Contributions to the History of Geomorphology and Quaternary Geology: an Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1350-5 Geologist
POSITION DESCRIPTION 1. Position Number 2. Explanation (show any positions replaced) 3. Reason for Submission New Redescription Reestablishment Standardized PD Other 4. Service 5. Subject to Identical Addition (IA) Action HQ Field Yes (multiple use) No (single incumbent) 6. Position Specifications 7. Financial Statement Required 10. Position Sensitivity and Risk Designation Subject to Random Drug Testing Yes No Executive Personnel-OGE-278 Non-Sensitive Employment and Financial Interest-OGE-450 Non-Sensitive: Low-Risk Subject to Medical Standards/Surveillance Yes No None required Public Trust Telework Suitable Yes No 8. Miscellaneous 9. Full Performance Level Non-Sensitive: Moderate-Risk Fire Position Yes No Functional Code: -- Pay Plan: Non-Sensitive: High-Risk Law Enforcement Position Yes No BUS: - - Grade: National Security 11. Position is 12. Position Status Noncritical-Sensitive: Moderate-Risk Competitive SES Noncritical-Sensitive: High-Risk 2-Supervisory Excepted (specify in remarks) SL/ST Critical-Sensitive: High-Risk 4-Supervisor (CSRA) 13. Duty Station Special Sensitive: High-Risk 5-Management Official 6-Leader: Type I 14. Employing Office Location 15. Fair Labor Standards Act Exempt Nonexempt 7-Leader: Type II 16. Cybersecurity Code 17. Competitive Area Code: 8-Non-Supervisory #1: #2: - - #3: - - Competitive Level Code: 18. Classified/Graded by Official Title of Position Pay Plan Occupational Code Grade Initial Date a. Department, Bureau, or Office b. Second Level Review -- -- 19. Organizational Title of Position (if different from, or in addition to, official title) 20. Name of Employee (if vacant, specify) 21. Department, Agency, or Establishment c. Third Subdivision U.S. Department of the Interior a. Bureau/First Subdivision d. -
History of Geology
FEBRUARY 2007 PRIMEFACT 563 (REPLACES MINFACT 60) History of geology Mineral Resources Early humans needed a knowledge of simple geology to enable them to select the most suitable rock types both for axe-heads and knives and for the ornamental stones they used in worship. In the Neolithic and Bronze Ages, about 5000 to 2500 BC, flint was mined in the areas which are now Belgium, Sweden, France, Portugal and Britain. While Stone Age cultures persisted in Britain until after 2000 BC, in the Middle East people began to mine useful minerals such as iron ore, tin, clay, gold and copper as early as 4000 BC. Smelting techniques were developed to make the manufacture of metal tools possible. Copper was probably the earliest metal to be smelted, that is, extracted from its ore by melting. Copper is obtained easily by reducing the green copper carbonate mineral malachite, itself regarded as a precious stone. From 4000 BC on, the use of clay for brick-making became widespread. The Reverend William Branwhite Clarke (1798-1878), smelting of iron ore for making of tools and the ‘father’ of geology in New South Wales weapons began in Asia Minor at about 1300 BC but did not become common in Western Europe until Aristotle believed volcanic eruptions and nearly 500 BC. earthquakes were caused by violent winds escaping from the interior of the earth. Since earlier writers had ascribed these phenomena to The classical period supernatural causes, Aristotle's belief was a By recognising important surface processes at marked step forward. Eratosthenes, a librarian at work, the Greek, Arabic and Roman civilisations Alexandria at about 200 BC, made surprisingly contributed to the growth of knowledge about the accurate measurements of the circumference of earth. -
Geomorphic Classification of Rivers
9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations. -
William Morris Davis Brief Life of a Pioneering Geomorphologist: 1850-1934 by Philip S
VITA William Morris Davis Brief life of a pioneering geomorphologist: 1850-1934 by PhiliP S. Koch Naught looks the same for long… Waters rush on, make valleys where once stood plains; hills wash away to the sea. Marshland dries to sand, while dry land becomes stagnant, marshy pool. From Nature, springs erupt or are sealed; from earthquakes, streams burst forth or vanish. n Metamorphoses, the Roman poet Ovid, echoing Pythagoras, al- ludes to geomorphology: the study of the forms taken by the Iearth’s surface, and what causes them. Almost 19 centuries later, William Morris Davis, S.B. 1869, devised a clear, concise, descrip- tive, and idealized model of landscape evolution that revolutionized and in many ways created this field of study. Born into a prominent Philadelphia Quaker family, Davis studied geology and geography at Harvard’s Lawrence Scientific School and then joined a Harvard-sponsored geographic-exploration party to the Colorado Territory, led by the inaugural Sturgis-Hooper profes- sor of geology, Josiah Dwight Whitney. Wild stories had circulated since soon after the Louisiana Purchase about Rocky Mountain peaks 18,000 feet or higher. The Harvard expedition set out to investigate, and found none, but they did find “’14ers” (14,000-plus feet). Among these, the expedition members surveyed, named, and made two first- river valleys locally decrease the growing recorded summitings in the “Collegiate Peaks,” designating the tall- elevation differences between “uplands” est in the group Mount Harvard (honoring their sponsor), and the and “base-level” caused by uplift. In “Ma- second tallest Mount Yale (honoring Whitney’s alma mater). -
