The Age of the Earth and the Invention of Geological Time

Total Page:16

File Type:pdf, Size:1020Kb

The Age of the Earth and the Invention of Geological Time Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021 The age of the Earth and the invention of geological time JOE D. BURCHFIELD Department of Histor); Northern Illinois University, DeKalb, IL 60115, USA Abstract: During Charles Lyell's lifetime the concept of geological time was gradually rendered meaningful through the construction of a heuristic geological timescale, the development of quantitative methods to calculate the duration of that scale, and the acceptance of a quantitatively determinable limit to the age of the Earth. This paper describes a few episodes in the process of 'inventing' the concept of geological time, episodes chosen primarily for their relevance to the work of Lyell. Reflecting on the panoramic record of the Earth's personal time by analogy, by imposing an order, a past exposed to view as he travelled across the constructed memory, on the evidence of external North American continent on US interstate high- events. We make our concept of 'duration' more or way 80, John McPhee observed, 'The human mind less objective by reference to some repetitive may not have evolved enough to be able to quantifiable standard such as a day or a year, but comprehend deep time. It may only be able to our ability to comprehend duration remains measure it' (McPhee 1980, p. 127). Travelling from subjective, both shaped and limited by the east to west in a horizontal plane, McPhee passed conditions of individual experience. Since through the assemblies of rock that contained the geological time, like historical time, lies forever record of the Earth's past in no apparent chrono- outside the scope of our direct experience, our logical order. Rocks of different geological ages concept of geological time is an artefact. It had to were exposed seemingly at random. From time to be created or 'invented'. time, in cuts and tunnels, a more orderly but limited chronological sequence of rocks was exposed in a The invention of geological time vertical plane. To produce McPhee's sense of 'deep time', the record of the rocks had to be assembled In this paper, I will argue that the invention of and interpreted. In this paper I suggest that the geological time involved at least five essential 'invention' (or perhaps more accurately, the 'con- steps: the recognition of the evidence of a suc- struction') of geological time was the historical cession of past events in the static record of the process by which the concept that McPhee calls rocks, the acceptance of a terrestrial age signifi- 'deep time' was first recognized and then rendered cantly greater than the historical record of human- conceptually meaningful, if not truly compre- kind (the notion, however vague, of 'deep time'); hensible. For a working definition of 'conceptually the development of a historical sense of the Earth's meaningful', I will adopt Lord Kelvin's variation past through the construction of a heuristic geo- on McPhee's cogent distinction, namely his famous logical timescale; the creation of quantitative dictum that 'when you can measure what you are methods to calculate the duration of that scale; and speaking about and express it in numbers you know the acceptance of a quantitatively determinable something about it; but when you cannot measure limit to the age of the Earth. Also important was the it, when you cannot express it in numbers, your creation of a new concept of 'historical time' knowledge is of a meagre and unsatisfactory kind: embracing what Stephen Toulmin has called 'the it may be the beginning of knowledge, but you have twin ideas of "periods" and "development"' scarcely, in your thoughts, advanced to the stage of (Toulmin 1962-1963, p. 105). In the sense of step science' (Thomson 1891, pp. 80-81 ). one, the process of inventing geological time began Time has always presented unique conceptual in the seventeenth century with the work of difficulties for scientists and philosophers alike (see Nicolaus Steno and Robert Hooke: in the sense of Kitts 1966, 1989). We experience time only in the steps three and four, it is still going on and has been present. Our sense of the duration of time is sub- particularly vigorous during the past two or three jective, an inference based on our transitory decades (see Berggren et al. 1995). By limiting this perceptions of experienced events and our memory paper largely to British geologists in the age of of the past. We create a concept of external, non- Lyell, I can deal with only a few episodes in the BURCHFIELD, J. D. 1998. The age of the Earth and the invention of geological time. In: BLUNDELL,D. J. & 137 Sco'rr, A. C. (eds) Lyell: the Past is the Key to the Present. Geological Society. London, Special Publications, 143, 137-143. Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021 138 ~. D. BURCHFIELD early stages of invention, a few of the steps in Earth has existed, as a world maintaining plants and sketching the preliminary design. animals' (Hutton 1785, p. 3). But, after system- By the time of Charles Lyell's birth in 1797, the atically reviewing the natural causes that he first hints of a notion of geological time had been believed had shaped and continued to shape the appearing for several decades. The pioneering Earth's crust, he was faced with the conclusion that local stratigraphies published by Johann Gottlob ...as there is not in human observation proper Lehmann, Christian F~ichsel and Giovanni Arduino means for measuring the waste of land upon the between 1756 and 1761, for example, all pointed to globe, it is hence inferred, that we cannot an Earth formed by a succession of events rather estimate the duration of what we see at present, than a single act of creation (Albritton 1980, pp. nor calculate the period at which it had begun: so 117-119; Berry 1968, pp. 29-34). None of the three that, with respect to human observation, this suggested that the duration of these events would world has neither a beginning nor an end. require a terrestrial age significantly greater than (Hutton 1785, p. 28) that implied by the Mosaic narrative. Nonetheless, the notion of 'deep time' had already been sug- Hutton had perhaps clarified the problem, but the gested a decade earlier by the Cartesian specu- concept of geological time remained formless. lations of Benoi't de Maillet and the Newtonian Much has been written about the 'birth of cosmology of Georges Buffon, and by 1774 it had geology' in the years that coincide closely with been quantified by Buffon's experimental extrapol- Charles Lyell's youth. I will not attempt to rehash ation from Leibniz's hypothesis of a primordial the many ways in which time was invoked in the molten Earth (Haber 1959, pp. 115-136). Despite conflicts over 'Genesis and geology' and the dis- the controversies aroused by de Maillet's countless putes between the neptunists and plutonists. I will ages for the diminution of the seas and Buffon's suggest only the obvious: that no meaningful more modest 75 000 years for the cooling of the conception of geological time had yet been formu- Earth, by the final quarter of the eighteenth century, lated. Nonetheless, the foundations for such a a growing body of field evidence had begun to conception were being laid (see Rudwick 1996). create an intellectual climate where some notion of The palaeontological researches of Georges Cuvier, deep time was, at least in principle, acceptable J. B. Lamarck, William Buckland and others made (Porter 1977, pp. 157-160). No single event, even the strange inhabitants of the remote past vividly the Noachian deluge, could account for the visual and thus sensibly real. They pointed unmis- complexity of the strata, nor could the succession of takably to a temporal succession of living forms. life revealed by the fossils be accommodated in six Fossils also provided William Smith with one of the literal days of creation. By 1785, this new intel- three principles by which he solved the puzzle of lectual climate was sufficiently widespread to the strata and showed how to correlate its widely inspire William Cowper's acerbic lines: scattered parts. The way had been opened for the record of the rocks to be organized into a single ...Some drill and bore chronological column. The solid Earth, and from the strata there By the second decade of the nineteenth century, Extract a register, by which we learn the identification and systematic classification of That he who made it, and reveal'd its date the fossiliferous strata were underway in earnest. In To Moses, was mistaken in its age (Cowper the two decades between J. B. J. d'Omalius 1785, pp. 166-167). d'Halloy's grouping of the Chalk and underlying Although a long span of time before the advent sandstones and marl into a single Terrain Crr of humans seemed necessary to account both for in 1822 and Roderick Murchison's identification of the record of ancient life preserved in the fossils the Permian in 1841, most of the subdivisions now and for the thickness and complexity of strata designated as systems were identified and arranged exposed by the new field studies, there was no chronologically according to the principle of agreement about the magnitude of the time spans superposition. Also by 1840, Adam Sedgwick and involved. Buffon's quantitative chronology was John Phillips had suggested new names reflecting hardly less controversial than de Maillet's eternal- the temporal progression of life revealed by the ism, and, though speculations on the nature of fossil record - Paleozoic, Mesozoic and Cenozoic - geological causes were sometimes hotly debated, for larger chronological groups of systems scant attention was paid to their rates of action.
