In Retrospect: Leibniz's Protogaea

Total Page:16

File Type:pdf, Size:1020Kb

In Retrospect: Leibniz's Protogaea NATURE|Vol 455|4 September 2008 OPINION In Retrospect: Leibniz’s Protogaea The first English translation of Gottfried Leibniz’s earth science treatise records the difficulties of understanding our planet before geologists appreciated deep time, Richard Fortey discovers. Protogaea When considering the origin of minerals, by Gottfreid Wilhelm Leibniz Leibniz has an intuitive sense that a kind Translated by Claudine Cohen and of natural cookery is involved: “One is thus Andre Wakefield inclined to suspect that nature, using volca- University of Chicago Press: 2008. noes as furnaces and mountains as alembics, 204 pp. $55. has accomplished in her mighty works what we play at with our little examples [in labo- It is something of a game among historians ratories].” That the furnaces of the ‘chymist’ to try and detect the earliest hints of a major might simulate Earth’s processes is a hope scientific breakthrough in a little-known work that still drives research into petrology and discovered through recondite scholarship. geochemistry today. Charles Darwin’s supposed debt to his grandfa- Why then did Leibniz’s shrewd obser- ther Erasmus is an example, or maybe geologist vations fail to move geology significantly Charles Lyell’s insufficient acknowledgement towards becoming a mature science? For all its of the early geological work of Nicolaus Steno. insights, Protogaea does not seem to a modern When the savant in question is Gottfried Wil- geologist like the natural ancestor of Lyell’s helm Leibniz (1646–1716) — the man who Principles of Geology. The missing ingredient developed calculus independently of Isaac is an awareness of geological time. Leibniz did Newton — hidden insights might genuinely not place the biblical timescale centrally in his be anticipated. Here was a prolific thinker of science — he was actually very restrained in range and profundity. His Protogaea, a post- invoking the Creator. A short timescale was humously published 1749 treatise on earth simply a given, so widely accepted that he did sciences, has now been translated from its not have to restate it. Even Leibniz’s evident original Latin into English for the first time, awareness of events such as major incursions and bears a title that chimes with our current of the sea over what is now dry land did not concerns about global ecosystems. What did The ‘unicorn’ of Quedlinburg fooled even Leibniz. challenge his view. Geology without time is the great man make of the history of Earth? rather like chemistry without elements: a As he states in the book, Leibniz intended of nature’. He was reacting against philosophers collection of plausible narratives is possible; to develop “the seeds of a new science called such as Athanasius Kircher, who “claim the a rational basis for predictive science is not. natural geography”. The original text would great architect, as if in jest, had imitated the More mundanely, it was also difficult to have been readily comprehensible to his con- teeth and bones of animals, shells or snakes”. travel in the eighteenth century. Leibniz had temporaries, and must surely have seeped into Leibniz was certain that God had much more to rely on the observations of others simply subsequent thoughts about geology. Indeed, serious purposes than planting simulacra in because wide-scale fieldwork was almost had his book been a more complete account, the rocks. Glossopetrae, or ‘tongue stones’, are impossible. Armchair speculation was inevi- ‘geology’ might have been a stillborn term. shark’s teeth, he states, nothing more or less. He table, despite Leibniz’s careful affirmation of As it is, Leibniz picks out facts derived from recognizes ammonites and other fossil shells as his own observations. The true complexity his own observations, from his network of cor- having more than a passing similarity to their of Earth’s history did not begin to be exposed respondence with other natural philosophers, living relatives. The philosophical mind at until French geologists started work in the and from his wide reading of those he regards as work in these passages is of a modern, sceptical Auvergne and the Paris basin, and until James trustworthy observers. His text briefly touches cast, highlighting that Leibniz was well ahead Hutton developed his theory of deep geological on many geological phenomena, from the for- of most of his contemporaries. time in Scotland. The improvement of roads mation of mountains to the origin of minerals Even Leibniz is occasionally credulous. One and canals, and then the advent of railways, and particularly fossils, which in this new trans- illustration in the book shows the unicorn of allowed for different local geological narratives lation are well illustrated by reproductions of Quedlinburg, a chimera of several mammals that to be stitched together. Earth science has sub- the original contemporary woodcuts. Leibniz was ‘discovered’ in 1663. “The horn, together sequently developed to recognize our planet as was unusually scathing for his time about those with the head, several ribs, dorsal vertebrae and an interconnected system that has evolved over who ‘see’ miraculous religious resemblances in bones were brought to the town’s serene abbess”, billions of years. Leibniz’s world is an incom- natural objects, and wrote: “credulity fills in the Leibniz confides, evidently deeming the words plete patchwork of local stories. ■ rough outlines shaped by accident”. Richard of this particular local eyewitness reliable. None- Richard Fortey is a research associate at the Dawkins could not have put it better. theless, he takes on board the field examples Natural History Museum, Cromwell Road, Presciently, Leibniz is equally clear about the described by Steno that show how a sequence London SW7 5BD, UK. He is author of The Earth: organic nature of many fossils: fish preserved of strata revealed something of Earth’s history. An Intimate History. in slates are exactly that and not mere ‘games Scientific narrative was only a step away. e-mail: [email protected] 35.
