Report Case Study 25

Total Page:16

File Type:pdf, Size:1020Kb

Report Case Study 25 EXECUTIVE SUMMARY 1. Brief Description of item(s) 294 manuscript notebooks of the geologist Sir Charles Lyell (1797-1875). In two series: 263 numbered notebooks, 1825-1874, on geology, natural history, social and political subjects; 31 additional notebooks, 1818-1871, with indices. Mostly octavo format. For details see Appendix 1. In good condition. 2. Context The nineteenth century saw public debate about how to conduct science reach new heights. Charles Lyell was a pivotal figure in the establishment of geology as a scientific discipline; he also transformed ideas about the relationship between human history and the history of the earth. Above all, he revealed the significance of ‘deep time’. At a time when the Anglican church dominated intellectual culture, geology was a controversial subject. Lyell played a significant part in separating the practice of science from that of religion. Through his major work, The Principles of Geology, he developed the method later adopted by Darwin for his studies into evolution. Lyell observed natural phenomena at first hand to infer their underlying causes, which he used to interpret the phenomena of the past. The method stressed not only a vast geological timescale, but also the ability of small changes to produce, eventually, large ones. The Principles combined natural history, theology, political economy, anthropology, travel, and geography. It was an immediate success, in Britain, Europe, North America and Australia. Scientists, theologians, leading authors, explorers, artists, and an increasingly educated public read and discussed it. Lyell’s inductive method strongly influenced the generation of naturalists after Darwin. Over the rest of his life, Lyell revised the Principles in the light of new research and his own changing ideas. Today, Lyell’s work remains a key reference point for earth scientists. 3. Waverley criteria We consider the collection to meet the third Waverley criterion. Lyell is widely acknowledged as the single most important figure in the development of the earth sciences in Britain. His manuscript notebooks are the key to understanding his work and the role of the earth and life sciences in the development of modern scientific knowledge. They are almost certainly the most significant scientific manuscripts of the nineteenth century to have remained in private hands in the UK. Furthermore, these private notebooks reflect the wider culture, one that Lyell’s own work helped to shape. His remarkably large and wide-ranging collection will be of great significance for researchers into late-Georgian and Victorian intellectual culture. 1 DETAILED CASE 1. Detailed description of item(s) if more than in Executive summary, and any comments. The notebooks reveal a working method that was both systematic and flexible. Throughout Lyell’s professional life, keeping notebooks was central to his activity. He wrote in them regularly and developed careful strategies to retrieve information from them. Most of the notebooks bear Lyell’s numbering on the inside cover and on a paper label at the head of the spine. The early volumes have several discrete number sequences; after 1829, Lyell began a single number sequence. Many of the volumes have indexes that he added later, generally at the back. He also filled additional notebooks with subject indexes to other notebooks. Interventions to the content, made in different inks, show that Lyell revisited his notes often. There are frequent annotations, additions, deletions, corrections, and cross-references. Some long passages have a single line through them, indicating their transfer either to another notebook or to print. The extensive visual content ranges from rough pencil sketches to fully-worked drawings, some in colour. Occasional photographs and prints have been added. Some examples of significant content are: • Early journals detailing Lyell’s formative reading and experiences of travel, during a period when he was contemplating possible futures as an author, poet, lawyer, and man of science. • Ten notebooks kept during Lyell’s tour of Italy and Sicily (1829). Lyell’s observations of the earth’s formation and volcanoes such as Vesuvius and Etna, in particular, were a formative influence on the Principles. • Seven notebooks containing extensive notes on the definition and origin of species, the origin and antiquity of man, and other related subjects. These include records of private conversations with Darwin, and the reactions of key figures to Darwin’s theory (1855-61). • Eleven volumes of notes from Lyell’s reading. These refer to printed books, articles, letters, unpublished manuscripts, Lyell’s own notebooks, and conversations. They show Lyell’s engagement with scientific sources and with literary, political, theological, and philosophical writings (1855-71). • Over fifty volumes recording four trips to North America between 1841 and 1853. These include Lyell’s impressions of Niagara Falls and other natural phenomena, which provided critical new evidence for his theories of geological change. They also record literary and social life in the major cities, meetings with notable figures, interviews with plantation owners, and observations on slavery. 