Process-Form Models
11 Process-form Models The interaction of process and landform is central to geomorphic investigations and a series of concepts have been associated with the models of landscape development suggested over the last century. Process investigations were enhanced by considering the way in which specific landscape features are related to processes, as illustrated by grade, characteristic angles, drainage density and river channel capacity. Technique developments, especially of cos- mogenic dating, have revitalised some earlier models. The complex response concept affords the reconciliation of alternative landscape histories, and a panoply of models is now becoming available offering opportunities to realize the objectives of the original qualitative approaches. Exogenic processes Microclimate and Local climate Regional climate Climatic zones meteorological events Short-term climatic change Medium-term climatic Long-term climatic Animal and plant activities Local vegetation change change (e.g. glacial– change (e.g. icehouse interglacial cycles) and hothouse states) Regional vegtation change Biological evolution Microscale landforms Mesoscale landforms Macroscale landforms Megascale landforms Area: <0.25 km2 Area: 0.25–100 km2 Area: 100–1,000,000 km2 Area: >1,000,000 km2 Lifespan: 10 years Lifespan: 1,000 years Lifespan: 10 million years Lifespan: >10 million years Exogenic examples: Fluvial Pools and riffles Meanders Large river floodplains Major drainage basins Glacial Small cirques Valley glaciers Ice caps Ice sheets and inland Aeolian Ripples -
Hutton, Kelvin, and the Great Earth Debates. • the Beginnings of Modern Geology “All Natural Processes That Affect the Earth’S Crust (Erosion, Deposition, • Ca
Chapter 1 The Science of Geology An Introduction to Geology • Geology - the science that pursues an understanding of planet Earth • Physical geology - examines the materials composing Earth and seeks to understand the many processes that operate beneath and upon its surface • Historical geology - seeks an understanding of the origin of “If there is an interesting place you want to go, there is Earth and its development interesting geology that you can study there” through time Mersin ophiolite, (Cappadocia, Central Turkey). Turkey The Science of Geology The Science of Geology 1.3: satellite image of Mt. Vesuvius, Italy. • Some historical views • Geology, people, and the environment of the Earth • Many important relationships exist between • Aristotle, 300 BC; people and the natural environment • James Ussher, ca. 1600, ‘Earth was created in Problems and issues 4004 BC;’ addressed by • Catastrophism geology include • Earth’s features formed through • Natural hazards, sudden and violent resources, world changes. ‘The Dog population growth, of and environmental Pompeii’ issues Dwelling in Goreme, Cappadocia The Science of Geology Hutton, Kelvin, and the great Earth debates. • The beginnings of modern geology “All natural processes that affect the Earth’s crust (erosion, deposition, • ca. 1780, James Huton’s volcanic eruptions, faulting, glaciation Theory of the Earth; etc.) operate with the same intensity • Uniformitarianism: “the and under the same set of physical processes that operate constraints now as in the geologic past.” today have operated in “(as to the age of Earth) we see no the past.” vestige of a beginning, no prospect of • a uniformitarian view of an end.” Earth requires a vast These points are incorrect - why? amount of time…. -
Related Skills, Values, and Qualities Common Interests of Geology