Recommended publications
  • History of Geology
    FEBRUARY 2007 PRIMEFACT 563 (REPLACES MINFACT 60) History of geology Mineral Resources Early humans needed a knowledge of simple geology to enable them to select the most suitable rock types both for axe-heads and knives and for the ornamental stones they used in worship. In the Neolithic and Bronze Ages, about 5000 to 2500 BC, flint was mined in the areas which are now Belgium, Sweden, France, Portugal and Britain. While Stone Age cultures persisted in Britain until after 2000 BC, in the Middle East people began to mine useful minerals such as iron ore, tin, clay, gold and copper as early as 4000 BC. Smelting techniques were developed to make the manufacture of metal tools possible. Copper was probably the earliest metal to be smelted, that is, extracted from its ore by melting. Copper is obtained easily by reducing the green copper carbonate mineral malachite, itself regarded as a precious stone. From 4000 BC on, the use of clay for brick-making became widespread. The Reverend William Branwhite Clarke (1798-1878), smelting of iron ore for making of tools and the ‘father’ of geology in New South Wales weapons began in Asia Minor at about 1300 BC but did not become common in Western Europe until Aristotle believed volcanic eruptions and nearly 500 BC. earthquakes were caused by violent winds escaping from the interior of the earth. Since earlier writers had ascribed these phenomena to The classical period supernatural causes, Aristotle's belief was a By recognising important surface processes at marked step forward. Eratosthenes, a librarian at work, the Greek, Arabic and Roman civilisations Alexandria at about 200 BC, made surprisingly contributed to the growth of knowledge about the accurate measurements of the circumference of earth.
    [Show full text]
  • Formal and Informal Networks of Knowledge and Etheldred Benett's
    Journal of Literature and Science Volume 8, No. 1 (2015) ISSN 1754-646X Susan Pickford, “Social Authorship, Networks of Knowledge”: 69-85 “I have no pleasure in collecting for myself alone”:1 Social Authorship, Networks of Knowledge and Etheldred Benett’s Catalogue of the Organic Remains of the County of Wiltshire (1831) Susan Pickford As with many other fields of scientific endeavour, the relationship between literature and geology has proved a fruitful arena for research in recent years. Much of this research has focused on the founding decades of the earth sciences in the early- to mid-nineteenth century, with recent articles by Gowan Dawson and Laurence Talairach-Vielmas joining works such as Noah Heringman’s Romantic Rocks, Aesthetic Geology (2003), Ralph O’Connor’s The Earth on Show: Fossils and the Poetics of Popular Science, 1802-1856 (2007), Virginia Zimmerman’s Excavating Victorians (2008) and Adelene Buckland’s Novel Science: Fiction and the Invention of Nineteenth-Century Geology (2013), to explore the rhetorical and narrative strategies of writings in the early earth sciences. It has long been noted that the most institutionally influential early geologists formed a cohort of eager young men who, having no tangible interests in the economic and practical applications of their chosen field, were in a position to develop a passionately Romantic engagement with nature, espousing an apocalyptic rhetoric of catastrophes past and borrowing epic imagery from Milton and Dante (Buckland 9, 14-15). However, as Buckland further notes, this argument – though persuasive as far as it goes – fails to take into account the broad social range of participants in the construction of early geological knowledge.