Recommended publications
  • The Wyley History of the Geologists' Association in the 50 Years 1958
    THE WYLEY HISTORY OF THE GEOLOGISTS’ ASSOCIATION 1958–2008 Leake, Bishop & Howarth ASSOCIATION THE GEOLOGISTS’ OF HISTORY WYLEY THE The Wyley History of the Geologists’ Association in the 50 years 1958–2008 by Bernard Elgey Leake, Arthur Clive Bishop ISBN 978-0900717-71-0 and Richard John Howarth 9 780900 717710 GAHistory_cover_A5red.indd 1 19/08/2013 16:12 The Geologists’ Association, founded in 1858, exists to foster the progress and Bernard Elgey Leake was Professor of Geology (now Emeritus) in the diffusion of the science of Geology. It holds lecture meetings in London and, via University of Glasgow and Honorary Keeper of the Geological Collections in the Local Groups, throughout England and Wales. It conducts field meetings and Hunterian Museum (1974–97) and is now an Honorary Research Fellow in the School publishes Proceedings, the GA Magazine, Field Guides and Circulars regularly. For of Earth and Ocean Sciences in Cardiff University. He joined the GA in 1970, was further information apply to: Treasurer from 1997–2009 and is now an Honorary Life Member. He was the last The Executive Secretary, sole editor of the Journal of the Geological Society (1972–4); Treasurer (1981–5; Geologists’ Association, 1989–1996) and President (1986–8) of the Geological Society and President of the Burlington House, Mineralogical Society (1998–2000). He is a petrologist, geochemist, mineralogist, Piccadilly, a life-long mapper of the geology of Connemara, Ireland and a Fellow of the London W1J 0DU Royal Society of Edinburgh. He has held research Fellowships in the Universities of phone: 020 74349298 Liverpool (1955–7), Western Australia (1985) and Canterbury, NZ (1999) and a e-mail: [email protected] lectureship and Readership at the University of Bristol (1957–74).
    [Show full text]
  • FALL 2017 President’S Reflections
    PriscumPriscum NEWSLETTER OF THE VOLUME 24, ISSUE 1 President’s Reflections Paleobiology, the finances of both journals appear secure for INSIDE THIS ISSUE: the foreseeable future, and with a much-improved online presence for both journals. To be sure, more work lies ahead, Report on Student but we are collaborating with Cambridge to expand our au- 3 Diversity and Inclusion thor and reader bases, and, more generally, to monitor the ever-evolving publishing landscape. Our partnership with The Dry Dredgers of 10 Cambridge is providing additional enhancements for our Cincinnati, Ohio members, including the digitization of the Society’s entire archive of special publications; as of this writing, all of the PS Embraces the 13 Hydrologic Cycle Society’s short course volumes are now available through the member’s portal, and all remaining Society publications will be made available soon. We are also exploring an exciting PS Events at 2017 GSA 14 new outlet through Cambridge for all future Special Publica- By Arnie Miller (University of tions. Stay tuned! Book Reviews 15 Cincinnati), President In my first year as President, the Society has continued to These are challenging times for move forward on multiple fronts, as we actively explore and Books Available for 28 scientists and for the profes- pursue new means to carry out our core missions of enhanc- Review Announcement sional societies that represent ing and broadening the reach of our science and of our Socie- them. In the national political ty, and providing expanded developmental opportunities for arena, scientific findings, policies, and funding streams that all of our members.
