Lyell's Principles of Geology: Foundations of Sedimentology

Total Page:16

File Type:pdf, Size:1020Kb

Lyell's Principles of Geology: Foundations of Sedimentology Downloaded from http://sp.lyellcollection.org/ by guest on September 27, 2021 Part 2. Lyell and the development of geological science One could be forgiven for thinking that basin evolution and dynamics was a field of study developed in the later part of the twentieth century. The rapid rise in sedimentology and basin analysis would support this view. In attempting to understand, and give credit for, the origin of a particular discipline, there is often a need to identify individuals who may be regarded as the founder. Clearly with sedimentology such a man was Sorby. In his contribution, Mike Leeder argues that a case can be made that it was Lyell rather than Sorby who was the true originator of sedimentology and basin analysis. Leeder critically analyses Lyell's sedimentological descriptions and field observation as published in the Principles. Leeder demonstrates that Lyell grasped many concepts both of processes and products, indeed he recognized a number of sophisticated sedimentological concepts. Leeder further documents Lyell's willingness to abandon firmly held views. It is also clear that Lyell was not anticatastrophist as is often claimed. From Leeder's analysis it is firmly established that Lyell was engaged in and indeed contributed to establishing geology as a truly scientific discipline. Of major interest to Lyell was the concept of geological time and its divisions. Lyell's studies on Tertiary molluscs and the establishment of geological periods based upon their percentage similarity to modern forms is well known. William Berggren discusses the development of Cenozoic stratigraphy including Lyell's terms Eocene, Miocene, Pliocene and Pleistocene and suggests changes to current nomenclature and concepts. The establishment of time as a major element in geological ideas and the recognition of changing faunas and floras through time caused many difficulties to geologists in the nineteenth century. In his early work, as Tony Hallam points out, Lyell argued against organic progression. However, as data accumulated, Lyell eventually began to accept some kind of organic progression in the stratigraphic record whilst still believing in the imperfection of the fossil record. Hallam argues that it is not fair to criticize Lyell for his late and lukewarm conversion to evolution. Joe Burchfield takes the concept of time a step further and gives a considered account of how, through the course of the nineteenth century, Lyell and his contemporaries developed ideas from a general impression of the vastness of geological time to the clear recognition of a geological history of the Earth as a succession of events in the stratigraphic record and attempts to determine a chronology for the age of the Earth. If the general concensus at the end of the century gave the Earth an age of c. 100 Ma, to be disproved within a decade, no matter, the concept of geological time had been established and with it the essential scientific basis to quantify the rates of geological processes. Rapid climatic change and Quaternary glaciation provided a major challenge to Lyell. Patrick Boylan in his paper discusses Lyell's work in relation to the Glacial Theory of Louis Agassiz. Boylan documents the intensive field research of Lyell centred on his Scottish estate at Kinnordy. Lyell at first supported the Glacial Theory but hostility by a number in the Geological Society persuaded Lyell to revert to his earlier views of the importance of floating icebergs. However, by the end of his life he had begun to accept some highland glaciations but still continued to attribute deposits of the 'Glacial Period' to submergence. Whilst Lyell continued to have problems with the Glacial Theory, he was still particularly interested in climate change. In his paper, James Fleming examines Lyell's position on climatic change in geological and historical times, and explores the mutual influence of Lyell with James Croll who was a proponent of an astronomical theory of Ice ages. Clearly the period of Charles Lyell's active geological life was one when numerous important astronomical discoveries were being made and many theories being advanced about climate change. Fleming argues that Lyell was slow in modifying his views on climate change but only because he tempered his judgements with solid evidence gathered from the record of the rocks- a lesson we might all learn! It is clear from many of the contributions in this volume that labelling Lyell simply as a uniformitarianist who did not entertain catastrophes was not correct. Baker argues that working scientists are prone to misconceptions as to the relationship of philosophy to science. The 'new catastrophism' that Baker proposes is rooted in firm geological observation. Finally, in this section, Lyell Professor John Mather relates the historical development of hydrogeology in Britain through the nineteenth century, a subject of passing interest to Charles Lyell which was advanced in his day by geologists who needed practical solutions