The Geohistorical Time Arrow: from Steno's Stratigraphic Principles To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
History of Geology
FEBRUARY 2007 PRIMEFACT 563 (REPLACES MINFACT 60) History of geology Mineral Resources Early humans needed a knowledge of simple geology to enable them to select the most suitable rock types both for axe-heads and knives and for the ornamental stones they used in worship. In the Neolithic and Bronze Ages, about 5000 to 2500 BC, flint was mined in the areas which are now Belgium, Sweden, France, Portugal and Britain. While Stone Age cultures persisted in Britain until after 2000 BC, in the Middle East people began to mine useful minerals such as iron ore, tin, clay, gold and copper as early as 4000 BC. Smelting techniques were developed to make the manufacture of metal tools possible. Copper was probably the earliest metal to be smelted, that is, extracted from its ore by melting. Copper is obtained easily by reducing the green copper carbonate mineral malachite, itself regarded as a precious stone. From 4000 BC on, the use of clay for brick-making became widespread. The Reverend William Branwhite Clarke (1798-1878), smelting of iron ore for making of tools and the ‘father’ of geology in New South Wales weapons began in Asia Minor at about 1300 BC but did not become common in Western Europe until Aristotle believed volcanic eruptions and nearly 500 BC. earthquakes were caused by violent winds escaping from the interior of the earth. Since earlier writers had ascribed these phenomena to The classical period supernatural causes, Aristotle's belief was a By recognising important surface processes at marked step forward. Eratosthenes, a librarian at work, the Greek, Arabic and Roman civilisations Alexandria at about 200 BC, made surprisingly contributed to the growth of knowledge about the accurate measurements of the circumference of earth. -
Blessed Nicholas Steno
BLESSEDThe Scientist NICHOLAS and STENO (IN DANISH, NIELS STEENSEN) 1638-1686 After a youth spent in studying and then in scientific research, Nicolas Steno at age St. Nicholas of Flue, better known as “Brother Klaus,” was declared patron saint of Switzerland by Pope Pius XII in 1947. He was born 28 converted to the Catholic of a farmer's family in 1417 in Flueli, in the Alpine foothills above Sachseln, in the region of Obwald. He married, had ten children, Church while watching the Portrait of Blessed and conducted a normal life until he was 50. Then he felt a very Nicholas Steno strong call from God to leave everything and follow Him. He therefore asked for three graces: to obtain the consent of his wife Corpus Christi procession, Dorothy and their older children; to never feel the temptation to turn back, and finally, God willing, to be able to live without drinking or eating. All his requests were granted. He lived for twenty years in the thus realizing the greatness forest as a hermit with no food except for the Eucharist, as many witnesses testified. and magnificence of the Eucharist; the Real Presence of Jesus in the Host. He then decided to become a priest and missionary in his own country. In Belgium, at Bois-d’Haine, the Servant of God Anne-Louise Lateau lived for twelve years without eating or drinking, and without sleeping, starting on March 26, 1871. On January 11, 1868, she received stigmata at her feet, hands, head, the left side of her chest and at her right shoulder. -
Geologic Time Two Ways to Date Geologic Events Steno's Laws
Frank Press • Raymond Siever • John Grotzinger • Thomas H. Jordan Understanding Earth Fourth Edition Chapter 10: The Rock Record and the Geologic Time Scale Lecture Slides prepared by Peter Copeland • Bill Dupré Copyright © 2004 by W. H. Freeman & Company Geologic Time Two Ways to Date Geologic Events A major difference between geologists and most other 1) relative dating (fossils, structure, cross- scientists is their concept of time. cutting relationships): how old a rock is compared to surrounding rocks A "long" time may not be important unless it is greater than 1 million years 2) absolute dating (isotopic, tree rings, etc.): actual number of years since the rock was formed Steno's Laws Principle of Superposition Nicholas Steno (1669) In a sequence of undisturbed • Principle of Superposition layered rocks, the oldest rocks are • Principle of Original on the bottom. Horizontality These laws apply to both sedimentary and volcanic rocks. Principle of Original Horizontality Layered strata are deposited horizontal or nearly horizontal or nearly parallel to the Earth’s surface. Fig. 10.3 Paleontology • The study of life in the past based on the fossil of plants and animals. Fossil: evidence of past life • Fossils that are preserved in sedimentary rocks are used to determine: 1) relative age 2) the environment of deposition Fig. 10.5 Unconformity A buried surface of erosion Fig. 10.6 Cross-cutting Relationships • Geometry of rocks that allows geologists to place rock unit in relative chronological order. • Used for relative dating. Fig. 10.8 Fig. 10.9 Fig. 10.9 Fig. 10.9 Fig. Story 10.11 Fig. -