    [Show full text]
  • French Geothermal Resources Survey BRGM Contribution to the Market Study in the LOW-BIN Project
    French geothermal resources survey BRGM contribution to the market study in the LOW-BIN project BRGM/RP - 57583 - FR August, 2009 French geothermal resources survey BRGM contribution to the market study in the LOW-BIN project (TREN/05/FP6EN/S07.53962/518277) BRGM/RP-57583-FR August, 2009 F. Jaudin With the collaboration of M. Le Brun, V.Bouchot, C. Dezaye IM 003 ANG – April 05 Keywords: French geothermal resources, geothermal heat, geothermal electricity generation schemes, geothermal Rankine Cycle, cogeneration, geothermal binary plants In bibliography, this report should be cited as follows: Jaudin F. , Le Brun M., Bouchot V., Dezaye C. (2009) - French geothermal resources survey, BRGM contribution to the market study in the LOW-BIN Project. BRGM/RP-57583 - FR © BRGM, 2009. No part of this document may be reproduced without the prior permission of BRGM French geothermal resources survey BRGM contribution to the market study in the LOW-BIN Project BRGM, July 2009 F.JAUDIN M. LE BRUN, V. BOUCHOT, C. DEZAYE 1 / 33 TABLE OF CONTENT 1. Introduction .......................................................................................................................4 2. The sedimentary regions...................................................................................................5 2.1. The Paris Basin ........................................................................................................5 2.1.1. An overview of the exploitation of the low enthalpy Dogger reservoir ..............7 2.1.2. The geothermal potential
    [Show full text]
  • Newsletter for Members of the Palaeontological Associationr Number 37 1998
    PAL A EONTOLOGY E W S L E T T E NThe Newsletter for members of the Palaeontological AssociationR Number 37 1998 http://www.nhm.ac.uk/paleonet/PalAss/PalAss.html Newsletter copy Information, whether copy as such or Newsletter messages, review material, news, emergencies and advertising suggestions, can be sent in writing to Dr Sue Rigby, Dept of Geology and Geophysics, Grant Institute, West Mains Road, Edinburgh EH9 3JW; fax 0131 668 3184; email [email protected]. It would be 1 helpful if longer items of copy could be sent on a 3 /2" disk with text in Microsoft Word, WordPerfect or ASCII format. Disks clearly marked with the owner's name and address will be returned as soon as possible. The Newsletter is produced by Meg Stroud, and printed by Edinburgh University Printing Services. Deadline for copy for Issue No. 38 is 22nd May 1998. Palaeontological Association on the Internet The Palaeontological Association has its own pages on the World Wide Web, including information about the Association, and copies of the Newsletter. Site-keeper Mark Purnell can be reached by email at [email protected]. The locator is: http://www.nhm.ac.uk/paleonet/PalAss/PalAss.html Advertising in the Newsletter Advertising space in the Newsletter will be made available at the rates given below to any organisation or individual provided the content is appropriate to the aims of the Palaeontological Association. Association Members receive a 30% discount on the rates listed. All copy will be subjected to editorial control. Although every effort will be made to ensure the bona fide nature of advertisements in the Newsletter, the Palaeontological Association cannot accept any responsibility for their content.