to locating groundwater supplies to support the growing industrialization of the nation. Lyell recognized that rainwater percolated through the ground to issue forth as springs at the junction of permeable and impermeable strata, and was interested in this as an Downloaded from http://sp.lyellcollection.org/ by guest on September 27, 2021 96 PART 2 aspect of the Earth's surface processes. But it was really only in the latter half of the century that the science of hydrogeology was established and hydrogeological maps were published. Derek J. Blundell Andrew C. Scott Downloaded from http://sp.lyellcollection.org/ by guest on September 27, 2021 Lyell's Principles of Geology: foundations of sedimentology M. R. LEEDER School of Earth Sciences, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK Abstract: This chapter examines the extensive arguments Lyell brought to bear on the interpretation of sedimentary rocks through the operation of 'present causes' in the first Edition of Principles of Geology (1830-1833). A case is made inter alia for Lyell, rather than Sorby, being the true originator of sedimentology and basin analysis, amongst much else of course. Lyell had a special interest in Earth surface processes, and the effects of tectonics and climate on them, because he saw that the evidence is firmly written in the sedimentary products of observable events. His own explanations for the sedimentary and geomorphic processes of erosion and deposition were acutely sensible: he analysed (in today's parlance) river avulsions, controls on delta morphology, oceanic brine pools, cross stratification, confluence bars, boundary layers, hydraulic geometry, debris flows, sediment budgets, alluvial basin architecture, and clinoforms. Much of Sorby's work in some of these areas must have been inspired by his reading of the Principles. Lyell was occasionally too much guided by theory, as in the famous sophistry of his 1830 analysis (in the first edition) of the sedimentary and geomorphological evidence for Holocene Fenno-Scandinavian uplift. His willingness in subsequent editions of Principles to abandon such firmly held views in the light of empirical and personally collected field evidence to the contrary presages his momentous decision to throw his weight behind Darwin's natural selection theories some 30 years later. Lyell was not so rigidly an anti-catastrophist and inductionist as is commonly made out. His writings make very clear his ability to state bold theories. For example, his discussions of climatic change and his concept of the 'great year' were outstandingly incisive, holistic and original. They include the role of land-sea interactions, ocean currents and precessional orbital cycles. He even considered the probablity that continents and oceans changed position, albeit by vertical movements. The motive for all this came from observations he and others had made on the distribution of Cenozoic molluscs and the need for some general global cooling to explain these. He included in his actualism all manner of extreme (but not 'catastrophic') events, for example earthquakes and volcanic eruptions. He was also willing to consider (but then rejected) the possibility of catastrophes, most obviously in his discussion in the seventh edition of Principles (1846) of the possible 'lake-burst' of Lake Superior into the headwaters of the Mississippi. One feels he would have welcomed probability theory and the development of magnitude/frequency analysis, and that he would have laughed at any modern description of himself as the 'father of uniformitarianism'. It is tempting to view Charles Lyell as a remote Kennedy, who, according to his biographer (Sutton geological figure of only historical interest, with 1980, p. 301), during his distinguished tenure as little relevance today. The great work of his early Chair at Leeds (1946-1967), used to read through years, the first edition of Principles of Geology Principles before the beginning of each new acad- (Lyell 1830-1833), can thus be seen as a museum emic year to give himself the necessary inspiration item in the pantheon of early geological literature, for teaching. Nowadays the wide availability of the along with James Hutton's Theory of the Earth and first edition of Principles of Geology, via the William Smith's Geological Map of England and facsimile University of Chicago reprint, enables us Wales. This view is wrong, because geology is a all to confirm the essential modernity of much of special science in that much depends upon the Lyell's geological logic. Principles is an eternal primacy of field observations. Lyell was an acute stream from which we can all drink and refresh observer of Earth surface features and processes ourselves periodically. That the stream is a deep and the use of these in the interpretation of rocks. one, more than 1400 pages in total, is somewhat We can all relate to geologists of any age through off-putting but the majority of Lyell's views on their field observations; this stress on the empirical sedimentary topics are to be found concentrated in basis of geology is Lyell's hallmark, although, as volume 1, published in 1830.
