Principles of Geology Lyell And

Total Page:16

File Type:pdf, Size:1020Kb

Principles of Geology Lyell And Downloaded from http://sp.lyellcollection.org/ by guest on June 24, 2014 Geological Society, London, Special Publications Lyell and the Principles of Geology M. J. S. Rudwick Geological Society, London, Special Publications 1998, v.143; p1-15. doi: 10.1144/GSL.SP.1998.143.01.02 Email alerting click here to receive free e-mail alerts when service new articles cite this article Permission click here to seek permission to re-use all or request part of this article Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes © The Geological Society of London 2014 Downloaded from http://sp.lyellcollection.org/ by guest on June 24, 2014 Part 1. The life and influence of Lyeil For geology, Lyell proved to be the right man at the right time in the right place. He grew up in comfortable surroundings, encouraged by his parents to develop a keen observation of the natural world around him. He learned the importance of geological observations in the field and the precise and accurate recording of geological information, which led him to travel extensively across Europe and North America to examine a wide range of geological phenomena. The knowledge and ideas that he gained from field observations and the work of fellow geologists were clearly the foundations for his great work Principles of Geology. In the first paper of this book, Martin Rudwick analyses Principles of Geology through successive editions as a dynamic development of geology 'as one long argument'. Lyell, more than anyone, established geology as a scientific discipline, hence the word 'Principles' in the title of his book, and gave it credibility both amongst practitioners of the subject and, equally importantly, amongst the wider, literate public. It is his legacy that nowadays we take for granted that geology can be treated as a science, and that we use modern analogues to interpret and quantify past geological events and processes. Rudwick demonstrates how important it was to Lyell to be thoroughly conversant with the geological literature of his day - and that he learnt French, German and Italian in order to do so - and to engage in debate with his peers, many of whom were Fellows of the Geological Society. Lyell played an active part in its development, serving in turn as Secretary, Foreign Secretary and President. John Thackray, the Society's Archivist, writes about Lyell's role as a Fellow between 1819 and his death in 1875. John gives us an insight of how the Society operated in those days, with constraints on the presentation of formal papers at evening meetings largely to factual descriptions, although greater latitude was given to theorize and speculate in Presidential Addresses. The real value of the evening meetings, however, came in the unrecorded, informal debates that followed the formal presentations. The encouragement of controversy endured in the Society through the debating chamber layout of the Meeting Room until 1972 when it was modernized into the current lecture room. In the next paper, Leonard Wilson gives us an insight into Lyell's life, the people he met who influenced his thinking, and the development of his ideas on Uniformitarianism. In particular, he demonstrates Lyell's tenacity and determination in working out from field evidence the structure and formation of volcanoes like Vesuvius, Mount Etna, Tenerife, Grand Canary and Madeira and disproving the theory that they had formed, by catastrophic upheaval, as 'craters of elevation'. Wilson staunchly defends Lyell's strict interpretation of uniformitarianism against those who regarded the Earth as having cooled from an originally hot body, not least Lord Kelvin who calculated the age of the Earth from an estimate of its rate of cooling. Later on, as Wilson explains, Lyell became increasingly interested in the human timespan on Earth, culminating in the Antiquity of Man published in 1863. Ezio Vaccari discusses the reception to Lyell's ideas in Europe as Principles of Geology and Elements of Geology were reviewed and translations of them began to be published in the 1830s. Vaccari is able to demonstrate the wide acceptance of most of Lyell's views apart from the same reservations as his English colleagues (explained in Rudwick's paper) about the constancy of geological history, most preferring the model of a cooling Earth with a diminishing level of tectonic activity through geological time. It would seem that De Beaumont's synthesis of mountain building processes linked with the cooling of the Earth's crust may have been more influential. None the less, Lyell's personal influence was strong as a consequence of his travels and his meetings with most of the leading geologists of Europe. He was recognized as far as Moscow and was elected a member of the Moscow Naturalist Society in 1855. Russian translations of his works began to appear from 1859. Bringing things up to date, Prof. E. E. Milanovsky, as current Vice President, delivered a formal Jubilee Address to the Geological Society during the Bicentenary Lyell Meeting. Robert Dott gives us an account of Lyell's travels in North America. Lyell visited North America four times from 1841 to 1853 not only to travel and see the geology, but also to give public lectures. Dott traces the emergence of geology through a study of Lyell's changing lecture topics. Dott demonstrates that there was a true interaction between American geologists and Lyell, to their mutual benefit. Clearly Lyell brought stature to the new science of geology which increasingly gained public acceptance. Lyell gained, however, much from American geologists, especially in relation to field work. As Dott points out, many of his North American field examples are used to illustrate new concepts in successive editions of his