    [Show full text]
  • Newsletter of the History of Geology Group of the Geological Society Of
    Number 30 May 2007 HOGGHOGG NewsletterNewsletter of of thethe HistoryHistory ofof GeologyGeology GroupGroup ofof thethe GeologicalGeological SocietySociety ofof LondonLondon HOGG Newsletter No.30 May 2007 Front Cover: Background: Section through burnt and unburnt oil shales at Burning Cliff near Clavells Hard, Kimmeridge, Dorset. Oil Rig: ‘The first deep well in the UK, Portsdown No1, was spudded in January 1936 on Portsdown Hill overlooking Portsmouth harbour. This was the first deep well test drilling in the UK, drilling into a strong 'anticline'. The well penetrated 6556 feet of Jurassic rocks and Triassic rocks finding a small quantity of oil at one level only. Several other sites in the Hampshire, Dorset and Sussex regions were also drilled and small quantities of oil were found but the wells were abandoned due to the poor devel- opment of the reservoir beds. Operations were moved to the Midlands and the North resulting eventu- ally in a major find close to the village of Eakring in Nottinghamshire at Dukes Wood which is now the site of the Dukes Wood Oil Museum’. (Cover image is from the Dukes Wood Oil Museum archives, with due acknowledgement; further infor- mation about this museum and the area of natural beauty surrounding it, can be found at: www.dukeswoodoilmuseum.co.uk/index.htm) Oil shales and the early exploration for oil onshore UK were the focus of a HOGG meeting in Weymouth in April. A report of that meeting appears elsewhere in this newsletter. Portrait: James ‘Paraffin’ Young. Web sourced image. The History of Geology
    [Show full text]
  • Report Case Study 25
    EXECUTIVE SUMMARY 1. Brief Description of item(s) 294 manuscript notebooks of the geologist Sir Charles Lyell (1797-1875). In two series: 263 numbered notebooks, 1825-1874, on geology, natural history, social and political subjects; 31 additional notebooks, 1818-1871, with indices. Mostly octavo format. For details see Appendix 1. In good condition. 2. Context The nineteenth century saw public debate about how to conduct science reach new heights. Charles Lyell was a pivotal figure in the establishment of geology as a scientific discipline; he also transformed ideas about the relationship between human history and the history of the earth. Above all, he revealed the significance of ‘deep time’. At a time when the Anglican church dominated intellectual culture, geology was a controversial subject. Lyell played a significant part in separating the practice of science from that of religion. Through his major work, The Principles of Geology, he developed the method later adopted by Darwin for his studies into evolution. Lyell observed natural phenomena at first hand to infer their underlying causes, which he used to interpret the phenomena of the past. The method stressed not only a vast geological timescale, but also the ability of small changes to produce, eventually, large ones. The Principles combined natural history, theology, political economy, anthropology, travel, and geography. It was an immediate success, in Britain, Europe, North America and Australia. Scientists, theologians, leading authors, explorers, artists, and an increasingly educated public read and discussed it. Lyell’s inductive method strongly influenced the generation of naturalists after Darwin. Over the rest of his life, Lyell revised the Principles in the light of new research and his own changing ideas.
    [Show full text]
  • Mesozoic and Cenozoic Sequence Stratigraphy of European Basins
    Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3789969/9781565760936_frontmatter.pdf by guest on 26 September 2021 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3789969/9781565760936_frontmatter.pdf by guest on 26 September 2021 MESOZOIC AND CENOZOIC SEQUENCE STRATIGRAPHY OF EUROPEAN BASINS PREFACE Concepts of seismic and sequence stratigraphy as outlined in To further stress the importance of well-calibrated chronos- publications since 1977 made a substantial impact on sedimen- tratigraphic frameworks for the stratigraphic positioning of geo- tary geology. The notion that changes in relative sea level shape logic events such as depositional sequence boundaries in a va- sediment in predictable packages across the planet was intui- riety of depositional settings in a large number of basins, the tively attractive to many sedimentologists and stratigraphers. project sponsored a biostratigraphic calibration effort directed The initial stratigraphic record of Mesozoic and Cenozoic dep- at all biostratigraphic disciplines willing to participate. The re- ositional sequences, laid down in response to changes in relative sults of this biostratigraphic calibration effort are summarized sea level, published in Science in 1987 was greeted with great, on eight charts included in this volume. albeit mixed, interest. The concept of sequence stratigraphy re- This volume also addresses the question of cyclicity as a ceived much acclaim whereas the chronostratigraphic record of function of the interaction between tectonics, eustasy, sediment Mesozoic and Cenozoic sequences suffered from a perceived supply and depositional setting. An attempt was made to estab- absence of biostratigraphic and outcrop documentation. The lish a hierarchy of higher order eustatic cycles superimposed Mesozoic and Cenozoic Sequence Stratigraphy of European on lower-order tectono-eustatic cycles.