Recommended publications
  • History of Geology
    FEBRUARY 2007 PRIMEFACT 563 (REPLACES MINFACT 60) History of geology Mineral Resources Early humans needed a knowledge of simple geology to enable them to select the most suitable rock types both for axe-heads and knives and for the ornamental stones they used in worship. In the Neolithic and Bronze Ages, about 5000 to 2500 BC, flint was mined in the areas which are now Belgium, Sweden, France, Portugal and Britain. While Stone Age cultures persisted in Britain until after 2000 BC, in the Middle East people began to mine useful minerals such as iron ore, tin, clay, gold and copper as early as 4000 BC. Smelting techniques were developed to make the manufacture of metal tools possible. Copper was probably the earliest metal to be smelted, that is, extracted from its ore by melting. Copper is obtained easily by reducing the green copper carbonate mineral malachite, itself regarded as a precious stone. From 4000 BC on, the use of clay for brick-making became widespread. The Reverend William Branwhite Clarke (1798-1878), smelting of iron ore for making of tools and the ‘father’ of geology in New South Wales weapons began in Asia Minor at about 1300 BC but did not become common in Western Europe until Aristotle believed volcanic eruptions and nearly 500 BC. earthquakes were caused by violent winds escaping from the interior of the earth. Since earlier writers had ascribed these phenomena to The classical period supernatural causes, Aristotle's belief was a By recognising important surface processes at marked step forward. Eratosthenes, a librarian at work, the Greek, Arabic and Roman civilisations Alexandria at about 200 BC, made surprisingly contributed to the growth of knowledge about the accurate measurements of the circumference of earth.
    [Show full text]
  • The Importance of French Transformist Ideas for the Second Volume of Lyell’S Principles of Geology Pietro Corsi
    The importance of french transformist ideas for the second volume of lyell’s principles of geology Pietro Corsi To cite this version: Pietro Corsi. The importance of french transformist ideas for the second volume of lyell’s principles of geology. 2004. halshs-00002894 HAL Id: halshs-00002894 https://halshs.archives-ouvertes.fr/halshs-00002894 Preprint submitted on 20 Sep 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE BRITISH JOURNAL FOR THE HISTORY OF SCIENCE Vol. II t No. 39 (1978) < 221 > THE IMPORTANCE OF FRENCH TRANSFORMIST IDEAS FOR THE SECOND VOLUME OF LYELL'S PRINCIPLES OF GEOLOGY PIETRO CORSI* RECENTLY there has been considerable revaluation of the development of natural sciences in the early nineteenth century, dealing among other things with the works and ideas of Charles Lyell. The task of interpreting Lyell in balanced terms is extremely complex because his activities covered many fields of research, and because his views have been unwarrantably distorted in order to make him the precursor of various modern scientific positions. Martin Rudwick in particular has contributed several papers relating to Lyell's Principles of geology, and has repeatedly stressed the need for a comprehensive evaluation of Lyell's scientific proposals, and of his position in the culture of his time.