2 2. Detailed explanation of the outstanding significance of the item(s). The notebooks are the raw material for Lyell’s printed works. They record his developing ideas about the uniformity of nature1 and the possibility of explaining features such as climate change, species extinction and biodiversity through natural causes. They document his field studies across Britain, France, Italy, Scandinavia, Madeira, the Canary Islands, and North America. They also show his extensive reading. Lyell consulted Greek and Roman authors for information on past phenomena such as volcanic eruptions and earthquakes, and contemporary writers for the most recent findings and theories. Additionally, he recorded his conversations with fellow scientists and local informants, and copied out letters sent and received. In combination with his field investigations, Lyell’s energetic engagement with past and contemporary fellow enquirers over the course of a long professional life presents a remarkable picture of a man ‘doing science’. It is a more rounded portrayal than that found in any comparable scientific archive of the period, Darwin’s not excepted. The notebooks are an invaluable resource for understanding the evolution debates. When Darwin returned from the Beagle, Lyell was his principal mentor. Darwin kept Lyell informed about his developing theory of evolution and, following the publication of Origin of Species in 1859, sent him copies of the letters that he received. Many of these, recopied by Lyell, are unique survivals. Lyell himself continued to write privately about Darwin’s theory throughout his life. The notebooks are also of great significance for palaeontologists. Lyell collected tens of thousands of fossils across Britain, Europe and America. Many are preserved in UK collections, under-researched because Lyell’s notes are the only record of provenance and context that exists for them. Lyell engaged with the social and political issues of his day. Like Dickens, he was known for his pioneering tours of North America. The notebooks of 1841- 42 and 1845-46 record his travels from Boston to the Deep South and include reflections on education, slavery, and race: pertinent topics in the years leading up to the Civil War. Lyell’s Travels in North America and Second Visit to the United States are polished accounts of his journeys. The unguarded impressions recorded in his notebooks would be a significant resource for historians. Lyell was part of a tradition, increasingly dominant from the 1830s, of the scientist as public educator. As a result, his style of writing assumed importance. The notebooks often show him working and reworking his prose in an effort to be clear and persuasive. They deepen the picture of a man who was not only doing science but who also felt his responsibility to communicate it. 1 That is, the theory that nature has always conformed to the same laws, operating in ways that we can see around us at the present day. 3 Lyell asserted his findings and opinions confidently in print. His notebooks, however, are markedly more speculative in tone. His empirical findings gave rise to more questions; his philosophical thoughts sometimes provoked anguish. Lyell reflected on natural selection, the antiquity of man on earth, and the wider implications of scientific discovery for religious faith. If the world was continually changing and man was descended from beasts, what did this mean for man’s Scriptural place ‘a little lower than the angels’? The private space of the notebooks was a safe place in which to explore such questions. The ideas recorded in these notebooks have gained new significance in current debates on human impact on the planet and on climate change.2 Lyell founded the modern classification of later geological time and designated a special period characterised by the appearance of humans. He also developed a theory of long-term climate change based on the shifting geographical relations between land and sea, the first time that this had been done. To sum up, this is an exceptionally wide-ranging collection that reveals the working practices, experimental findings, intellectual development, political engagement, and writing strategies of one of the most influential scientists of the past two centuries. The collection is of outstanding significance to scholars of
Recommended publications
  • History of Geology
    FEBRUARY 2007 PRIMEFACT 563 (REPLACES MINFACT 60) History of geology Mineral Resources Early humans needed a knowledge of simple geology to enable them to select the most suitable rock types both for axe-heads and knives and for the ornamental stones they used in worship. In the Neolithic and Bronze Ages, about 5000 to 2500 BC, flint was mined in the areas which are now Belgium, Sweden, France, Portugal and Britain. While Stone Age cultures persisted in Britain until after 2000 BC, in the Middle East people began to mine useful minerals such as iron ore, tin, clay, gold and copper as early as 4000 BC. Smelting techniques were developed to make the manufacture of metal tools possible. Copper was probably the earliest metal to be smelted, that is, extracted from its ore by melting. Copper is obtained easily by reducing the green copper carbonate mineral malachite, itself regarded as a precious stone. From 4000 BC on, the use of clay for brick-making became widespread. The Reverend William Branwhite Clarke (1798-1878), smelting of iron ore for making of tools and the ‘father’ of geology in New South Wales weapons began in Asia Minor at about 1300 BC but did not become common in Western Europe until Aristotle believed volcanic eruptions and nearly 500 BC. earthquakes were caused by violent winds escaping from the interior of the earth. Since earlier writers had ascribed these phenomena to The classical period supernatural causes, Aristotle's belief was a By recognising important surface processes at marked step forward. Eratosthenes, a librarian at work, the Greek, Arabic and Roman civilisations Alexandria at about 200 BC, made surprisingly contributed to the growth of knowledge about the accurate measurements of the circumference of earth.