    [Show full text]
  • The Cenozoic History of the Armorican Massif: New Insights
    C. R. Geoscience 348 (2016) 387–397 Contents lists available at ScienceDirect Comptes Rendus Geoscience ww w.sciencedirect.com Stratigraphy, Sedimentology The Cenozoic history of the Armorican Massif: New insights from the deep CDB1 borehole (Rennes Basin, France) a, b c d Hugues Bauer *, Paul Bessin , Pierre Saint-Marc , Jean-Jacques Chaˆteauneuf , e a f Chantal Bourdillon , Robert Wyns , Franc¸ois Guillocheau a Bureau de recherches ge´ologiques et minie`res (BRGM), 3, avenue Claude-Guillemin, 45060 Orle´ans cedex 2, France b Universite´ du Maine, Ge´osciences Le Mans, avenue Olivier-Messiaen, 72085 Le Mans cedex 09, France c SEMM Logging, Les Maufras, 18360 Vesdun, France d BRGM (retired), 8, quai du Chaˆtelet, 45000 Orle´ans, France e ERADATA, 170, avenue Fe´lix-Geneslay, 72100 Le Mans, France f Universite´ de Rennes-1, UMR 6118 Ge´osciences Rennes, campus de Beaulieu, 35042 Rennes cedex, France A R T I C L E I N F O A B S T R A C T Article history: Borehole CDB1 (675.05 m) crosses the deepest Cenozoic sedimentary basin of the Received 30 November 2015 Armorican Massif, the Rennes Basin, to reach the underlying basement at a depth of Accepted after revision 25 February 2016 404.92 m, made up of the Late Neoproterozoic to Early Cambrian Brioverian Group, Available online 31 March 2016 weathered down to 520 m depth. The basin’s Cenozoic deposits are divided into seven formations, ranging from Early–Middle Bartonian to Late Pliocene in age. Coastal Handled by Sylvie Bourquin sediments at the very base, along with a thick Priabonian lacustrine episode, imply a major revision of the regional palaeogeography, whilst a very steady and low-energy lacustrine- Keywords: palustrine environment throughout the Priabonian and Early Rupelian argue for an Eocene aggradational system associated with uniform subsidence.
    [Show full text]
  • Estimating the Ultimate Recoverable Reserves of the Paris Basin, France
    Oil & Gas Science and Technology – Rev. IFP, Vol. 57 (2002), No. 6, pp. 621-629 Copyright © 2002, Éditions Technip Estimating the Ultimate Recoverable Reserves of the Paris Basin, France J. Wendebourg1 and C. Lamiraux2 1 Institut français du pétrole, 1 et 4, avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex - France 2 Direction générale de l’énergie et des matière premières (DGEMP), 41, boulevard Vincent Auriol, 75703 Paris Cedex 13 - France e-mail: [email protected] Résumé — Estimation des réserves ultimes récupérables du Bassin parisien, France — Le Bassin parisien est un bassin mature en exploration pétrolière. Pas moins de 800 puits exploratoires ont été forés pendant les 40 dernières années et 52 champs de pétrole ont été découverts : 33,4 Mt de pétrole ont été produits jusqu’en 2000. Le potentiel du Bassin parisien est estimé à l’aide de méthodes statistiques. La taille moyenne d’un champ est de 100 000 t avec une probabilité de 5 % de trouver un champ de plus de 2,5 Mt. Les réserves ultimes récupérables étaient de 15 Mt en 1986, 29 Mt en 1991 et 46 Mt en 1996. Aujourd’hui, il y a une probabilité de 5 % de trouver un champ de plus de 4 Mt dans les grès du Dogger ou du Keuper. Le taux de succès augmente de 1/66 dans la formation du Néocomien, le réservoir le moins profond, à 1/8 dans le Keuper, le réservoir le plus profond et le plus récemment foré. L’analyse présentée s’appuie sur des données de production et ne prend pas en compte une production supplémentaire éventuelle grâce à des méthodes de récupération assistée ou grâce à des découvertes basées sur de nouveaux concepts d’exploration, susceptibles d’augmenter les réserves de façon significative, bien au-delà des chiffres présentés comme cela est démontré par l’analyse de la courbe crémière.
