Unmanned platforms often have a number of common characteristics. These include the structure of the platform itself, the external control system (such as a ground control station), the communications system which links to the control system, and the payload (which could include sensors or munitions). Automated functions are also often incorporated such as waypoint navigation via GPS. 1 Figure 2.1. Visualisation of UAV communications. 1 Extracted from Alberto Cuadra and Criag Whitlock, 'How drones are controlled', The Washington Post, 20 June 2014. 6 2.4 There are differing views on the first uses of unmanned platforms in a military context.2 Notably, in the 1950s, the Australian Government Aircraft Factory produced advanced 'target drones' (the GAF Jindivik) as part of an agreement with the United Kingdom (UK) for guided missile testing.
    [Show full text]
  • Engineering the Motivo Way Praveen Penmetsa’S U.S.-Based Team Develops Unique Mobility Solutions
    MOBILITY ENGINEERINGTM ENGLISH QUARTERLY Vol : 5 Issue : 2 April - June 2018 Free Distribution Engineering the Motivo Way Praveen Penmetsa’s U.S.-based team develops unique mobility solutions New-age stationary power Developing Mazda’s drones for SpCCI engine passenger transport ready for production ME Altair Ad 0618.qxp_Mobility FP 3/29/18 2:49 PM Page 1 CONTENTS Features 30 Roadmap for future Indian 46 Developing an alternative engine passenger drone sector concept COMMERCIAL VEHICLE PROPULSION AEROSPACE AUTONOMY Ricardo’s CryoPower engine leverages two unique combustion techniques for reduced emissions and fuel consumption—liquid nitrogen and split combustion. 32 Internet of Vehicles: connected Long-haul trucking and stationary power generation will vehicles & data - driven solutions be the first beneficiaries of the technologies. AUTOMOTIVE CONNECTIVITY 49 Spark of genius AUTOMOTIVE PROPULSION 34 Development and verification of Mazda’s Skyactiv-X—the nexus of gasoline and diesel electronic braking system ECU tech—remains on track for 2019 production. We test-drive software for commercial vehicle recent prototypes to check development status. COMMERCIAL VEHICLE CHASSIS 52 Plain bearings for aerospace 42 Engineering the Motivo Way applications AEROSPACE MATERIALS AUTOMOTIVE ENGINEERING Broad capabilities, unparalleled project diversity and an innovative culture have put this thriving California “idea factory” in high demand. Cover Sway Motorsports’ three- wheeled electric motorcycle leans into a curve thanks to a suspension design developed
    [Show full text]
  • Optimal Design of Loitering Munition Trajectory In
    2nd Workshop on Advanced Research and Technology in Industry Applications (WARTIA 2016) Optimal Design of Loitering Munition Trajectory in Complex Battlefield Environment Xuancen Liu1, a, Longbin Liu1, b, Min Xiang1, c, Weihua Zhang1, d 1 College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China aemail: [email protected], bemail: [email protected], cemail: [email protected], demail: [email protected] Keywords: Loitering Munition; Battlefield Environment; Launch Angle; Trajectory Optimization Abstract. Loitering munitions would quickly reach the target area in the complex battlefield environment, and perform a variety of application advantages, such as total field reconnaissance, flexible cruise monitoring, weather monitoring, the battlefield damage assessment, relay communication and target attack, which has attached the widespread attention around the world. In this paper, each functional system model of the typical loitering munitions has been established. With the fact that the loitering munitions are faced with the problem of complex terrain, its launch battlefield environment and launch strategies under different terrain is analyzed and studied. And through the wind tunnel test of aerodynamic characteristics, the dynamic model of a small loitering munition is developed. In a typical topographical environment, based on genetic algorithm, trajectory optimization for a launch loitering munition is accomplished, eschewing the battlefield obstacles, the calculation results have great significance in technical guidance to engineering practices. Introduction Loitering munition is a new concept of information weapon which is able to launch quickly and flexibly. According to the combat mission and the battlefield situation, the "cruise flight" can be realized over the target area to execute a variety of missions.