books. Lyell's exposure to American life not only led to new geological understanding but also developed his interest in aspects of education, public reforms and religious belief. On his return to London, Lyell soon became the resident expert on North America, fuelled by the publication of two books on his travels in North America and numerous letters and articles. Downloaded from http://sp.lyellcollection.org/ by guest on June 24, 2014 2 PART 1 Lyell's visit to America is further amplified by Gerald Friedman who concentrates on his visit to New York State in 1841. Friedman discusses Lyell's visit to Amos Eaton, an influential American geologist, just before he died. Together with Eaton's former student James Hall, Lyell visited Niagara Falls, details of which he was to use later in his publications. Much of Lyell's activity in New York did not relate to geology, but Friedman also discusses a resentment that some felt about the use by Lyell of their unpublished work in their volumes. It is clear, however, that Lyell did much to aid the public understanding of this new and exciting science. The relationship between Lyell and Darwin has always been a fascinating one. Clearly Darwin was highly influenced by Lyell and indeed it is well known that he took volume one of the 'Principles' with him on his voyage of the Beagle. Indeed, on his return from the Beagle, Darwin and Lyell became close friends. It was Lyell who suggested that Darwin and Wallace should publish a joint paper on the origin of species. Clearly Lyell did not readily accept Darwin's idea on the origin of species, but over time was gradually converted to the idea of evolution but not necessarily by natural selection. It was inevitable that Lyell should consider the geological evidences of the antiquity of man. As Claudine Cohen points out in the final paper in this section, the publication of his book on the Antiquity of Man in 1863 contributed to the founding of the two scientific disciplines of Pre-historic Archaeology and Palaeoanthropology. In his book Lyell brings to bear aspects of archaeology, palaeontology, anthropology and geology which were used to demonstrate conclusively the contemporaneity of extinct animals and man-made objects. Cohen emphasizes the strong relationship between Lyell and French scientists who mutually benefited from their interactions. Derek J. Blundell Andrew C. Scott Downloaded from http://sp.lyellcollection.org/ by guest on June 24, 2014 Lyell and the Principles of Geology M. J. S. RUDWICK Department of History and Philosophy of Science, University of Cambridge, Free School Lane, Cambridge CB2 3RH, UK Abstract: Lyell's Principles of Geology is still treated more often as an icon to be revered than as the embodiment of a complex scientific argument rooted in its own time and place. This paper describes briefly the origins of Lyell's project, in the international geological debates of the 1820s and in his own early research; the structure of argument of the first edition (1830-1833), and its relation to its intended readership; and the modification of the work in subsequent editions, and the transformation of its strategy in response to its critical evaluation by other geologists. The fluidity of the Principles (and its offshoot the Elements of Geology) reflects the ever-changing interaction between Lyell and his fellow geologists, and between them and a much wider public, during one of the most creative periods in the history of geological science. Lyell's scientific stature is best appreciated if he is placed not on a pedestal but among his peers, in debates at the Geological Society and elsewhere. Charles Lyell's Principles of Geology (first 'principles', but also about the place of such published in 1830-1833) is one of the most signifi- knowledge in a scientific view of the world. cant works in the history of the Earth sciences, but While he was an undergraduate at Oxford, it is still more often cited than read, more often Lyell's adolescent interests in natural history were revered than analysed.
Recommended publications
  • History of Geology
    FEBRUARY 2007 PRIMEFACT 563 (REPLACES MINFACT 60) History of geology Mineral Resources Early humans needed a knowledge of simple geology to enable them to select the most suitable rock types both for axe-heads and knives and for the ornamental stones they used in worship. In the Neolithic and Bronze Ages, about 5000 to 2500 BC, flint was mined in the areas which are now Belgium, Sweden, France, Portugal and Britain. While Stone Age cultures persisted in Britain until after 2000 BC, in the Middle East people began to mine useful minerals such as iron ore, tin, clay, gold and copper as early as 4000 BC. Smelting techniques were developed to make the manufacture of metal tools possible. Copper was probably the earliest metal to be smelted, that is, extracted from its ore by melting. Copper is obtained easily by reducing the green copper carbonate mineral malachite, itself regarded as a precious stone. From 4000 BC on, the use of clay for brick-making became widespread. The Reverend William Branwhite Clarke (1798-1878), smelting of iron ore for making of tools and the ‘father’ of geology in New South Wales weapons began in Asia Minor at about 1300 BC but did not become common in Western Europe until Aristotle believed volcanic eruptions and nearly 500 BC. earthquakes were caused by violent winds escaping from the interior of the earth. Since earlier writers had ascribed these phenomena to The classical period supernatural causes, Aristotle's belief was a By recognising important surface processes at marked step forward. Eratosthenes, a librarian at work, the Greek, Arabic and Roman civilisations Alexandria at about 200 BC, made surprisingly contributed to the growth of knowledge about the accurate measurements of the circumference of earth.