    [Show full text]
  • Astro2020 Science White Paper Solar System Deep Time-Surveys Of
    Astro2020 Science White Paper Solar system Deep Time-Surveys of atmospheres, surfaces, and rings Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects Cosmology and Fundamental Physics Stars and Stellar Evolution Resolved Stellar Populations and their Environments Galaxy Evolution Multi-Messenger Astronomy and Astrophysics Principal Author: Name: Michael H. Wong Email: [email protected] Institution: UC Berkeley Phone: 510-224-3411 Co-authors: (names and institutions) Richard Cartwright (SETI Institute) Nancy Chanover (NMSU) Kunio Sayanagi (Hampton University) Thomas Greathouse (SwRI) Matthew Tiscareno (SETI Institute) Rohini Giles (SwRI) Glenn Orton (JPL) David Trilling (Northern Arizona Univeristy) James Sinclair (JPL) Noemi Pinilla-Alonso (Florida Space Institute, UCF) Michael Lucas (UT Knoxville) Eric Gaidos (University of Hawaii) Bryan Holler (STScI) Stephanie Milam (NASA GSFC) Angel Otarola (TMT) Amy Simon (NASA GSFC) Katherine de Kleer (Caltech) Conor Nixon (NASA GSFC) PatricK Fry (Univ. Wisconsin) Máté Ádámkovics (Clemson Univ.) Statia H. LuszcZ-Cook (AMNH) Amanda Hendrix (PSI) Abstract: Imaging and resolved spectroscopy reveal varying environmental conditions in our dynamic solar system. Many key advances have focused on how these conditions change over time. Observatory- level commitments to conduct annual observations of solar system bodies would establish a long- term legacy chronicling the evolution of dynamic planetary atmospheres, surfaces, and rings. Science investigations will use these temporal datasets to address potential biosignatures, circulation and evolution of atmospheres from the edge of the habitable zone to the ice giants, orbital dynamics and planetary seismology with ring systems, exchange between components in the planetary system, and the migration and processing of volatiles on icy bodies, including Ocean Worlds.
    [Show full text]
  • The Importance of French Transformist Ideas for the Second Volume of Lyell’S Principles of Geology Pietro Corsi
    The importance of french transformist ideas for the second volume of lyell’s principles of geology Pietro Corsi To cite this version: Pietro Corsi. The importance of french transformist ideas for the second volume of lyell’s principles of geology. 2004. halshs-00002894 HAL Id: halshs-00002894 https://halshs.archives-ouvertes.fr/halshs-00002894 Preprint submitted on 20 Sep 2004 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE BRITISH JOURNAL FOR THE HISTORY OF SCIENCE Vol. II t No. 39 (1978) < 221 > THE IMPORTANCE OF FRENCH TRANSFORMIST IDEAS FOR THE SECOND VOLUME OF LYELL'S PRINCIPLES OF GEOLOGY PIETRO CORSI* RECENTLY there has been considerable revaluation of the development of natural sciences in the early nineteenth century, dealing among other things with the works and ideas of Charles Lyell. The task of interpreting Lyell in balanced terms is extremely complex because his activities covered many fields of research, and because his views have been unwarrantably distorted in order to make him the precursor of various modern scientific positions. Martin Rudwick in particular has contributed several papers relating to Lyell's Principles of geology, and has repeatedly stressed the need for a comprehensive evaluation of Lyell's scientific proposals, and of his position in the culture of his time.
    [Show full text]
  • MARS DURING the PRE-NOACHIAN. J. C. Andrews-Hanna1 and W. B. Bottke2, 1Lunar and Planetary La- Boratory, University of Arizona
    Fourth Conference on Early Mars 2017 (LPI Contrib. No. 2014) 3078.pdf MARS DURING THE PRE-NOACHIAN. J. C. Andrews-Hanna1 and W. B. Bottke2, 1Lunar and Planetary La- boratory, University of Arizona, Tucson, AZ 85721, [email protected], 2Southwest Research Institute and NASA’s SSERVI-ISET team, 1050 Walnut St., Suite 300, Boulder, CO 80302. Introduction: The surface geology of Mars appar- ing the pre-Noachian was ~10% of that during the ently dates back to the beginning of the Early Noachi- LHB. Consideration of the sawtooth-shaped exponen- an, at ~4.1 Ga, leaving ~400 Myr of Mars’ earliest tially declining impact fluxes both in the aftermath of evolution effectively unconstrained [1]. However, an planet formation and during the Late Heavy Bom- enduring record of the earlier pre-Noachian conditions bardment [5] suggests that the impact flux during persists in geophysical and mineralogical data. We use much of the pre-Noachian was even lower than indi- geophysical evidence, primarily in the form of the cated above. This bombardment history is consistent preservation of the crustal dichotomy boundary, to- with a late heavy bombardment (LHB) of the inner gether with mineralogical evidence in order to infer the Solar System [6] during which HUIA formed, which prevailing surface conditions during the pre-Noachian. followed the planet formation era impacts during The emerging picture is a pre-Noachian Mars that was which the dichotomy formed. less dynamic than Noachian Mars in terms of impacts, Pre-Noachian Tectonism and Volcanism: The geodynamics, and hydrology. crust within each of the southern highlands and north- Pre-Noachian Impacts: We define the pre- ern lowlands is remarkably uniform in thickness, aside Noachian as the time period bounded by two impacts – from regions in which it has been thickened by volcan- the dichotomy-forming impact and the Hellas-forming ism (e.g., Tharsis, Elysium) or thinned by impacts impact.