    [Show full text]
  • The Importance of French Transformist Ideas for the Second Volume of Lyell’S Principles of Geology Pietro Corsi
    The importance of french transformist ideas for the second volume of lyell’s principles of geology Pietro Corsi To cite this version: Pietro Corsi. The importance of french transformist ideas for the second volume of lyell’s principles of geology. 2004. halshs-00002894 HAL Id: halshs-00002894 https://halshs.archives-ouvertes.fr/halshs-00002894 Preprint submitted on 20 Sep 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE BRITISH JOURNAL FOR THE HISTORY OF SCIENCE Vol. II t No. 39 (1978) < 221 > THE IMPORTANCE OF FRENCH TRANSFORMIST IDEAS FOR THE SECOND VOLUME OF LYELL'S PRINCIPLES OF GEOLOGY PIETRO CORSI* RECENTLY there has been considerable revaluation of the development of natural sciences in the early nineteenth century, dealing among other things with the works and ideas of Charles Lyell. The task of interpreting Lyell in balanced terms is extremely complex because his activities covered many fields of research, and because his views have been unwarrantably distorted in order to make him the precursor of various modern scientific positions. Martin Rudwick in particular has contributed several papers relating to Lyell's Principles of geology, and has repeatedly stressed the need for a comprehensive evaluation of Lyell's scientific proposals, and of his position in the culture of his time.
    [Show full text]
  • The Wyley History of the Geologists' Association in the 50 Years 1958
    THE WYLEY HISTORY OF THE GEOLOGISTS’ ASSOCIATION 1958–2008 Leake, Bishop & Howarth ASSOCIATION THE GEOLOGISTS’ OF HISTORY WYLEY THE The Wyley History of the Geologists’ Association in the 50 years 1958–2008 by Bernard Elgey Leake, Arthur Clive Bishop ISBN 978-0900717-71-0 and Richard John Howarth 9 780900 717710 GAHistory_cover_A5red.indd 1 19/08/2013 16:12 The Geologists’ Association, founded in 1858, exists to foster the progress and Bernard Elgey Leake was Professor of Geology (now Emeritus) in the diffusion of the science of Geology. It holds lecture meetings in London and, via University of Glasgow and Honorary Keeper of the Geological Collections in the Local Groups, throughout England and Wales. It conducts field meetings and Hunterian Museum (1974–97) and is now an Honorary Research Fellow in the School publishes Proceedings, the GA Magazine, Field Guides and Circulars regularly. For of Earth and Ocean Sciences in Cardiff University. He joined the GA in 1970, was further information apply to: Treasurer from 1997–2009 and is now an Honorary Life Member. He was the last The Executive Secretary, sole editor of the Journal of the Geological Society (1972–4); Treasurer (1981–5; Geologists’ Association, 1989–1996) and President (1986–8) of the Geological Society and President of the Burlington House, Mineralogical Society (1998–2000). He is a petrologist, geochemist, mineralogist, Piccadilly, a life-long mapper of the geology of Connemara, Ireland and a Fellow of the London W1J 0DU Royal Society of Edinburgh. He has held research Fellowships in the Universities of phone: 020 74349298 Liverpool (1955–7), Western Australia (1985) and Canterbury, NZ (1999) and a e-mail: geol.assoc@btinternet.com lectureship and Readership at the University of Bristol (1957–74).
    [Show full text]
  • FALL 2017 President’S Reflections
    PriscumPriscum NEWSLETTER OF THE VOLUME 24, ISSUE 1 President’s Reflections Paleobiology, the finances of both journals appear secure for INSIDE THIS ISSUE: the foreseeable future, and with a much-improved online presence for both journals. To be sure, more work lies ahead, Report on Student but we are collaborating with Cambridge to expand our au- 3 Diversity and Inclusion thor and reader bases, and, more generally, to monitor the ever-evolving publishing landscape. Our partnership with The Dry Dredgers of 10 Cambridge is providing additional enhancements for our Cincinnati, Ohio members, including the digitization of the Society’s entire archive of special publications; as of this writing, all of the PS Embraces the 13 Hydrologic Cycle Society’s short course volumes are now available through the member’s portal, and all remaining Society publications will be made available soon. We are also exploring an exciting PS Events at 2017 GSA 14 new outlet through Cambridge for all future Special Publica- By Arnie Miller (University of tions. Stay tuned! Book Reviews 15 Cincinnati), President In my first year as President, the Society has continued to These are challenging times for move forward on multiple fronts, as we actively explore and Books Available for 28 scientists and for the profes- pursue new means to carry out our core missions of enhanc- Review Announcement sional societies that represent ing and broadening the reach of our science and of our Socie- them. In the national political ty, and providing expanded developmental opportunities for arena, scientific findings, policies, and funding streams that all of our members.