Lab 7: Relative Dating and Geological Time
LAB 7: RELATIVE DATING AND GEOLOGICAL TIME Lab Structure Synchronous lab work Yes – virtual office hours available Asynchronous lab work Yes Lab group meeting No Quiz None – Test 2 this week Recommended additional work None Required materials Pencil Learning Objectives After carefully reading this chapter, completing the exercises within it, and answering the questions at the end, you should be able to: • Apply basic geological principles to the determination of the relative ages of rocks. • Explain the difference between relative and absolute age-dating techniques. • Summarize the history of the geological time scale and the relationships between eons, eras, periods, and epochs. • Understand the importance and significance of unconformities. • Explain why an understanding of geological time is critical to both geologists and the general public. Key Terms • Eon • Original horizontality • Era • Cross-cutting • Period • Inclusions • Relative dating • Faunal succession • Absolute dating • Unconformity • Isotopic dating • Angular unconformity • Stratigraphy • Disconformity • Strata • Nonconformity • Superposition • Paraconformity Time is the dimension that sets geology apart from most other sciences. Geological time is vast, and Earth has changed enough over that time that some of the rock types that formed in the past could not form Lab 7: Relative Dating and Geological Time | 181 today. Furthermore, as we’ve discussed, even though most geological processes are very, very slow, the vast amount of time that has passed has allowed for the formation of extraordinary geological features, as shown in Figure 7.0.1. Figure 7.0.1: Arizona’s Grand Canyon is an icon for geological time; 1,450 million years are represented by this photo. -
The Importance of French Transformist Ideas for the Second Volume of Lyell’S Principles of Geology Pietro Corsi
The importance of french transformist ideas for the second volume of lyell’s principles of geology Pietro Corsi To cite this version: Pietro Corsi. The importance of french transformist ideas for the second volume of lyell’s principles of geology. 2004. halshs-00002894 HAL Id: halshs-00002894 https://halshs.archives-ouvertes.fr/halshs-00002894 Preprint submitted on 20 Sep 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE BRITISH JOURNAL FOR THE HISTORY OF SCIENCE Vol. II t No. 39 (1978) < 221 > THE IMPORTANCE OF FRENCH TRANSFORMIST IDEAS FOR THE SECOND VOLUME OF LYELL'S PRINCIPLES OF GEOLOGY PIETRO CORSI* RECENTLY there has been considerable revaluation of the development of natural sciences in the early nineteenth century, dealing among other things with the works and ideas of Charles Lyell. The task of interpreting Lyell in balanced terms is extremely complex because his activities covered many fields of research, and because his views have been unwarrantably distorted in order to make him the precursor of various modern scientific positions. Martin Rudwick in particular has contributed several papers relating to Lyell's Principles of geology, and has repeatedly stressed the need for a comprehensive evaluation of Lyell's scientific proposals, and of his position in the culture of his time. -
Evaluation of the Depositional Environment of the Eagle Ford
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2012 Evaluation of the depositional environment of the Eagle Ford Formation using well log, seismic, and core data in the Hawkville Trough, LaSalle and McMullen counties, south Texas Zachary Paul Hendershott Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Earth Sciences Commons Recommended Citation Hendershott, Zachary Paul, "Evaluation of the depositional environment of the Eagle Ford Formation using well log, seismic, and core data in the Hawkville Trough, LaSalle and McMullen counties, south Texas" (2012). LSU Master's Theses. 863. https://digitalcommons.lsu.edu/gradschool_theses/863 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. EVALUATION OF THE DEPOSITIONAL ENVIRONMENT OF THE EAGLE FORD FORMATION USING WELL LOG, SEISMIC, AND CORE DATA IN THE HAWKVILLE TROUGH, LASALLE AND MCMULLEN COUNTIES, SOUTH TEXAS A Thesis Submitted to the Graduate Faculty of the Louisiana State University Agricultural and Mechanical College in partial fulfillment of the requirements for degree of Master of Science in The Department of Geology and Geophysics by Zachary Paul Hendershott B.S., University of the South – Sewanee, 2009 December 2012 ACKNOWLEDGEMENTS I would like to thank my committee chair and advisor, Dr. Jeffrey Nunn, for his constant guidance and support during my academic career at LSU. -
Tema Del Día