    [Show full text]
  • The Geohistorical Time Arrow: from Steno's Stratigraphic Principles To
    JOURNAL OF GEOSCIENCE EDUCATION 62, 691–700 (2014) The Geohistorical Time Arrow: From Steno’s Stratigraphic Principles to Boltzmann’s Past Hypothesis Gadi Kravitz1,a ABSTRACT Geologists have always embraced the time arrow in order to reconstruct the past geology of Earth, thus turning geology into a historical science. The covert assumption regarding the direction of time from past to present appears in Nicolas Steno’s principles of stratigraphy. The intuitive–metaphysical nature of Steno’s assumption was based on a biblical narrative; therefore, he never attempted to justify it in any way. In this article, I intend to show that contrary to Steno’s principles, the theoretical status of modern geohistory is much better from a scientific point of view. The uniformity principle enables modern geohistory to establish the time arrow on the basis of the second law of thermodynamics, i.e., on a physical law, on the one hand, and on a historical law, on the other. In other words, we can say that modern actualism is based on the uniformity principle. This principle is essentially based on the principle of causality, which in turn obtains its justification from the second law of thermodynamics. I will argue that despite this advantage, the shadow that metaphysics has cast on geohistory has not disappeared completely, since the thermodynamic time arrow is based on a metaphysical assumption—Boltzmann’s past hypothesis. All professors engaged in geological education should know these philosophical–theoretical arguments and include them in the curriculum of studies dealing with the basic assumptions of geoscience in general and the uniformity principle and deep time in particular.
    [Show full text]
  • Hutton, Kelvin, and the Great Earth Debates. • the Beginnings of Modern Geology “All Natural Processes That Affect the Earth’S Crust (Erosion, Deposition, • Ca
    Chapter 1 The Science of Geology An Introduction to Geology • Geology - the science that pursues an understanding of planet Earth • Physical geology - examines the materials composing Earth and seeks to understand the many processes that operate beneath and upon its surface • Historical geology - seeks an understanding of the origin of “If there is an interesting place you want to go, there is Earth and its development interesting geology that you can study there” through time Mersin ophiolite, (Cappadocia, Central Turkey). Turkey The Science of Geology The Science of Geology 1.3: satellite image of Mt. Vesuvius, Italy. • Some historical views • Geology, people, and the environment of the Earth • Many important relationships exist between • Aristotle, 300 BC; people and the natural environment • James Ussher, ca. 1600, ‘Earth was created in Problems and issues 4004 BC;’ addressed by • Catastrophism geology include • Earth’s features formed through • Natural hazards, sudden and violent resources, world changes. ‘The Dog population growth, of and environmental Pompeii’ issues Dwelling in Goreme, Cappadocia The Science of Geology Hutton, Kelvin, and the great Earth debates. • The beginnings of modern geology “All natural processes that affect the Earth’s crust (erosion, deposition, • ca. 1780, James Huton’s volcanic eruptions, faulting, glaciation Theory of the Earth; etc.) operate with the same intensity • Uniformitarianism: “the and under the same set of physical processes that operate constraints now as in the geologic past.” today have operated in “(as to the age of Earth) we see no the past.” vestige of a beginning, no prospect of • a uniformitarian view of an end.” Earth requires a vast These points are incorrect - why? amount of time….
    [Show full text]
  • Report Case Study 25
    EXECUTIVE SUMMARY 1. Brief Description of item(s) 294 manuscript notebooks of the geologist Sir Charles Lyell (1797-1875). In two series: 263 numbered notebooks, 1825-1874, on geology, natural history, social and political subjects; 31 additional notebooks, 1818-1871, with indices. Mostly octavo format. For details see Appendix 1. In good condition. 2. Context The nineteenth century saw public debate about how to conduct science reach new heights. Charles Lyell was a pivotal figure in the establishment of geology as a scientific discipline; he also transformed ideas about the relationship between human history and the history of the earth. Above all, he revealed the significance of ‘deep time’. At a time when the Anglican church dominated intellectual culture, geology was a controversial subject. Lyell played a significant part in separating the practice of science from that of religion. Through his major work, The Principles of Geology, he developed the method later adopted by Darwin for his studies into evolution. Lyell observed natural phenomena at first hand to infer their underlying causes, which he used to interpret the phenomena of the past. The method stressed not only a vast geological timescale, but also the ability of small changes to produce, eventually, large ones. The Principles combined natural history, theology, political economy, anthropology, travel, and geography. It was an immediate success, in Britain, Europe, North America and Australia. Scientists, theologians, leading authors, explorers, artists, and an increasingly educated public read and discussed it. Lyell’s inductive method strongly influenced the generation of naturalists after Darwin. Over the rest of his life, Lyell revised the Principles in the light of new research and his own changing ideas.