    [Show full text]
  • The Geohistorical Time Arrow: from Steno's Stratigraphic Principles To
    JOURNAL OF GEOSCIENCE EDUCATION 62, 691–700 (2014) The Geohistorical Time Arrow: From Steno’s Stratigraphic Principles to Boltzmann’s Past Hypothesis Gadi Kravitz1,a ABSTRACT Geologists have always embraced the time arrow in order to reconstruct the past geology of Earth, thus turning geology into a historical science. The covert assumption regarding the direction of time from past to present appears in Nicolas Steno’s principles of stratigraphy. The intuitive–metaphysical nature of Steno’s assumption was based on a biblical narrative; therefore, he never attempted to justify it in any way. In this article, I intend to show that contrary to Steno’s principles, the theoretical status of modern geohistory is much better from a scientific point of view. The uniformity principle enables modern geohistory to establish the time arrow on the basis of the second law of thermodynamics, i.e., on a physical law, on the one hand, and on a historical law, on the other. In other words, we can say that modern actualism is based on the uniformity principle. This principle is essentially based on the principle of causality, which in turn obtains its justification from the second law of thermodynamics. I will argue that despite this advantage, the shadow that metaphysics has cast on geohistory has not disappeared completely, since the thermodynamic time arrow is based on a metaphysical assumption—Boltzmann’s past hypothesis. All professors engaged in geological education should know these philosophical–theoretical arguments and include them in the curriculum of studies dealing with the basic assumptions of geoscience in general and the uniformity principle and deep time in particular.
    [Show full text]
  • Hutton, Kelvin, and the Great Earth Debates. • the Beginnings of Modern Geology “All Natural Processes That Affect the Earth’S Crust (Erosion, Deposition, • Ca
    Chapter 1 The Science of Geology An Introduction to Geology • Geology - the science that pursues an understanding of planet Earth • Physical geology - examines the materials composing Earth and seeks to understand the many processes that operate beneath and upon its surface • Historical geology - seeks an understanding of the origin of “If there is an interesting place you want to go, there is Earth and its development interesting geology that you can study there” through time Mersin ophiolite, (Cappadocia, Central Turkey). Turkey The Science of Geology The Science of Geology 1.3: satellite image of Mt. Vesuvius, Italy. • Some historical views • Geology, people, and the environment of the Earth • Many important relationships exist between • Aristotle, 300 BC; people and the natural environment • James Ussher, ca. 1600, ‘Earth was created in Problems and issues 4004 BC;’ addressed by • Catastrophism geology include • Earth’s features formed through • Natural hazards, sudden and violent resources, world changes. ‘The Dog population growth, of and environmental Pompeii’ issues Dwelling in Goreme, Cappadocia The Science of Geology Hutton, Kelvin, and the great Earth debates. • The beginnings of modern geology “All natural processes that affect the Earth’s crust (erosion, deposition, • ca. 1780, James Huton’s volcanic eruptions, faulting, glaciation Theory of the Earth; etc.) operate with the same intensity • Uniformitarianism: “the and under the same set of physical processes that operate constraints now as in the geologic past.” today have operated in “(as to the age of Earth) we see no the past.” vestige of a beginning, no prospect of • a uniformitarian view of an end.” Earth requires a vast These points are incorrect - why? amount of time….