    [Show full text]
  • Victorian Popular Science and Deep Time in “The Golden Key”
    “Down the Winding Stair”: Victorian Popular Science and Deep Time in “The Golden Key” Geoffrey Reiter t is sometimes tempting to call George MacDonald’s fantasies “timeless”I and leave it at that. Such is certainly the case with MacDonald’s mystical fairy tale “The Golden Key.” Much of the criticism pertaining to this work has focused on its more “timeless” elements, such as its intrinsic literary quality or its philosophical and theological underpinnings. And these elements are not only important, they truly are the most fundamental elements needed for a full understanding of “The Golden Key.” But it is also important to remember that MacDonald did not write in a vacuum, that he was in fact interested in and engaged with many of the pressing issues of his day. At heart always a preacher, MacDonald could not help but interact with these issues, not only in his more openly didactic realistic novels, but even in his “timeless” fantasies. In the Victorian period, an era of discovery and exploration, the natural sciences were beginning to come into their own as distinct and valuable sources of knowledge. John Pridmore, examining MacDonald’s view of nature, suggests that MacDonald saw it as serving a function parallel to the fairy tale or fantastic story; it may be interpreted from the perspective of Christian theism, though such an interpretation is not necessary (7). Björn Sundmark similarly argues that in his works “MacDonald does not contradict science, nor does he press a theistic interpretation onto his readers” (13). David L. Neuhouser has concluded more assertively that while MacDonald was certainly no advocate of scientific pursuits for their own sake, he believed science could be of interest when examined under the aegis of a loving God (10).
    [Show full text]
  • Natural Theology and Natural History in Darwin’S Time: Design
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ETD - Electronic Theses & Dissertations NATURAL THEOLOGY AND NATURAL HISTORY IN DARWIN’S TIME: DESIGN, DIRECTION, SUPERINTENEDENCE AND UNIFORMITY IN BRITISH THOUGHT, 1818-1876 By Boyd Barnes Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Religion May, 2008 Nashville, Tennessee Approved: Professor James Hudnut-Beumler Professor Dale A. Johnson Professor Eugene A. TeSelle Professor Richard F. Haglund Professor James P. Byrd William Buckland “The evidences afforded by the sister sciences exhibit indeed the most admirable proofs of design originally exerted at the Creation: but many who admit these proofs still doubt the continued superintendence of that intelligence, maintaining that the system of the Universe is carried on by the force of the laws originally impressed upon matter…. Such an opinion … nowhere meets with a more direct and palpable refutation, than is afforded by the subserviency of the present structure of the earth’s surface to final causes; for that structure is evidently the result of many and violent convulsions subsequent to its original formation. When therefore we perceive that the secondary causes producing these convulsions have operated at successive epochs, not blindly and at random, but with a direction to beneficial ends, we see at once the proofs of an overruling Intelligence continuing to superintend, direct, modify, and control the operation of the agents, which he originally ordained.” – The Very Reverend William Buckland (1784-1856), DD, FRS, Reader in Geology and Canon of Christ Church at the University of Oxford, President of the Geological Society of London, President of the British Association for the Advancement of Science, Dean of Westminster.