TEMA DEL DÍA LAS RAÍCES DE LA GEOLOGÍA. NICOLAS STENO, LOS ESTRATOS Y EL DILUVIO UNIVERSAL The roots of the Geology. Nicolaus Steno, the strata and the Deluge Leandro Sequeiros * RESUMEN El De Solido intra solido naturaliter contento dissertatinis prodromus, uno de los libros más importan- tes para los inicios de la geología, fue publicado en Florencia en 1669. Su autor, Niels Steensen (también conocido por su nombre latinizado de Nicolaus Steno), fue un anatomista y naturalista danés nacido en Copenhague (Dinamarca) el 11 de enero de 1638. Estudió primero medicina en su ciudad y anatomía en Holanda y París. En 1660, visitó Roma y en 1666 se había establecido en Florencia donde fue acogido por el Gran Duque de Toscana Fernando II. En Florencia, estudiando los dientes puntiagudos que formaban diversas coronas en las mandíbulas de los tiburones, se sorprendió por su gran número, y sus semejanzas con las llamadas Glossopetrae, ob- jetos de piedra traídos de Malta. Steno pensó que ellos pertenecían a partes anatómicas de animales que habían vivido en otro tiempo, y que habían podido transformarse con facilidad mediante procesos quími- cos que no habían afectado a la forma. Los resultados llevaron a Steno a extender sus hipótesis a amplios estudios sobre las conchas de los moluscos antiguos, de los que describe su estructura y su origen orgáni- co, llegando a conclusiones muy cercanas a las aceptadas hoy día. ABSTRACT The De Solido intra solido naturaliter contento dissertationis prodromus, one of the most important bo- ok in the beginning of geology, was published at Florence in 1669. -
Hutton, Kelvin, and the Great Earth Debates. • the Beginnings of Modern Geology “All Natural Processes That Affect the Earth’S Crust (Erosion, Deposition, • Ca
Chapter 1 The Science of Geology An Introduction to Geology • Geology - the science that pursues an understanding of planet Earth • Physical geology - examines the materials composing Earth and seeks to understand the many processes that operate beneath and upon its surface • Historical geology - seeks an understanding of the origin of “If there is an interesting place you want to go, there is Earth and its development interesting geology that you can study there” through time Mersin ophiolite, (Cappadocia, Central Turkey). Turkey The Science of Geology The Science of Geology 1.3: satellite image of Mt. Vesuvius, Italy. • Some historical views • Geology, people, and the environment of the Earth • Many important relationships exist between • Aristotle, 300 BC; people and the natural environment • James Ussher, ca. 1600, ‘Earth was created in Problems and issues 4004 BC;’ addressed by • Catastrophism geology include • Earth’s features formed through • Natural hazards, sudden and violent resources, world changes. ‘The Dog population growth, of and environmental Pompeii’ issues Dwelling in Goreme, Cappadocia The Science of Geology Hutton, Kelvin, and the great Earth debates. • The beginnings of modern geology “All natural processes that affect the Earth’s crust (erosion, deposition, • ca. 1780, James Huton’s volcanic eruptions, faulting, glaciation Theory of the Earth; etc.) operate with the same intensity • Uniformitarianism: “the and under the same set of physical processes that operate constraints now as in the geologic past.” today have operated in “(as to the age of Earth) we see no the past.” vestige of a beginning, no prospect of • a uniformitarian view of an end.” Earth requires a vast These points are incorrect - why? amount of time…. -
Jan Kochanowski University Press
Jan Kochanowski University Press This is a contribution from Token: A Journal of English Linguistics Volume 8/2019. Edited by John G. Newman, Marina Dossena and Sylwester Łodej. Special Editors for volume 8: Giovanni Iamartino and Irma Taavitsainen. © 2019 Jan Kochanowski University Press. Token: A Journal of English Linguistics 8, 2019 Italy and the Royal Society: Medical papers in the early Philosophical Transactions Lucia Berti University of Milan ABSTRACT During the first years of the Royal Society’s existence, a whole network of natural philosophical exchanges was set up between the Fellows and foreign gentlemen interested in the study of nature. From the exchanges with Italy, medicine appears to be one of the major topics of interest; and a series of medical papers based on Italian researches appear in the Society’s journal, the Philosophical Transactions (PT). This article is a linguistic and socio-historical analysis of 25 medical papers published in the PT in the first fifty years of its existence. The selected articles were either translations of Italian writings or reports of Italian research. The purpose of the study is: (1) to illustrate from a linguistic and socio-cultural point of view the nature of Italian medical contributions to the early PT; and (2) to investigate Anglo-Italian relations through the Royal Society’s medical interaction with Italians by analysing the PT articles and further contextual resources from a critical perspective. Keywords: Anglo-Italian relations, medical writing, Philosophical Transactions, Royal Society, seventeenth century. And your own intelligence will spur you on, without the urging of others, to inform yourself about these matters; in the same way you will be led, without doubt, to encourage all the keen minds of Italy to employ their talents in advancing the sciences and the arts by observations and experiments faithfully and diligently performed. -