    [Show full text]
  • Operational Requirements for Soldier-Robot Teaming
    CAN UNCLASSIFIED Operational Requirements for Soldier-Robot Teaming Simon Banbury Kevin Heffner Hugh Liu Serge Pelletier Calian Ltd. Prepared by: Calian Ltd. 770 Palladium Drive Ottawa, Canada K2V 1C8 Contractor Document Number: DND-1144.1.1-01 PSPC Contract Number: W7719-185397/001/TOR Technical Authority: Ming Hou, DRDC – Toronto Research Centre Contractor's date of publication: August 2020 The body of this CAN UNCLASSIFIED document does not contain the required security banners according to DND security standards. However, it must be treated as CAN UNCLASSIFIED and protected appropriately based on the terms and conditions specified on the covering page. Defence Research and Development Canada Contract Report DRDC-RDDC-2020-C172 November 2020 CAN UNCLASSIFIED CAN UNCLASSIFIED IMPORTANT INFORMATIVE STATEMENTS This document was reviewed for Controlled Goods by Defence Research and Development Canada using the Schedule to the Defence Production Act. Disclaimer: This document is not published by the Editorial Office of Defence Research and Development Canada, an agency of the Department of National Defence of Canada but is to be catalogued in the Canadian Defence Information System (CANDIS), the national repository for Defence S&T documents. Her Majesty the Queen in Right of Canada (Department of National Defence) makes no representations or warranties, expressed or implied, of any kind whatsoever, and assumes no liability for the accuracy, reliability, completeness, currency or usefulness of any information, product, process or material included in this document. Nothing in this document should be interpreted as an endorsement for the specific use of any tool, technique or process examined in it. Any reliance on, or use of, any information, product, process or material included in this document is at the sole risk of the person so using it or relying on it.
    [Show full text]
  • 'Precise' Strikes: Fractured Bodies, Fractured Lives
    Israel’s drone wars: An update ‘Precise’ strikes: Fractured Bodies, Fractured Lives Front Cover image: Israel’s Heron TP drone at Tel Nof Air Force base, February 2010. Credit: UPI/Debbie Hill. Note: The term ‘drone’ is used interchangeably with ‘Unmanned Aerial Vehicle (UAV)’ Drone Wars UK is a small British NGO established in 2010 to undertake research and advocacy around the use of armed drones. We believe that the growing use of remotely-controlled, armed unmanned systems is encouraging and enabling a lowering of the threshold for the use of lethal force as well as eroding well established human rights norms. While some argue that the technology itself is neutral, we believe that drones are a danger to global peace and security. We have seen over the past decade that once these systems are in the armoury, the temptation to use them becomes great, even beyond the constraints of international law. As more countries develop or acquire this technology, the danger to global peace and security grows. Published by Drone Wars UK Drone Wars UK Written by Chloe Skinner Peace House, 19 Paradise Street November 2019 Oxford, OX1 1LD Designed: Chris Woodward www.dronewars.net www.chriswoodwarddesign.co.uk [email protected] ‘Precise Strikes’, Fractured Bodies, Fractured Lives | Israel’s drone wars: An update | 1 Contents 1 INTRODUCTION 3 2 “A RAPIDLY-GROWING DIVISION”: Israel’s drones and their operators 5 3 “ACCESS, PERSISTENCE, ACCURACY.” The humanitarian claims made for drone technology 8 4 “IN A MATTER OF SECONDS, THEY WERE CUT TO PIECES.” Life
    [Show full text]
  • New Defence Order Strategy Стратегии
    NEW DEFENCE ORDER № 1 (66) 2021 STRATEGY СТРАТЕГИИ ОФИЦИАЛЬНЫЙ ИНФОРМАЦИОННЫЙ ПАРТНЕР ФОРУМА «АРМИЯ-2021» 01 | 2021 | new defence order. strategy слово редактора ЗАДАЧА С ПЕРЕМЕННЫМИ ля развития предприятий ОПК экономическая стабильность, с одной стороны, недостижимое пре- имущество, а с другой – недостаточное условие. Во-первых, в VUCA мире рассчитывать на стабиль- Д ность не приходится. Никто не мог предсказать в 2019 году пандемию коронавируса. Во-вторых, современные вызовы и угрозы диверсифицированы и подвержены непредсказуемым изменениям. За- дача обеспечить мир и безопасность остается прежней, меняются условия и влекут за собой трансфор- мацию самой структуры оборонно-промышленного комплекса, включая в него новые сегменты и даже отрасли. Когда руководство страны ставит задачу