    [Show full text]
  • Catastrophism and Uniformitarianism: Logical Roots and Current Relevance in Geology
    Downloaded from http://sp.lyellcollection.org/ by guest on September 29, 2021 Catastrophism and uniformitarianism" logical roots and current relevance in geology VICTOR R. BAKER Department of Hydrology and Water Resources, The University of Arizona, Tucson, AZ 85721-0011, USA Abstract, Catastrophism in the Earth sciences is rooted in the view that Earth signifies its causative processes via landforms, structures and rock. Processes of types, rates and magnitudes not presently in evidence may well be signified this way. Uniformitarianism, in contrast, is a regulative stipulation motivated by the presumed necessity that science achieves logical validity in what can be said (hypothesized) about the Earth. Regulative principles, including simplicity, actualism and gradualism, are imposed a priori to insure valid inductive reasoning. This distinction lies at the heart of the catastrophist versus uniformitarian debates in the early nine- teenth century and it continues to influence portions of the current scientific program. Uniform- itarianism, as introduced by Charles Lyell in 1830, is specifically tied to an early nineteenth century view of inductive inference. Catastrophism involves a completely different form of inference in which hypotheses are generated retroductively. This latter form of logical inference remains relevant to modern science, while the outmoded notions of induction that warranted the doctrine of uniformitarianism were long ago shown to be overly restrictive in scientific practice. The latter should be relegated solely to historical interest in the progress of ideas. On 4 July 1997, the Mars Pathfinder spacecraft Antarctic ice, was interpreted as showing various made a highly successful landing in the Ares Vallis indicators of possible relic biogenic activity region of Mars.
    [Show full text]
  • Geologic Time, Concepts, and Principles
    GEOLOGIC TIME, CONCEPTS, AND PRINCIPLES Sources: www.google.com en.wikipedia.org Thompson Higher Education 2007; Monroe, Wicander, and Hazlett, Physical orgs.usd.edu/esci/age/content/failed_scientific_clocks/ocean_salinity.html https://web.viu.ca/earle/geol305/Radiocarbon%20dating.pdf TCNJ PHY120 2013 GCHERMAN GEOLOGIC TIME, CONCEPTS, AND PRINCIPLES • Early estimates of the age of the Earth • James Hutton and the recognition of geologic time • Relative dating methods • Correlating rock units • Absolute dating methods • Development of the Geologic Time Scale • Geologic time and climate •Relative dating is accomplished by placing events in sequential order with the aid of the principles of historical geology . •Absolute dating provides chronometric dates expressed in years before present from using radioactive decay rates. TCNJ PHY120 2013 GCHERMAN TCNJ PHY120 2013 GCHERMAN Geologic time on Earth • A world-wide relative time scale of Earth's rock record was established by the work of many geologists, primarily during the 19 th century by applying the principles of historical geology and correlation to strata of all ages throughout the world. Covers 4.6 Ba to the present • Eon – billions to hundreds of millions • Era - hundreds to tens of millions • Period – tens of millions • Epoch – tens of millions to hundreds of thousands TCNJ PHY120 2013 GCHERMAN TCNJ PHY120 2013 GCHERMAN EARLY ESTIMATES OF EARTH’S AGE • Scientific attempts to estimate Earth's age were first made during the 18th and 19th centuries. These attempts all resulted in ages far younger than the actual age of Earth. 1778 ‘Iron balls’ Buffon 1710 – 1910 ‘salt clocks’ Georges-Louis Leclerc de Buffon • Biblical account (1600’S) 26 – 150 Ma for the oceans to become 74,832 years old and that as salty as they are from streams humans were relative newcomers.