    [Show full text]
  • The Importance of French Transformist Ideas for the Second Volume of Lyell’S Principles of Geology Pietro Corsi
    The importance of french transformist ideas for the second volume of lyell’s principles of geology Pietro Corsi To cite this version: Pietro Corsi. The importance of french transformist ideas for the second volume of lyell’s principles of geology. 2004. halshs-00002894 HAL Id: halshs-00002894 https://halshs.archives-ouvertes.fr/halshs-00002894 Preprint submitted on 20 Sep 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE BRITISH JOURNAL FOR THE HISTORY OF SCIENCE Vol. II t No. 39 (1978) < 221 > THE IMPORTANCE OF FRENCH TRANSFORMIST IDEAS FOR THE SECOND VOLUME OF LYELL'S PRINCIPLES OF GEOLOGY PIETRO CORSI* RECENTLY there has been considerable revaluation of the development of natural sciences in the early nineteenth century, dealing among other things with the works and ideas of Charles Lyell. The task of interpreting Lyell in balanced terms is extremely complex because his activities covered many fields of research, and because his views have been unwarrantably distorted in order to make him the precursor of various modern scientific positions. Martin Rudwick in particular has contributed several papers relating to Lyell's Principles of geology, and has repeatedly stressed the need for a comprehensive evaluation of Lyell's scientific proposals, and of his position in the culture of his time.
    [Show full text]
  • The Geohistorical Time Arrow: from Steno's Stratigraphic Principles To
    JOURNAL OF GEOSCIENCE EDUCATION 62, 691–700 (2014) The Geohistorical Time Arrow: From Steno’s Stratigraphic Principles to Boltzmann’s Past Hypothesis Gadi Kravitz1,a ABSTRACT Geologists have always embraced the time arrow in order to reconstruct the past geology of Earth, thus turning geology into a historical science. The covert assumption regarding the direction of time from past to present appears in Nicolas Steno’s principles of stratigraphy. The intuitive–metaphysical nature of Steno’s assumption was based on a biblical narrative; therefore, he never attempted to justify it in any way. In this article, I intend to show that contrary to Steno’s principles, the theoretical status of modern geohistory is much better from a scientific point of view. The uniformity principle enables modern geohistory to establish the time arrow on the basis of the second law of thermodynamics, i.e., on a physical law, on the one hand, and on a historical law, on the other. In other words, we can say that modern actualism is based on the uniformity principle. This principle is essentially based on the principle of causality, which in turn obtains its justification from the second law of thermodynamics. I will argue that despite this advantage, the shadow that metaphysics has cast on geohistory has not disappeared completely, since the thermodynamic time arrow is based on a metaphysical assumption—Boltzmann’s past hypothesis. All professors engaged in geological education should know these philosophical–theoretical arguments and include them in the curriculum of studies dealing with the basic assumptions of geoscience in general and the uniformity principle and deep time in particular.