    [Show full text]
  • Press Release
    Press Release Issued: Wednesday 12th August 2020 Darwin mentor and geology pioneer Charles Lyell’s archives reunited Fascinating writings of an influential scientist who shaped Charles Darwin’s thinking have become part of the University of Edinburgh’s collections. A rich assortment of letters, books, manuscripts, maps and sketches by Scottish geologist Sir Charles Lyell, have been reassembled at the University Library’s Centre for Research Collections, with the goal of making the collection more accessible to the public. Some 294 notebooks, purchased from the Lyell family following a £1 million fundraising campaign in 2019, form a key part of the collection. Although written in the Victorian era, the works shed light on current concerns, including climate change and threats to biodiversity. Now a second tranche of Lyell material has been allocated to the University by HM Government under the Acceptance in Lieu of Inheritance Tax scheme. These new acquisitions, from the estate of the 3rd Baron Lyell, will join other items that have been part of the University’s collections since 1927. The new archive includes more than 900 letters, with correspondence between Lyell and Darwin, the botanist Joseph Dalton Hooker, the publisher John Murray and Lyell’s wife, Mary Horner Lyell, and many others. It also includes a draft manuscript and heavily annotated editions of Lyell’s landmark book The Principles of Geology and several manuscripts from his lectures. Lyell, who died in 1875, aged 77, mentored Sir Charles Darwin after the latter’s return from his five-year voyage on the Beagle in 1836. The Scot is also credited with providing the framework that helped Darwin develop his evolutionary theories.
    [Show full text]
  • Archibald Geikie (1835–1924): a Pioneer Scottish Geologist, Teacher, and Writer
    ROCK STARS Archibald Geikie (1835–1924): A Pioneer Scottish Geologist, Teacher, and Writer Rasoul Sorkhabi, University of Utah, Salt Lake City, Utah 84108, USA; rsorkhabi@egi.utah.edu years later, but there he learned how to write reports. Meanwhile, he read every geology book he could find, including John Playfair’s Illustrations of the Huttonian Theory, Henry de la Beche’s Geological Manual, Charles Lyell’s Principles of Geology, and Hugh Miller’s The Old Red Sandstone. BECOMING A GEOLOGIST In the summer of 1851, while the Great Exhibition in London was attracting so many people, Geikie decided instead to visit the Island of Arran in the Clyde estuary and study its geology, aided by a brief report by Andrew Ramsay of the British Geological Survey. Geikie came back with a report titled “Three weeks in Arran by a young geologist,” published that year in the Edinburgh News. This report impressed Hugh Miller so much that the renowned geologist invited its young author to discuss geology over a cup of tea. Miller became Geikie’s first mentor. In this period, Geikie became acquainted with local scientists and pri- vately studied chemistry, mineralogy, and geology under Scottish naturalists, such as George Wilson, Robert Chambers, John Fleming, James Forbes, and Andrew Ramsay—to whom he con- fessed his desire to join the Geological Survey. In 1853, Geikie visited the islands of Skye and Pabba off the coast Figure 1. Archibald Geikie as a young geolo- of Scotland and reported his observations of rich geology, including gist in Edinburgh. (Photo courtesy of the British Geological Survey, probably taken in finds of Liassic fossils.
    [Show full text]
  • In Retrospect: Leibniz's Protogaea
    NATURE|Vol 455|4 September 2008 OPINION In Retrospect: Leibniz’s Protogaea The first English translation of Gottfried Leibniz’s earth science treatise records the difficulties of understanding our planet before geologists appreciated deep time, Richard Fortey discovers. Protogaea When considering the origin of minerals, by Gottfreid Wilhelm Leibniz Leibniz has an intuitive sense that a kind Translated by Claudine Cohen and of natural cookery is involved: “One is thus Andre Wakefield inclined to suspect that nature, using volca- University of Chicago Press: 2008. noes as furnaces and mountains as alembics, 204 pp. $55. has accomplished in her mighty works what we play at with our little examples [in labo- It is something of a game among historians ratories].” That the furnaces of the ‘chymist’ to try and detect the earliest hints of a major might simulate Earth’s processes is a hope scientific breakthrough in a little-known work that still drives research into petrology and discovered through recondite scholarship. geochemistry today. Charles Darwin’s supposed debt to his grandfa- Why then did Leibniz’s shrewd obser- ther Erasmus is an example, or maybe geologist vations fail to move geology significantly Charles Lyell’s insufficient acknowledgement towards becoming a mature science? For all its of the early geological work of Nicolaus Steno. insights, Protogaea does not seem to a modern When the savant in question is Gottfried Wil- geologist like the natural ancestor of Lyell’s helm Leibniz (1646–1716) — the man who Principles of Geology. The missing ingredient developed calculus independently of Isaac is an awareness of geological time.