Bachelor of Science: Geology Minor: Geology Geology is a broad interdisciplinary science that involves the study of Earth and its history. Geologists gather and interpret data about the Earth for the purpose of increasing our knowledge about natural resources and Earth processes. They provide basic information required for establishing policy for resource management and environmental protection. Geologists may explore for new mineral or oil resources, work on environmental problems, do research, or teach and often divide their time between work in the field, the laboratory, and the office. The Bachelor of Science in Geology program at KU was designed to prepare students with enough fundamental understanding of geology to succeed in graduate school, and to provide the practical field experience needed to succeed as career geologists. Course requirements parallel the subjects on the Professional Geologist licensing exam. Employers recommend one or more internships to be successful and competitive when entering this field. Career types associated with Geology Common interests of Geology majors (Is this a good fit for you? Are you…) • Visiting science museums, nature centers, or zoos Investigative - “Thinker” • Developing hobbies and collections related to soils, Realistic - “Doer” rocks, coins, or other artifacts Social - “Helper” • Hiking, mountain climbing, camping, backpacking and other outdoors activities • Exploring and traveling Related skills, values, and qualities • Playing games of strategy or putting together or • Proficiency in -
3.5.3 the Use of Erosion Pins in Geomorphology
© Author(s) 2016. CC Attribution 4.0 License. ISSN 2047 - 0371 3.5.3 The use of erosion pins in geomorphology John Boardman1,2 and David Favis-Mortlock1 1Environmental Change Institute, Oxford University Centre for the Environment, Oxford, UK ([email protected]) 2Department of Environmental and Geographical Science, University of Cape Town, South Africa ABSTRACT: Erosion pins have been widely used in geomorphology since the 1950s to estimate rates of change (erosion and – less commonly – accumulation) in land surfaces. They may be used for short- and long-term surveys and are quick and easy to install and measure. Erosion pins are particularly suited to bare, undisturbed environments such as badlands and sand dunes. Our recommendations for their use follow those of Haigh (1977) and Lawler (1993) but we also discuss the need for researchers to be aware of issues which arise from of measurement error, particularly for short-term studies and analytical methods which rely on few pin measurements. There is also a not inconsiderable challenge involved in extrapolating results derived from erosion pin measurements to larger areas. KEYWORDS: badlands, erosion pins, erosion rates, measurement errors erosion pins is not necessary: useful data can Introduction be collected with occasional visits. The basic idea behind the use of erosion pins However, this simplicity is deceptive. to quantify land-surface change is very Considerations of pin siting, measurement straightforward. A rod is firmly fixed into the error, and interpretation of results rapidly ground (or other substrate), and a note made introduce additional complexity. Thus, any of the length of rod which remains exposed. -
National Register of Historic Places Inventory -- Nomination Form
THEME: Americans at Work Form No. 10-300 (Rev. 10-74) SUBTHEME: " ence and Invention" UNITED STATES DEPART . .cNT OF THE INTERIOR NATIONAL PARK SERVICE NATIONAL REGISTER OF HISTORIC PLACES INVENTORY -- NOMINATION FORM SEE INSTRUCTIONS IN HOW TO COMPLETE NATIONAL REGISTER FORMS TYPE ALL ENTRIES -- COMPLETE APPLICABLE SECTIONS I NAME HISTORIC William Morris Davis House AND/OR COMMON 17 Francis Street LOCATION STREET & NUMBER 17 Francis Street _NOT FOR PUBLICATION CITY. TOWN CONGRESSIONAL DISTRICT Cambridge VICINITY OF 8th STATE CODE COUNTY CODE Massachusetts 75 Middlesex 017 CLASSIFICATION CATEGORY OWNERSHIP STATUS PRESENT USE —DISTRICT __PUBLIC ^.OCCUPIED —AGRICULTURE —MUSEUM X_BUILDING(S) ^—PRIVATE —UNOCCUPIED —COMMERCIAL —PARK —STRUCTURE —BOTH —WORK IN PROGRESS —EDUCATIONAL .^PRIVATE RESIDENCE —SITE PUBLIC ACQUISITION ACCESSIBLE —ENTERTAINMENT —RELIGIOUS —OBJECT _IN PROCESS —YES. RESTRICTED —GOVERNMENT —SCIENTIFIC _BEING CONSIDERED — YES: UNRESTRICTED —INDUSTRIAL —TRANSPORTATION X.NO —MILITARY —OTHER (OWNER OF PROPERTY NAME Francis M. shea STREET & NUMBER 17 Francis Street CITY, TOWN STATE Cambridge _ VICINITY OF Massachusetts (LOCATION OF LEGAL DESCRIPTION COURTHOUSE. Middlesex Registry of Deeds Southern District REGISTRY OF DEEDS, ETC STREET & NUMBER 3rd and Ottis Streets CITY. TOWN STATE Cambridge Massachusetts REPRESENTATION IN EXISTING SURVEYS TITLE None DATE — FEDERAL —STATE —COUNTY __LOCAL DEPOSITORY FOR SURVEY RECORDS CITY. TOWN STATE DESCRIPTION CONDITION CHECK ONE CHECK ONE x .^EXCELLENT _DETERIORATED _UNALTERED ^.ORIGINAL SITE _GOOD _RUINS _ALTERED _MOVED DATE- _FAIR (unrestored) _UNEXPOSED DESCRIBE THE PRESENT AND ORIGINAL (IF KNOWN) PHYSICAL APPEARANCE The William Morris Davis House in Cambridge, Massachusetts, is a frame, 2h story gabled roof house with a gambreled roof wing. The exterior is sheathed in shingles. The main entrance is located on the side of the house and there is also a rear entrance. -
18Th Century Rural Architecture ROOTED in SWEDEN Guest Article