    [Show full text]
  • Hutton, Kelvin, and the Great Earth Debates. • the Beginnings of Modern Geology “All Natural Processes That Affect the Earth’S Crust (Erosion, Deposition, • Ca
    Chapter 1 The Science of Geology An Introduction to Geology • Geology - the science that pursues an understanding of planet Earth • Physical geology - examines the materials composing Earth and seeks to understand the many processes that operate beneath and upon its surface • Historical geology - seeks an understanding of the origin of “If there is an interesting place you want to go, there is Earth and its development interesting geology that you can study there” through time Mersin ophiolite, (Cappadocia, Central Turkey). Turkey The Science of Geology The Science of Geology 1.3: satellite image of Mt. Vesuvius, Italy. • Some historical views • Geology, people, and the environment of the Earth • Many important relationships exist between • Aristotle, 300 BC; people and the natural environment • James Ussher, ca. 1600, ‘Earth was created in Problems and issues 4004 BC;’ addressed by • Catastrophism geology include • Earth’s features formed through • Natural hazards, sudden and violent resources, world changes. ‘The Dog population growth, of and environmental Pompeii’ issues Dwelling in Goreme, Cappadocia The Science of Geology Hutton, Kelvin, and the great Earth debates. • The beginnings of modern geology “All natural processes that affect the Earth’s crust (erosion, deposition, • ca. 1780, James Huton’s volcanic eruptions, faulting, glaciation Theory of the Earth; etc.) operate with the same intensity • Uniformitarianism: “the and under the same set of physical processes that operate constraints now as in the geologic past.” today have operated in “(as to the age of Earth) we see no the past.” vestige of a beginning, no prospect of • a uniformitarian view of an end.” Earth requires a vast These points are incorrect - why? amount of time….
    [Show full text]
  • William Smith Abstracts
    William Smith 1769-1839 Acknowledgements This meeting is a part of a number of events that mark the Bicentennial of the first map published by William Smith. We gratefully acknowledge the support of ARUP for making this meeting possible. Sponsor: CONTENTS Inside Cover Sponsors Acknowledgement Event Programme Page 1 Speaker Abstracts Page 37 Poster Abstracts Page 47 Speaker Biographies Page 57 Burlington House Fire Safety Information Page 58 Ground Floor Plan of the Geological Society, Burlington House William Smith Meeting 2015 200 Years of Smith’s Map 23-24 April 2015 PROGRAMME SPEAKER ABSTRACTS William Smith Meeting 23 April 2015 DAY ONE 1 William Smith's (1769-1839) Searches for a Money-earning Career Hugh Torrens Keele University, Keele, Staffordshire, ST5 5BG, UK email: [email protected] This lecture will concentrate on Smith's, highly complex, early 'career paths'. His first employment was as a land surveyor (1). Then in 1793 he became both, canal surveyor (2), and engineer, (3) to the Somerset Coal Canal (SCC). These had guaranteed him a regular, and known, income. But this suddenly changed, when he was successively dismissed, first as surveyor, then as engineer, in 1799. He now had to find some other means of supporting himself, and the geological revelations, which he knew were so important, that he had uncovered in Somerset. In the mid-1790s, he had done some land drainage and irrigation work (4), for the chairman of the SCC, and immediately after his dismissals, was able to generate an adequate living from such work around Bath, during a period of very high rainfall.