    [Show full text]
  • Originally Published As
    Originally published as: Schintgen, T. V., Förster, A. (2013): Geology and basin structure of the Trier-Luxembourg Basin - implications for the existence of a buried Rotliegend graben. - Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 164, 4, p. 615-637(23). DOI: http://doi.org/10.1127/1860-1804/2013/0025 Geology and basin structure of the Trier–Luxembourg Basin – implications for the existence of a buried Rotliegend graben Tom Schintgen, Andrea Förster Published in: Z. Dt. Ges. Geowiss. 164 (4), 615–637. http://dx.doi.org/10.1127/1860-1804/2013/0025 Geology and basin structure of the Trier–Luxembourg Basin Abstract This paper presents the geology of the TrierLuxembourg Basin (TLB) in a comprehensive and updated manner. It describes the structural and lithological features of the basin, which comprises sediments of Permian to Mesozoic age. The regional geological assessment profited from recently published information on the geology and regional tectonics, as well as from borehole data from Luxembourg and adjoining areas in France, Belgium and Germany. The paper specifically focuses on the location of major synsedimentary faults and weakness zones, which gave rise to a new conceptual model of basin structure and evolution. The total depth of the basin as well as the thickness estimates of the fault-controlled subunits are supported by the interpretation of a Bouguer gravity map. In addition, the stratigraphy of the Cessange borehole and the depositional conditions of the Luxembourg Sandstone have been reinterpreted in accordance with the new concept. Supported by numerous geological cross sections it is suggested that the TLB has developed along a SW–NE trending weakness zone above a Permian Graben in direct prolongation of the Wittlicher Senke.
    [Show full text]
  • Newsletter Number 38
    PAL A EONTOLOGY N E W S L E T T E R The Newsletter for members of the Palaeontological Association Number 38 1998 http://www.nhm.ac.uk/hosted_sites/paleonet/PalAss/PalAss.html Newsletter copy Information, whether copy as such or Newsletter messages, review material, news, emergencies and advertising suggestions, can be sent in writing to Dr Sue Rigby, Dept of Geology and Geophysics, Grant Institute, West Mains Road, Edinburgh EH9 3JW; fax 0131 668 3184; email [email protected]. It would be helpful if 1 longer items of copy could be sent on a 3 /2" disk with text in Microsoft Word, ClarisWorks or ASCII format. Disks clearly marked with the owner's name and address will be returned as soon as possible. The Newsletter is produced by Meg Stroud, and printed by Edinburgh University Printing Services. Deadline for copy for Issue No. 39 is 9th October 1998. Palaeontological Association on the Internet The Palaeontological Association has its own pages on the World Wide Web, including information about the Association, and copies of the Newsletter. Site-keeper Mark Purnell can be reached by email at [email protected]. The locator is: http://www.nhm.ac.uk/hosted_sites/paleonet/PalAss/PalAss.html Advertising in the Newsletter Advertising space in the Newsletter will be made available at the rates given below to any organisation or individual provided the content is appropriate to the aims of the Palaeontological Association. Association Members receive a 30% discount on the rates listed. All copy will be subjected to editorial control. Although every effort will be made to ensure the bona fide nature of advertisements in the Newsletter, the Palaeontological Association cannot accept any responsibility for their content.
    [Show full text]
  • 75 Proc. 7Th NZ Geothermal Workshop 1985 JEAN-MICHEL COUDERT
    75 Proc. 7th NZ Geothermal Workshop 1985 REINJECTION: A FRENCH APPROACH JEAN-MICHEL COUDERT Gkothermal Public Service, BRGN, BP 6009, 45060 Orleans Cedex, France. The' Paris Basin ABSTRACT This large sedimentary basin, 3 km deep under the Brie, extends a5 far as England. It is distin- This paper gives a brief introduction to the guished by calm tectonics, with the geological geothermal resources of France. These are all of beds arranged regularly like a stack of plates, the low temperature (T < 100°C) type, initially and by the considerable development of porous identified in the sedimentary basins by petroleum formations. Hence the resource displays a exploration. "continuous" character. The geothermal "doublet" reinjection technique is The main aquifers appearing in the section (Fig. described. More than 40 doublets have been - 2) are designated by their standard geological drilled and are exploited in the Paris Basin. name. These geothermal developments have taken place only during the past 6 years, and so far no major A well drilled at the centre of the basin will problems have occurred. Mathematical modelling encounter the following sequence: has been carried out, and computer programs developed. Albian and Neocomian sands: the water is fresh and the temperature about 30°C under the Paris urban area. These aquifers are tapped for air- conditioning of buildings (the Albian for the Introduction National Radio Agency in 1956 and the Neocomian at Bruysres-le-Chhtel, south of Paris, in 1980). In 1973 France was importing 80% of its energy. Very stringent legislation now protects the Albian Among major occidental countries only Japan and aquifer, which was over-used at the turn of the Italy were more dependent on energy imports.
    [Show full text]