    [Show full text]
  • Hutton, Kelvin, and the Great Earth Debates. • the Beginnings of Modern Geology “All Natural Processes That Affect the Earth’S Crust (Erosion, Deposition, • Ca
    Chapter 1 The Science of Geology An Introduction to Geology • Geology - the science that pursues an understanding of planet Earth • Physical geology - examines the materials composing Earth and seeks to understand the many processes that operate beneath and upon its surface • Historical geology - seeks an understanding of the origin of “If there is an interesting place you want to go, there is Earth and its development interesting geology that you can study there” through time Mersin ophiolite, (Cappadocia, Central Turkey). Turkey The Science of Geology The Science of Geology 1.3: satellite image of Mt. Vesuvius, Italy. • Some historical views • Geology, people, and the environment of the Earth • Many important relationships exist between • Aristotle, 300 BC; people and the natural environment • James Ussher, ca. 1600, ‘Earth was created in Problems and issues 4004 BC;’ addressed by • Catastrophism geology include • Earth’s features formed through • Natural hazards, sudden and violent resources, world changes. ‘The Dog population growth, of and environmental Pompeii’ issues Dwelling in Goreme, Cappadocia The Science of Geology Hutton, Kelvin, and the great Earth debates. • The beginnings of modern geology “All natural processes that affect the Earth’s crust (erosion, deposition, • ca. 1780, James Huton’s volcanic eruptions, faulting, glaciation Theory of the Earth; etc.) operate with the same intensity • Uniformitarianism: “the and under the same set of physical processes that operate constraints now as in the geologic past.” today have operated in “(as to the age of Earth) we see no the past.” vestige of a beginning, no prospect of • a uniformitarian view of an end.” Earth requires a vast These points are incorrect - why? amount of time….
    [Show full text]
  • Report Case Study 25
    EXECUTIVE SUMMARY 1. Brief Description of item(s) 294 manuscript notebooks of the geologist Sir Charles Lyell (1797-1875). In two series: 263 numbered notebooks, 1825-1874, on geology, natural history, social and political subjects; 31 additional notebooks, 1818-1871, with indices. Mostly octavo format. For details see Appendix 1. In good condition. 2. Context The nineteenth century saw public debate about how to conduct science reach new heights. Charles Lyell was a pivotal figure in the establishment of geology as a scientific discipline; he also transformed ideas about the relationship between human history and the history of the earth. Above all, he revealed the significance of ‘deep time’. At a time when the Anglican church dominated intellectual culture, geology was a controversial subject. Lyell played a significant part in separating the practice of science from that of religion. Through his major work, The Principles of Geology, he developed the method later adopted by Darwin for his studies into evolution. Lyell observed natural phenomena at first hand to infer their underlying causes, which he used to interpret the phenomena of the past. The method stressed not only a vast geological timescale, but also the ability of small changes to produce, eventually, large ones. The Principles combined natural history, theology, political economy, anthropology, travel, and geography. It was an immediate success, in Britain, Europe, North America and Australia. Scientists, theologians, leading authors, explorers, artists, and an increasingly educated public read and discussed it. Lyell’s inductive method strongly influenced the generation of naturalists after Darwin. Over the rest of his life, Lyell revised the Principles in the light of new research and his own changing ideas.
    [Show full text]
  • The Geological Revolution: Deep Time and the Age of the Earth
    Lecture 6: The Geological Revolution: Deep Time and the Age of the Earth Astronomy 141 – Winter 2012 This lecture explores the geological revolution that revealed the antiquity of the Earth. Understanding the age of the Earth requires having a conception of a beginning for the Earth. Historical and Physical age estimates give different answers. Geological discoveries uncovered the deep history of the Earth, and developed techniques for reading that history. The Earth is 4.54 ± 0.05 Billion Years old, measured by radiometric age dating of meteorites, the oldest Earth rocks, and Moon rocks. In order for “what is the age of the Earth?” to make sense, you must conceive of a beginning. Two ways people have conceived of time: Cyclical Time: Earth has no beginning or end, only repeated cycles of birth, death, and rebirth/renewal. Linear Time: Earth has a past beginning & will have a future end. On human scales, time appears to be cyclical Natural cycles around us: Cycle of day & night Monthly cycle of moon phases Yearly cycle of the seasons Generational cycle of birth, life, and death... Examples: Hinduism & Buddhism posit cyclical time Plato’s 72,000 year cycle: 36,000 Golden Age followed by a 36,000 age of disorder & chaos. Linear Time posits a definite beginning in the past, and an eventual ending in the future. Judaism provides an example of linear time: Past divine creation of the Earth (Genesis) Promised end of times. Christianity & Islam adopted this idea: See history as fulfillment, not growth. No change in the world, except decay from past perfection (“fall from grace”).