Geologic Models and Evaluation of Undiscovered Conventional and Continuous Oil and Gas Resources— Upper Cretaceous Austin Chalk, U.S
Geologic Models and Evaluation of Undiscovered Conventional and Continuous Oil and Gas Resources— Upper Cretaceous Austin Chalk, U.S. Gulf Coast Scientific Investigations Report 2012–5159 U.S. Department of the Interior U.S. Geological Survey Front Cover. Photos taken by Krystal Pearson, U.S. Geological Survey, near the old Sprinkle Road bridge on Little Walnut Creek, Travis County, Texas. Geologic Models and Evaluation of Undiscovered Conventional and Continuous Oil and Gas Resources—Upper Cretaceous Austin Chalk, U.S. Gulf Coast By Krystal Pearson Scientific Investigations Report 2012–5159 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Pearson, Krystal, 2012, Geologic models and evaluation of undiscovered conventional and continuous oil and gas resources—Upper Cretaceous Austin Chalk, U.S. -
Report Case Study 25
EXECUTIVE SUMMARY 1. Brief Description of item(s) 294 manuscript notebooks of the geologist Sir Charles Lyell (1797-1875). In two series: 263 numbered notebooks, 1825-1874, on geology, natural history, social and political subjects; 31 additional notebooks, 1818-1871, with indices. Mostly octavo format. For details see Appendix 1. In good condition. 2. Context The nineteenth century saw public debate about how to conduct science reach new heights. Charles Lyell was a pivotal figure in the establishment of geology as a scientific discipline; he also transformed ideas about the relationship between human history and the history of the earth. Above all, he revealed the significance of ‘deep time’. At a time when the Anglican church dominated intellectual culture, geology was a controversial subject. Lyell played a significant part in separating the practice of science from that of religion. Through his major work, The Principles of Geology, he developed the method later adopted by Darwin for his studies into evolution. Lyell observed natural phenomena at first hand to infer their underlying causes, which he used to interpret the phenomena of the past. The method stressed not only a vast geological timescale, but also the ability of small changes to produce, eventually, large ones. The Principles combined natural history, theology, political economy, anthropology, travel, and geography. It was an immediate success, in Britain, Europe, North America and Australia. Scientists, theologians, leading authors, explorers, artists, and an increasingly educated public read and discussed it. Lyell’s inductive method strongly influenced the generation of naturalists after Darwin. Over the rest of his life, Lyell revised the Principles in the light of new research and his own changing ideas. -
Catastrophism and Uniformitarianism: Logical Roots and Current Relevance in Geology
Downloaded from http://sp.lyellcollection.org/ by guest on September 29, 2021 Catastrophism and uniformitarianism" logical roots and current relevance in geology VICTOR R. BAKER Department of Hydrology and Water Resources, The University of Arizona, Tucson, AZ 85721-0011, USA Abstract, Catastrophism in the Earth sciences is rooted in the view that Earth signifies its causative processes via landforms, structures and rock. Processes of types, rates and magnitudes not presently in evidence may well be signified this way. Uniformitarianism, in contrast, is a regulative stipulation motivated by the presumed necessity that science achieves logical validity in what can be said (hypothesized) about the Earth. Regulative principles, including simplicity, actualism and gradualism, are imposed a priori to insure valid inductive reasoning. This distinction lies at the heart of the catastrophist versus uniformitarian debates in the early nine- teenth century and it continues to influence portions of the current scientific program. Uniform- itarianism, as introduced by Charles Lyell in 1830, is specifically tied to an early nineteenth century view of inductive inference. Catastrophism involves a completely different form of inference in which hypotheses are generated retroductively. This latter form of logical inference remains relevant to modern science, while the outmoded notions of induction that warranted the doctrine of uniformitarianism were long ago shown to be overly restrictive in scientific practice. The latter should be relegated solely to historical interest in the progress of ideas. On 4 July 1997, the Mars Pathfinder spacecraft Antarctic ice, was interpreted as showing various made a highly successful landing in the Ares Vallis indicators of possible relic biogenic activity region of Mars.