диверсификации ОПК, в качестве основного аргумента звучит экономическая целесообразность. Интенсивное перевооружение армии, которое обеспечивало предприятия гособоронзаказом на протяжении последних лет, завершено, то есть интенсивный режим переходит в нормальный и количество заказов уменьшается. Однако не только снижение объемов гос- оборонзаказа должно быть стимулом для осваивания новых сегментов рынка. Технологии и оборудо- вание, которые используются в новейших формированиях вооруженных сил, например, в войсках ин- формационных операций, в коммерческом секторе востребованы не менее, если не более. Роботизи- рованные системы, беспилотные технологии, геопространственная разведка также масштабируемы на множество отраслей гражданского сектора. Зачастую использование
    [Show full text]
  • समाचार पत्र से चियत अंश Newspapers Clippings
    Jan 2021 समाचार पत्र से चियत अंश Newspapers Clippings A Daily service to keep DRDO Fraternity abreast with DRDO Technologies, Defence Technologies, Defence Policies, International Relations and Science & Technology खंड : 46 अंक : 08 12 जनवरी 2021 Vol. : 46 Issue : 08 12 January 2021 रक्षा िवज्ञान पुतकालय Defence Science Library रक्षा वैरक्षाज्ञािनक िवज्ञान सूचना एवपुतकालयं प्रलेखन क द्र Defence ScientificDefence Information Science & Documentation Library Centre मेरक्षाटकॉफ वैज्ञािनक हाउस ,स िदलीूचना एव - ं 110प्रलेखन 054 क द्र Defence ScientificMetcalfe Information House, Delhi & ‐ Documentation110 054 Centre मेटकॉफ हाउस, िदली - 110 054 Metcalfe House, Delhi‐ 110 054 CONTENTS S. No. TITLE Page No. DRDO News 1-7 DRDO Technology News 1-7 1. Indian Army soft-pedals light tank of DRDO-L&T for China border 1 2. DRDO offers new heating devices to Indian Army soldiers deployed in eastern 2 ladakh 3. India’s DRDO delivers landing gear systems for Tapas and SWiFT UAVs 3 4. DRDO hands over 18 types of filters for P-75 submarines to Indian Navy 4 5. Indian Air Marshal explains why India needs to urgently & aggressively invest in 5 unmanned technology Defence News 8-19 Defence Strategic National/International 8-19 6. Raksha Mantri Shri Rajnath Singh Inaugurates Webinar on Atal Tunnel; Says 8 spirit of national pride is of paramount importance for building such great structures 7. 9 रा मंी ी राजनाथ सहं ने अटल सुरंग पर वेबनार का उघाटन करते हुए कहा क ऐसी महान संरचनाओं के नमाण के लए राय गौरव क भावना सबसे अधक महवपूण है 8.
    [Show full text]
  • Rose, Broschuere Israel Defense Forces.Pdf
    Editorial ie israelische Armee – ihre offizielle Bezeichnung „Israelische Verteidigungsarmee“ (Israeli Defense Forces – IDF, auf Hebräisch Zahal) – ist ohne Zweifel die bei D weitem stärkste Armee des gesamten Nahen Ostens. Bereits beim ersten israelisch-arabischen Krieg 1948 stellte sich sehr rasch die Überlegenheit Israels heraus, was einerseits auf die massiven Waffenlieferungen aus Europa, die weitaus bessere Ausbildung und Motivation der israelischen SoldatInnen aber auch auf die mangelnde Organisation, Koordination und Ausbildung der arabischen Armeen zurückzuführen war. Das bis heute von Israel und seinen Lobbyisten genährte Narrativ der existentiellen Bedrohung Israels durch „die Araber“ stellt daher eine zynische Verdrehung der Tatsachen dar. Wenn man von einer tatsächlichen Bedrohung sprechen kann, dann von einer der arabischen Staaten durch den in den Nahen Osten implantierten jüdisch- zionistischen Kolonialstaat. Die (Mit)schuld Europas und der USA an den Verbrechen am jüdischen Volk im Rahmen des Holocaust ausnützend hat es Israel mit Gewalt verstanden, beträchtliche arabische Gebiete zu erobern und zwar weit über die von der UNO im Teilungsplan von 1947 (Res. Nr. 181 der UN-Vollversammlung vom 29.11.1947) zugesprochenen Territorien hinaus. Israel hat sich aggressiv gegen alle arabische Nachbarstaaten verhalten und im Laufe der 65-jährigen Geschichte des Konfliktes von jedem betroffenen Staat (Ägypten, Jordanien, Libanon und Syrien) Gebiete besetzt und erobert. Die Besatzung ägyptischer jordanischer und libanesischer Gebiete dauerte Jahrzehnte an, der syrische Golan ist seit 1967 unter israelischer Kontrolle, ebenso der arabische Teil Jerusalems. Heute stellt aber die seit 1967 massiv betriebene – völkerrechtswidrige – Besatzungs-, Landraub- und Siedlungspolitik Israels in den palästinensischen Gebieten (hier geht es vor allem um die sogenannte Westbank) das Haupthindernis für jegliche politische Lösung des palästinensisch-israelischen Konfliktes dar.
    [Show full text]