    [Show full text]
  • Catastrophism and Uniformitarianism: Logical Roots and Current Relevance in Geology
    Downloaded from http://sp.lyellcollection.org/ by guest on September 29, 2021 Catastrophism and uniformitarianism" logical roots and current relevance in geology VICTOR R. BAKER Department of Hydrology and Water Resources, The University of Arizona, Tucson, AZ 85721-0011, USA Abstract, Catastrophism in the Earth sciences is rooted in the view that Earth signifies its causative processes via landforms, structures and rock. Processes of types, rates and magnitudes not presently in evidence may well be signified this way. Uniformitarianism, in contrast, is a regulative stipulation motivated by the presumed necessity that science achieves logical validity in what can be said (hypothesized) about the Earth. Regulative principles, including simplicity, actualism and gradualism, are imposed a priori to insure valid inductive reasoning. This distinction lies at the heart of the catastrophist versus uniformitarian debates in the early nine- teenth century and it continues to influence portions of the current scientific program. Uniform- itarianism, as introduced by Charles Lyell in 1830, is specifically tied to an early nineteenth century view of inductive inference. Catastrophism involves a completely different form of inference in which hypotheses are generated retroductively. This latter form of logical inference remains relevant to modern science, while the outmoded notions of induction that warranted the doctrine of uniformitarianism were long ago shown to be overly restrictive in scientific practice. The latter should be relegated solely to historical interest in the progress of ideas. On 4 July 1997, the Mars Pathfinder spacecraft Antarctic ice, was interpreted as showing various made a highly successful landing in the Ares Vallis indicators of possible relic biogenic activity region of Mars.
    [Show full text]
  • Hutton's Uniformitarianism
    BYU Studies Quarterly Volume 23 Issue 1 Article 4 1-1-1983 Hutton's Uniformitarianism Jess R. Bushman Follow this and additional works at: https://scholarsarchive.byu.edu/byusq Recommended Citation Bushman, Jess R. (1983) "Hutton's Uniformitarianism," BYU Studies Quarterly: Vol. 23 : Iss. 1 , Article 4. Available at: https://scholarsarchive.byu.edu/byusq/vol23/iss1/4 This Article is brought to you for free and open access by the Journals at BYU ScholarsArchive. It has been accepted for inclusion in BYU Studies Quarterly by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Bushman: Hutton's Uniformitarianism huttonssuttonsHuttons uniformitarianism jess R bushman uniformitarianism or cause and effect is a very important and basic concept in geology the heart of the concept is that there is order and regularity in the operation or functioning of natural laws this consistency is what gives significance to cause and effect pat- terns what we see happening today helps us to identify the results of natural processes which were active millions of years ago we observe ripple marks being formed by wave action on beaches today when we see similar ripple marks in ancient sandstone we use cause and effect or uniformitarianism to suggest that the ripple marked sandstones were once part of an ancient beach the geologist as he studies natural processes at work and sees how long it takes to produce soil from solid rock or for a glacier to carve a U shaped valley is convinced
    [Show full text]
  • Geologic Time, Concepts, and Principles
    GEOLOGIC TIME, CONCEPTS, AND PRINCIPLES Sources: www.google.com en.wikipedia.org Thompson Higher Education 2007; Monroe, Wicander, and Hazlett, Physical orgs.usd.edu/esci/age/content/failed_scientific_clocks/ocean_salinity.html https://web.viu.ca/earle/geol305/Radiocarbon%20dating.pdf TCNJ PHY120 2013 GCHERMAN GEOLOGIC TIME, CONCEPTS, AND PRINCIPLES • Early estimates of the age of the Earth • James Hutton and the recognition of geologic time • Relative dating methods • Correlating rock units • Absolute dating methods • Development of the Geologic Time Scale • Geologic time and climate •Relative dating is accomplished by placing events in sequential order with the aid of the principles of historical geology . •Absolute dating provides chronometric dates expressed in years before present from using radioactive decay rates. TCNJ PHY120 2013 GCHERMAN TCNJ PHY120 2013 GCHERMAN Geologic time on Earth • A world-wide relative time scale of Earth's rock record was established by the work of many geologists, primarily during the 19 th century by applying the principles of historical geology and correlation to strata of all ages throughout the world. Covers 4.6 Ba to the present • Eon – billions to hundreds of millions • Era - hundreds to tens of millions • Period – tens of millions • Epoch – tens of millions to hundreds of thousands TCNJ PHY120 2013 GCHERMAN TCNJ PHY120 2013 GCHERMAN EARLY ESTIMATES OF EARTH’S AGE • Scientific attempts to estimate Earth's age were first made during the 18th and 19th centuries. These attempts all resulted in ages far younger than the actual age of Earth. 1778 ‘Iron balls’ Buffon 1710 – 1910 ‘salt clocks’ Georges-Louis Leclerc de Buffon • Biblical account (1600’S) 26 – 150 Ma for the oceans to become 74,832 years old and that as salty as they are from streams humans were relative newcomers.