    [Show full text]
  • The Evolution of Creationism
    The evolution of creationism David R. Montgomery, Quaternary Research Center and Dept. of (354–413), Thomas Aquinas (1225–1274), and John Calvin (1509– Earth and Space Sciences, Box 351310, University of Washington, 1564) all endorsed reason as the way to learn about the world. Seattle, Washington 98195-1310, USA, [email protected] Augustine was among the first to caution against advocating for biblical interpretations that conflicted with what one could I do not feel obliged to believe that the same God who has endowed observe for oneself. Centuries later, Aquinas praised the pursuit of us with senses, reason, and intellect has intended us to forego their knowledge and insight gained from experience reading God’s use. —Galileo Galilei other book—nature. Writing at the time of the Reformation, Calvin, too, considered ABSTRACT the revelations of both nature and the Bible as fundamental truths. In his Institutes of the Christian Religion (1559), Calvin For centuries, natural philosophers, their scientific successors, explicitly embraced the idea of respecting natural truths revealed and theologians alike sought to explain the physical and natural through the study of nature: “If we regard the Spirit of God as the world. The now common cultural narrative of perpetual conflict sole fountain of truth, we shall neither reject the truth itself, nor between science and religion simplifies the arguments and despise it wherever it shall appear, unless we wish to dishonor the struggles of the past and overlooks cross-pollination between Spirit of God” (McNeill, ed., 1960, p. 273–274). those who embraced faith and reason as the keys to understanding Calvin believed in keeping an open mind when it came to earth history.
    [Show full text]
  • The Discovery of Deep Time Sketches of Geologic Development
    Theories of the Earth The Discovery of Deep Time Sketches of Geologic Development The descriptions and biographies below accompany the two page flow chart titled “Theories of the Earth”. They flesh out the positions and personages and their role in the discovery of the Earth’s history. They are listed in the order of class discussion. Myth of the Eternal Return: The notion that the world has no beginning, and no end C The notion that the universe is eternal and time is cyclical, with events repeating over and over again - like the beating of a heart, the waxing and waning of the Moon, the cycling of the seasons. The Babylonians developed a cosmic model based on periodicities of the planets in which each Great Year lasts 424,000 years; in the ‘summer’, when all the planets congregate in the constellation Cancer, there is a great fire, and the ‘winter’, marked by a gathering in Capricorn, is greeted by a great flood.. In a cyclical universe it was impossible even to frame the question of an age of the Earth - for it hadn’t a beginning. C “The Myth of the Eternal Return” was formulated by Mircea Eliade in 1974: This is the earliest and most important of Eliade's books on comparative religions. He traces through the many scripts and dogmas of the world's official and unofficial (i.e., primitive) religions the myth of the eternal return. C From Mesopotamia mythology: "But Ishtar is all this and more. She is the reborn. .. Know, O Prince, that death is the source of life, life is the cause of death.
    [Show full text]
  • Darwin the Geologist
    Darwin the Geologist Léo F. Laporte, Earth Sciences, University of California, Santa Cruz, CA 95064, [email protected] On January 16, 1832, shortly before Charles Darwin’s 23rd and philosophy). birthday, H.M.S. Beagle, with the young Darwin aboard, made its Darwin’s enthusi- first stop at São Tiago in the Cape Verde islands off the west coast astic interest in of Africa. Years later, Charles Darwin wrote: science impressed The geology of St. Iago is very striking yet simple: a stream of these men, for lava formerly flowed over the bed of the sea, formed of tritu- they became his rated recent shells and corals, which it baked into a hard white mentors in vari- rock. Since then the whole island has been upheaved. But the ous ways. Thus, line of white rock revealed to me a new and important fact, despite his initial namely that there had been afterwards subsidence round the antipathy for Darwin in 1840 (age 31), painted by George Richmond. From de Beer (1964, p. 116). craters, which had since been in action, and had poured forth geology, Darwin lava. It then first dawned on me that I might write a book on spent the better the geology of the countries visited, and this made me thrill part of August with delight. That was a memorable hour to me.… (Autobiogra- phy, p. 81). 1831 on a geological tour of Wales with Adam Sedgwick, who was studying the rocks that he would later define as the Cambrian Today, few people are aware that Charles Darwin System.