no 8 2010-01 ROOTED IN SWEDEN Living in Swedeland USA 18th Century Rural Architecture Guest Article Emigration Conference | SwedGen Tour 2009 contents 18th Century Rural 3 Architecture - Skåne Emigration Conference - 7 “Letters to Sweden” Living in Swedeland USA 9 7 16 8 The Digital Race 13 Swedgen Tour 2009 14 Christmas as Celebrated 16 9 in my Childhood Swedish Genealogical 20 Society of Minnesota 3 firstly... …I would like to talk about the cur- rent status of genealogy. A while ago I spoke to a fellow genealogist who experiences problems in getting local government funding for genealogical societies and events. This person felt 20 that the cultural funding tended to fa- vour sports activities for the young, Along with genealogy comes inevita- ter at night long after the rest of the and that it might even be a question of bly a curiosity about how people lived family has gone to bed. At the same age discrimination since genealogy is and a general historical curiosity, not time it can be very social and also a regarded as an “old folks” activity. I about kings and queens and wars and team effort. You can save yourself a don’t know the full specifics or even revolutions, but about the little man. lot of work by connecting with other if this is the typical case, but I still To me, this history is equally excit- genealogists, by exchanging infor- felt like I had taken a blow to the sto- ing and more or less skipped during mation and tips of resources. -
Ecology, Planning, and River Management in the United States: Some Historical Reflections
Copyright © 2005 by the author(s). Published here under license by the Resilience Alliance. Reuss, M. 2005. Ecology, planning, and river management in the United States: some historical reflections. Ecology and Society 10(1): 34. [online] URL: http://www.ecologyandsociety.org/vol10/iss1/art34/ Research, part of a Special Feature on Riverine Landscapes Ecology, Planning, and River Management in the United States: Some Historical Reflections Martin Reuss1 ABSTRACT. River ecologists are also river-basin planners. However, their role in planning has developed slowly over the decades since the beginning of the 20th century. Three major factors explain this phenomenon. First, ecologists focused on plant and animal communities rather than on broader policy issues related to land settlement and water development. Second, the federal government, and most state and local governments as well, used mainly economic criteria to justify projects. Intangible benefits, including the value of species or an aesthetically pleasing landscape, drew relatively little attention. Third, the public generally favored development, especially during the Great Depression of the 1930s. Only after World War II did the public's position shift in favor of more preservation, as ecologists developed the concept of the ecosystem, large dam projects forced basin inhabitants from their homes, and chemical and nuclear pollutants threatened the environment. Also, urbanization increased support for the preservation of recreation sites and of streams undisturbed by human intervention. Meanwhile, partly through important advances in geomorphology and hydrology, ecologists acquired new tools to understand the land-water relationship within river basins. Neverthless, benefit-cost analysis continued to dominate federal water- resources planning, and organizational culture and competing or overlapping bureaucracies hampered rational water resources administration. -
The Geological Revolution: Deep Time and the Age of the Earth
Lecture 6: The Geological Revolution: Deep Time and the Age of the Earth Astronomy 141 – Winter 2012 This lecture explores the geological revolution that revealed the antiquity of the Earth. Understanding the age of the Earth requires having a conception of a beginning for the Earth. Historical and Physical age estimates give different answers. Geological discoveries uncovered the deep history of the Earth, and developed techniques for reading that history. The Earth is 4.54 ± 0.05 Billion Years old, measured by radiometric age dating of meteorites, the oldest Earth rocks, and Moon rocks. In order for “what is the age of the Earth?” to make sense, you must conceive of a beginning. Two ways people have conceived of time: Cyclical Time: Earth has no beginning or end, only repeated cycles of birth, death, and rebirth/renewal. Linear Time: Earth has a past beginning & will have a future end. On human scales, time appears to be cyclical Natural cycles around us: Cycle of day & night Monthly cycle of moon phases Yearly cycle of the seasons Generational cycle of birth, life, and death... Examples: Hinduism & Buddhism posit cyclical time Plato’s 72,000 year cycle: 36,000 Golden Age followed by a 36,000 age of disorder & chaos. Linear Time posits a definite beginning in the past, and an eventual ending in the future. Judaism provides an example of linear time: Past divine creation of the Earth (Genesis) Promised end of times. Christianity & Islam adopted this idea: See history as fulfillment, not growth. No change in the world, except decay from past perfection (“fall from grace”).