    [Show full text]
  • Lyell's Principles of Geology: Foundations of Sedimentology
    Downloaded from http://sp.lyellcollection.org/ by guest on September 27, 2021 Part 2. Lyell and the development of geological science One could be forgiven for thinking that basin evolution and dynamics was a field of study developed in the later part of the twentieth century. The rapid rise in sedimentology and basin analysis would support this view. In attempting to understand, and give credit for, the origin of a particular discipline, there is often a need to identify individuals who may be regarded as the founder. Clearly with sedimentology such a man was Sorby. In his contribution, Mike Leeder argues that a case can be made that it was Lyell rather than Sorby who was the true originator of sedimentology and basin analysis. Leeder critically analyses Lyell's sedimentological descriptions and field observation as published in the Principles. Leeder demonstrates that Lyell grasped many concepts both of processes and products, indeed he recognized a number of sophisticated sedimentological concepts. Leeder further documents Lyell's willingness to abandon firmly held views. It is also clear that Lyell was not anticatastrophist as is often claimed. From Leeder's analysis it is firmly established that Lyell was engaged in and indeed contributed to establishing geology as a truly scientific discipline. Of major interest to Lyell was the concept of geological time and its divisions. Lyell's studies on Tertiary molluscs and the establishment of geological periods based upon their percentage similarity to modern forms is well known. William Berggren discusses the development of Cenozoic stratigraphy including Lyell's terms Eocene, Miocene, Pliocene and Pleistocene and suggests changes to current nomenclature and concepts.
    [Show full text]
  • The Evolution of Creationism
    The evolution of creationism David R. Montgomery, Quaternary Research Center and Dept. of (354–413), Thomas Aquinas (1225–1274), and John Calvin (1509– Earth and Space Sciences, Box 351310, University of Washington, 1564) all endorsed reason as the way to learn about the world. Seattle, Washington 98195-1310, USA, [email protected] Augustine was among the first to caution against advocating for biblical interpretations that conflicted with what one could I do not feel obliged to believe that the same God who has endowed observe for oneself. Centuries later, Aquinas praised the pursuit of us with senses, reason, and intellect has intended us to forego their knowledge and insight gained from experience reading God’s use. —Galileo Galilei other book—nature. Writing at the time of the Reformation, Calvin, too, considered ABSTRACT the revelations of both nature and the Bible as fundamental truths. In his Institutes of the Christian Religion (1559), Calvin For centuries, natural philosophers, their scientific successors, explicitly embraced the idea of respecting natural truths revealed and theologians alike sought to explain the physical and natural through the study of nature: “If we regard the Spirit of God as the world. The now common cultural narrative of perpetual conflict sole fountain of truth, we shall neither reject the truth itself, nor between science and religion simplifies the arguments and despise it wherever it shall appear, unless we wish to dishonor the struggles of the past and overlooks cross-pollination between Spirit of God” (McNeill, ed., 1960, p. 273–274). those who embraced faith and reason as the keys to understanding Calvin believed in keeping an open mind when it came to earth history.
    [Show full text]
  • The Discovery of Deep Time Sketches of Geologic Development
    Theories of the Earth The Discovery of Deep Time Sketches of Geologic Development The descriptions and biographies below accompany the two page flow chart titled “Theories of the Earth”. They flesh out the positions and personages and their role in the discovery of the Earth’s history. They are listed in the order of class discussion. Myth of the Eternal Return: The notion that the world has no beginning, and no end C The notion that the universe is eternal and time is cyclical, with events repeating over and over again - like the beating of a heart, the waxing and waning of the Moon, the cycling of the seasons. The Babylonians developed a cosmic model based on periodicities of the planets in which each Great Year lasts 424,000 years; in the ‘summer’, when all the planets congregate in the constellation Cancer, there is a great fire, and the ‘winter’, marked by a gathering in Capricorn, is greeted by a great flood.. In a cyclical universe it was impossible even to frame the question of an age of the Earth - for it hadn’t a beginning. C “The Myth of the Eternal Return” was formulated by Mircea Eliade in 1974: This is the earliest and most important of Eliade's books on comparative religions. He traces through the many scripts and dogmas of the world's official and unofficial (i.e., primitive) religions the myth of the eternal return. C From Mesopotamia mythology: "But Ishtar is all this and more. She is the reborn. .. Know, O Prince, that death is the source of life, life is the cause of death.
    [Show full text]