    [Show full text]
  • Ebook Download Principles of Geology 1St Edition
    PRINCIPLES OF GEOLOGY 1ST EDITION PDF, EPUB, EBOOK Charles Lyell | 9780140435283 | | | | | Principles of Geology 1st edition PDF Book First Edition. Light foxing less than usually seen , light expert restoratiom to contemporary calf bindings. Outlines of the geology of England and Wales, with an introductory compendium of the general principles of that science, and comparative views of the structure of foreign countries. No Copyright - United States. American Scientist. Published by D. The signature on volume 1 is either in a secretaries hand or Lonsdale's, but the signature on Volume two is in Lyell's hand. Gilt title and emblem on the spine is bright. Mesozoic Coleoptera. Condition: Fine. October Published by London John Murray Seller Image. Published by London: W. Subject s : Natural and Physical Sciences ; Geology. United Kingdom. Red boards with gilt stamped title and emblem. Fundamentals of paleontology v 9. Norman We ship worldwide and all packages will be sent via UPS or Federal Express unless another carrier is requested. One opponent of Principles of Geology that agreed with this point was Adam Sedgwick. The second volume of Lyell's book reached Darwin in Montevideo and his constant references to the enormous influence on his thinking of this great work are typified by a letter from him to Leonard Horner saying 'I always feel as if my books came half out of Lyell's brain' Printing in the Mind of Man Volcanoes and earthquakes. This seems to be the only copy of this particular edition across all selling platforms. Condition: Very Good. Published by D. Frontispiece is a photograph of Twain, Garrett's illustrations are printed on clay-coated paper.
    [Show full text]
  • Science Abandons Uniformitarianism?
    Avondale College ResearchOnline@Avondale Science and Mathematics Conference Papers School of Science and Mathematics 12-2017 What a Catastrophe!― Science Abandons Uniformitarianism? Lynden Rogers Avondale College of Higher Education, [email protected] Follow this and additional works at: https://research.avondale.edu.au/sci_math_conferences Part of the Physical Sciences and Mathematics Commons, and the Religion Commons Recommended Citation Rogers, L. (2017). What a Catastrophe!― Science Abandons Uniformitarianism?. In L. Rogers (Ed.), The Biblical Flood: The Context and History of Seventh-day Adventist Understanding. Paper presented at Avondale College of Higher Education, Cooranbong, 9-10 September (pp. 137-180). Cooranbong, Australia: Avondale Academic Press. This Book Chapter is brought to you for free and open access by the School of Science and Mathematics at ResearchOnline@Avondale. It has been accepted for inclusion in Science and Mathematics Conference Papers by an authorized administrator of ResearchOnline@Avondale. For more information, please contact [email protected]. 137 Chapter 5 What a Catastrophe!― Science Abandons Uniformitarianism? Lynden J. Rogers Introduction: the Uniformitarian Accusation Over the last century it has been frequently claimed by defenders of a traditional reading of Genesis that one of the main reasons why scientists are blind to data supporting a world-wide Noachian Flood is because geology is philosophically uniformitarian. By this it is implied that geologists regard the present as the only reliable key to the past and in order to explain geological history will invoke only those very slow, gradual processes which can be observed in operation today. While this accusation was voiced in the late nineteenth century it was not until 1902 that the young George McCready Price levelled this charge in recognisably scientific form.1 The argument changed very little over the next 70 years.
    [Show full text]