    [Show full text]
  • Newsletter for Members of the Palaeontological Associationr Number 37 1998
    PAL A EONTOLOGY E W S L E T T E NThe Newsletter for members of the Palaeontological AssociationR Number 37 1998 http://www.nhm.ac.uk/paleonet/PalAss/PalAss.html Newsletter copy Information, whether copy as such or Newsletter messages, review material, news, emergencies and advertising suggestions, can be sent in writing to Dr Sue Rigby, Dept of Geology and Geophysics, Grant Institute, West Mains Road, Edinburgh EH9 3JW; fax 0131 668 3184; email suerigby@glg.ed.ac.uk. It would be 1 helpful if longer items of copy could be sent on a 3 /2" disk with text in Microsoft Word, WordPerfect or ASCII format. Disks clearly marked with the owner's name and address will be returned as soon as possible. The Newsletter is produced by Meg Stroud, and printed by Edinburgh University Printing Services. Deadline for copy for Issue No. 38 is 22nd May 1998. Palaeontological Association on the Internet The Palaeontological Association has its own pages on the World Wide Web, including information about the Association, and copies of the Newsletter. Site-keeper Mark Purnell can be reached by email at map2@leicester.ac.uk. The locator is: http://www.nhm.ac.uk/paleonet/PalAss/PalAss.html Advertising in the Newsletter Advertising space in the Newsletter will be made available at the rates given below to any organisation or individual provided the content is appropriate to the aims of the Palaeontological Association. Association Members receive a 30% discount on the rates listed. All copy will be subjected to editorial control. Although every effort will be made to ensure the bona fide nature of advertisements in the Newsletter, the Palaeontological Association cannot accept any responsibility for their content.
    [Show full text]
  • An Investigation Into the Graphic Innovations of Geologist Henry T
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2003 Uncovering strata: an investigation into the graphic innovations of geologist Henry T. De la Beche Renee M. Clary Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Education Commons Recommended Citation Clary, Renee M., "Uncovering strata: an investigation into the graphic innovations of geologist Henry T. De la Beche" (2003). LSU Doctoral Dissertations. 127. https://digitalcommons.lsu.edu/gradschool_dissertations/127 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu. UNCOVERING STRATA: AN INVESTIGATION INTO THE GRAPHIC INNOVATIONS OF GEOLOGIST HENRY T. DE LA BECHE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Curriculum and Instruction by Renee M. Clary B.S., University of Southwestern Louisiana, 1983 M.S., University of Southwestern Louisiana, 1997 M.Ed., University of Southwestern Louisiana, 1998 May 2003 Copyright 2003 Renee M. Clary All rights reserved ii Acknowledgments Photographs of the archived documents held in the National Museum of Wales are provided by the museum, and are reproduced with permission. I send a sincere thank you to Mr. Tom Sharpe, Curator, who offered his time and assistance during the research trip to Wales.
    [Show full text]
  • Newsletter of the History of Geology Group of the Geological Society Of
    Number 30 May 2007 HOGGHOGG NewsletterNewsletter of of thethe HistoryHistory ofof GeologyGeology GroupGroup ofof thethe GeologicalGeological SocietySociety ofof LondonLondon HOGG Newsletter No.30 May 2007 Front Cover: Background: Section through burnt and unburnt oil shales at Burning Cliff near Clavells Hard, Kimmeridge, Dorset. Oil Rig: ‘The first deep well in the UK, Portsdown No1, was spudded in January 1936 on Portsdown Hill overlooking Portsmouth harbour. This was the first deep well test drilling in the UK, drilling into a strong 'anticline'. The well penetrated 6556 feet of Jurassic rocks and Triassic rocks finding a small quantity of oil at one level only. Several other sites in the Hampshire, Dorset and Sussex regions were also drilled and small quantities of oil were found but the wells were abandoned due to the poor devel- opment of the reservoir beds. Operations were moved to the Midlands and the North resulting eventu- ally in a major find close to the village of Eakring in Nottinghamshire at Dukes Wood which is now the site of the Dukes Wood Oil Museum’. (Cover image is from the Dukes Wood Oil Museum archives, with due acknowledgement; further infor- mation about this museum and the area of natural beauty surrounding it, can be found at: www.dukeswoodoilmuseum.co.uk/index.htm) Oil shales and the early exploration for oil onshore UK were the focus of a HOGG meeting in Weymouth in April. A report of that meeting appears elsewhere in this newsletter. Portrait: James ‘Paraffin’ Young. Web sourced image. The History of Geology
    [Show full text]