    [Show full text]
  • Critical Analysis of Article "21 Reasons to Believe the Earth Is Young" by Jeff Miller
    1 Critical analysis of article "21 Reasons to Believe the Earth is Young" by Jeff Miller Lorence G. Collins [email protected] Ken Woglemuth [email protected] January 7, 2019 Introduction The article by Dr. Jeff Miller can be accessed at the following link: http://apologeticspress.org/APContent.aspx?category=9&article=5641 and is an article published by Apologetic Press, v. 39, n.1, 2018. The problems start with the Article In Brief in the boxed paragraph, and with the very first sentence. The Bible does not give an age of the Earth of 6,000 to 10,000 years, or even imply − this is added to Scripture by Dr. Miller and other young-Earth creationists. R. C. Sproul was one of evangelicalism's outstanding theologians, and he stated point blank at the Legionier Conference panel discussion that he does not know how old the Earth is, and the Bible does not inform us. When there has been some apparent conflict, either the theologians or the scientists are wrong, because God is the Author of the Bible and His handiwork is in general revelation. In the days of Copernicus and Galileo, the theologians were wrong. Today we do not know of anyone who believes that the Earth is the center of the universe. 2 The last sentence of this "Article In Brief" is boldly false. There is almost no credible evidence from paleontology, geology, astrophysics, or geophysics that refutes deep time. Dr. Miller states: "The age of the Earth, according to naturalists and old- Earth advocates, is 4.5 billion years.
    [Show full text]
  • Press Release
    Press Release Issued: Wednesday 12th August 2020 Darwin mentor and geology pioneer Charles Lyell’s archives reunited Fascinating writings of an influential scientist who shaped Charles Darwin’s thinking have become part of the University of Edinburgh’s collections. A rich assortment of letters, books, manuscripts, maps and sketches by Scottish geologist Sir Charles Lyell, have been reassembled at the University Library’s Centre for Research Collections, with the goal of making the collection more accessible to the public. Some 294 notebooks, purchased from the Lyell family following a £1 million fundraising campaign in 2019, form a key part of the collection. Although written in the Victorian era, the works shed light on current concerns, including climate change and threats to biodiversity. Now a second tranche of Lyell material has been allocated to the University by HM Government under the Acceptance in Lieu of Inheritance Tax scheme. These new acquisitions, from the estate of the 3rd Baron Lyell, will join other items that have been part of the University’s collections since 1927. The new archive includes more than 900 letters, with correspondence between Lyell and Darwin, the botanist Joseph Dalton Hooker, the publisher John Murray and Lyell’s wife, Mary Horner Lyell, and many others. It also includes a draft manuscript and heavily annotated editions of Lyell’s landmark book The Principles of Geology and several manuscripts from his lectures. Lyell, who died in 1875, aged 77, mentored Sir Charles Darwin after the latter’s return from his five-year voyage on the Beagle in 1836. The Scot is also credited with providing the framework that helped Darwin develop his evolutionary theories.
    [Show full text]
  • Origin and Beyond
    EVOLUTION ORIGIN ANDBEYOND Gould, who alerted him to the fact the Galapagos finches ORIGIN AND BEYOND were distinct but closely related species. Darwin investigated ALFRED RUSSEL WALLACE (1823–1913) the breeding and artificial selection of domesticated animals, and learned about species, time, and the fossil record from despite the inspiration and wealth of data he had gathered during his years aboard the Alfred Russel Wallace was a school teacher and naturalist who gave up teaching the anatomist Richard Owen, who had worked on many of to earn his living as a professional collector of exotic plants and animals from beagle, darwin took many years to formulate his theory and ready it for publication – Darwin’s vertebrate specimens and, in 1842, had “invented” the tropics. He collected extensively in South America, and from 1854 in the so long, in fact, that he was almost beaten to publication. nevertheless, when it dinosaurs as a separate category of reptiles. islands of the Malay archipelago. From these experiences, Wallace realized By 1842, Darwin’s evolutionary ideas were sufficiently emerged, darwin’s work had a profound effect. that species exist in variant advanced for him to produce a 35-page sketch and, by forms and that changes in 1844, a 250-page synthesis, a copy of which he sent in 1847 the environment could lead During a long life, Charles After his five-year round the world voyage, Darwin arrived Darwin saw himself largely as a geologist, and published to the botanist, Joseph Dalton Hooker. This trusted friend to the loss of any ill-adapted Darwin wrote numerous back at the family home in Shrewsbury on 5 October 1836.
    [Show full text]